
JMLR: Workshop and Conference Proceedings 21:243–248, 2012 The 11th ICGI

Results of the PAutomaC Probabilistic
Automaton Learning Competition∗

Sicco Verwer† s.verwer@cs.ru.nl
Radboud University Nijmegen

Rémi Eyraud remi.eyraud@lif.univ-mrs.fr
QARMA team, Laboratoire d’Informatique Fondamentale de Marseille

Colin de la Higuera cdlh@univ-nantes.fr

TALN team, Laboratoire d’Informatique de Nantes Atlantique, Nantes University

Editors: Jeffrey Heinz, Colin de la Higuera, and Tim Oates

Abstract

Approximating distributions over strings is a hard learning problem. Typical GI tech-
niques involve using finite state machines as models and attempting to learn both the
structure and the weights, simultaneously. The PAutomaC competition is the first chal-
lenge to allow comparison between methods and algorithms and builds a first state of the
art for these techniques. Both artificial data and real data were proposed and contestants
were to try to estimate the probabilities of test strings. The purpose of this paper is to
provide an overview of the implementation details of PAutomaC and to report the final
results of the competition.

1. Introduction

The PAutomaC probabilistic automaton learning competition was an on-line challenge that
can be found at http://ai.cs.umbc.edu/icgi2012/challenge/Pautomac/. The goal of
PAutomaC was to provide an overview of which probabilistic automaton learning tech-
niques work best in which setting and to stimulate the development of new techniques
for learning distributions over strings. Many probabilistic automata learning methods have
been produced in the past (see Verwer et al. (2012) for an overview). Due to the difficulty of
the learning problem, most of them focus on learning some form of deterministic probabilis-
tic automaton (Dpfa, see, e.g., Carrasco and Oncina (1994)), where only the symbols are
drawn from probability distributions but the transitions are uniquely determined given the
generated symbol. There exist some exceptions, however, which aim to learn hidden Markov
models (Hmm) (Baum, 1972), probabilistic residual automata (Esposito et al., 2002), and
multiplicity automata (Denis et al., 2006). Another important approach is to learn Markov
chains or n-grams by simply counting the occurrences of substrings. These simple count-
ing methods have been very successful in practice (Brill et al., 1998), but there has been

† This work was supported in part by the IST Program of the European Community, under the Pascal
Network of Excellence, IST-2002-506778. This publication only reflects the authors’ views.

† The first author is supported by STW project 11763 Integrating Testing And Learning of Interface
Automata (ITALIA).

c© 2012 S. Verwer, R. Eyraud & C. de la Higuera.

http://ai.cs.umbc.edu/icgi2012/challenge/Pautomac/


Verwer Eyraud de la Higuera

so far no thorough investigation of which model/algorithm is likely to perform best and
why. PAutomaC aimed to fill this knowledge gap by testing different methods on a set
of distributions generated by different types of models of ranging size and sparsity. This is
not only very useful for practical applications (where many different types of distributions
can be encountered), but also aims to answer to the question whether it is best to learn
a non-deterministic model (Hmm, Pfa) or a deterministic model (Dpfa) when the data is
drawn from a (non-)deterministic distribution, see, e.g., Gavaldà et al. (2006).

This paper provides a brief overview of PAutomaC and of its results. The participants
were given access to train and test sets of these learning problems and asked to learn a string
distribution, which should then subsequently be used to assign probabilities of the strings
in the test set. In contrast to the traditional method of testing predictive performance,
this setup also evaluated whether low probability events were assigned low probabilities.
Furthermore, since the learned model structure was not evaluated, it allowed the use of any
learning method, not only those resulting in probabilistic automata models. Using train
and test sets for performance evaluation also introduced some issues with respect to the
evaluation measure and possible collusion, which had been resolved with the help of the
PAutomaC scientific committee, see the website for details.

2. An overview of PAutomaC

Generating artificial data. Artificial data was generated by building a random proba-
bilistic automaton of with 5 to 75 states and with an alphabet consisting of 4 to 24 symbols
(both inclusive, and decided uniformly at random). This machine was subsequently used
to generate data sets. Of all possible state-symbol pairs that could occur in transitions,
between 20 and 80 percent (the symbol sparsity) of them were generated. These pairs were
selected by first choosing a state at random, and subsequently choosing a symbol from
the set of symbols that had not yet been selected for that state. This created a selection
without replacement from the set of all possible state-symbol pairs that was modified to
remain uniform over the states. This modification made it less likely that the resulting
symbols were evenly distributed over the states. For every generated state-symbol pair,
one transition was generated to a randomly chosen target state. Between 0 and 20 percent
(the transition sparsity) transitions were generated in addition to these, selected without
replacement from the set of possible transitions, modified to remain uniform over the source
states and transition labels.

Initial states and final states were selected without replacement until the percentages
of selected states exceeded the transition and symbol sparsities, respectively. All initial,
symbol, and transition probabilities were drawn from a Dirichlet distribution (making every
distribution equally likely). The final probabilities were drawn together with the symbol
probabilities. From such a structure, one training and one test set were generated from
every target. With probability one out of four, the generated train set was of size 100 000,
it was of size 20 000 otherwise. New test strings were generated using the target machine
until 1 000 unique strings had been generated. The test strings were allowed to overlap
with the strings used for training. If the average length of the generated strings was less
than 5 or greater than 50, a new automaton and new data sets were generated using the
same construction parameters. In total, 150 models and corresponding train and test sets

244



Results of the PAutomaC Probabilistic Automaton Learning Competition

were generated using this way. We evaluated the difficulty of the generated sets using a
3-gram baseline algorithm.We then selected 16 of them, aiming to obtain ranging values for
the number of states, the size of the alphabet, sparsity values, and difficulty. We applied
the same procedure for Dpfa but without generating additional transitions; and for Hmm,
we generated state-state pairs instead of state-symbol-state triples.

In total, this results in 48 (16 for every type) artificially generated problems for use in
the competition. The participants were given no other information about the target than
the two sets of strings.

Constructing real-world data. In addition to the artificially generated sets, the com-
petition included two real-world data sets: one from a natural language processing task,
and one from time series modeling.

The natural language sets were generated from a corpus consisting of the works of Jules
Verne, translated to Dutch. This text was analyzed using the Frog Dutch part-of-speech
tagger (Van den Bosch et al., 2007). The resulting (Dutch) parts-of-speech were mapped
to 11 symbols, and the sentences (separated by dots, commas, or semicolons) were mapped
to strings over these symbols. We provided 10 000 of these strings, selected at random, as
a train set, and selected 1 000 unique strings as a test set. The performance was evaluated
using the scores assigned by the 3-gram baseline, learned on all of the 107 165 created
parts-of-speech strings.

The data for the time series modeling task were created using a sliding window of
length 20 over a discretized sensor signals that record the fuel usage of a trucks for a Dutch
transport company, see Verwer et al. (2011). We provided 20 000 of the resulting sequences
of discretized sensor data as a train set, 1 000 unique sequences as a test set, and evaluated
the performance using the 3-gram baseline, learned from the whole 487 647 sequences.

Evaluation. The evaluation measure was based on perplexity for unseen examples. Given
a test set TS, it was given by the formula:

Score(C, TS) = 2−
∑

x∈TS PrT (x)∗log(PrC(x))

where PrT (x) is the normalized probability of x in the target and PrC(x) is the normalized
candidate probability for x submitted by the participant. A consequence of this normal-
ization was that adding probability to one of the test strings removed probability from the
others. Therefore, this perplexity score measured how well the differences in the assigned
probabilities matched with the target probabilities. Notice that this measure is equivalent
to the well-known Kullback-Leibler (KL) divergence (Kullback and Leibler, 1951) up to a
monotonous transformation.

To decide the final overall rank of each participant, points were attributed for each data
set: the leader of a problem at the end of the competition scored 5 points, the second 3, the
third 2 and the fourth 1. In case of equality on a problem (based on the 10 first digits of the
perplexity score), the earliest submission won. The winner is the participant whose score
was the highest. There was no restriction on the number of submissions a given participant
could make, but (s)he received no feedback on the resulting score. To compute the final
score of a participant, we only considered the best of his submissions to each problem.

245



Verwer Eyraud de la Higuera

3. Results

Competition activity. 38 participants registered to have access to the problem sets and
16 of them submitted at least one of their solutions to a problem. There were a total number
of 2 787 submissions during the competition. 5 participants managed to score some points,
4 of them were ranked first at least once (see Figure 1 in appendix).

During the competition phase, the website received 724 visits (with a maximum of 54
the last day of the competition) from 196 unique visitors with an average visit duration of
a bit more than 5 minutes. IPs from 37 countries have been detected, between which 14
countries corresponded to 5 or more visitors.

Overall results. The final scores can be seen in Figure 1 and detailed results are pre-
sented in table 1. There is a clear winner of PAutomaC: team Shibata Yoshinaka. Of
all participants, they obtained the best perplexity values on most instances and performed
good on all others. The difference between the perplexity values of the solutions and their
submissions was never greater than 0.1. Furthermore, this difference was even smaller on
the instances with 100 000 strings, indicating that they make good use of additional data.

Team Shibata Yoshinaka is only outperformed on the (nearly) determinstic ones (Dpfa
or Pfa or Hmm with a small transition sparsity). On these instances team Llorens perfoms
slightly better. Team Hulden’s method also manages to obtain the best perplexity values
on two instances, and in fact beat team Llorens overall performance by just 2 points (see
the website). Their method seems to perform best on dense instances with few states.
The methods used by team Bailly and team Kepler have some difficulty with very sparse
instances (and thus also with Dpfa), and perform good but not best on the other instances.

Interestingly, the winning contribution of team Shibata Yoshinaka did not manage to
score points on the two real-world problems. Teams Llorens, Hulden, and Kepler, did score
points, and outperformed the 3-gram baseline method on these instances. This is not trivial
since the solution was biased towards the baseline algorithm as it was also used to provide
the probabilities in the solution.

4. Conclusion

The results of PAutomaC presented in this paper indicate that the competition was fruitful:
refined methods for learning string distributions have been designed and a detailed com-
parison of their performances is available. In addition, the observation that team Llorens
outperforms the winning team on the deterministic instances is very interesting for future
research as it could provide a method for deciding whether a given data sample is drawn
from a deterministic distribution or from a non-deterministic one, which can be very useful
during the discretization of data.

The disclosure of the content of each method will be a very interesting moment and will
certainly yield a deeper understanding of string distribution learning algorithms.

Acknowledgments

We are very thankful to the members of the scientific committee for their help in designing
this competition.

246



Results of the PAutomaC Probabilistic Automaton Learning Competition

References

L. E. Baum. An inequality and associated maximization technique in statistical estimation
for probabilistic functions of Markov processes. Inequalities, 3:1–8, 1972.

E. Brill, R. Florian, J. C. Henderson, and L. Mangu. Beyond n-grams: Can linguistic
sophistication improve language modeling. In In Proc. of COLING-ACL-98, pages 186–
190, 1998.

R. C. Carrasco and J. Oncina. Learning stochastic regular grammars by means of a state
merging method. In Proc. of ICGI’94, pages 139–150, 1994.

F. Denis, Y. Esposito, and A. Habrard. Learning rational stochastic languages. In Proc. of
Colt 2006, volume 4005 of LNCS, pages 274–288. Springer-Verlag, 2006.

Y. Esposito, A. Lemay, F. Denis, and P. Dupont. Learning probabilistic residual finite state
automata. In Proc. ICGI’02, pages 77–91, 2002.

R. Gavaldà, P. W. Keller, J. Pineau, and D. Precup. Pac-learning of markov models with
hidden state. In Proc. of ECML’06, pages 150–161, 2006.

S. Kullback and R. A. Leibler. On information and sufficiency. Ann. Math. Statist., 22(1):
79–86, 1951.

A. Van den Bosch, G.J. Busser, W. Daelemans, and S Canisius. An efficient memory-based
morphosyntactic tagger and parser for dutch. In Selected Papers of the 17th Computa-
tional Linguistics in the Netherlands Meeting, pages 99–114, 2007.

S. Verwer, M. de Weerdt, and C. Witteveen. Learning driving behavior by timed syntactic
pattern recognition. In IJCAI’11, pages 1529–1534, 2011.

S. Verwer, R. Eyraud, and C. de la Higuera. Pautomac: a pfa/hmm learning competition.
Technical Report to appear, Radboud University Nijmegen, September 2012. URL www.

lif.univ-mrs.fr/~reyraud/PAutomaC.pdf.

Appendix A. Detailed results.

Figure 1: Overall evolution of the score of the 5 leading teams (artificial data sets).
%stepcounterpage

247

www.lif.univ-mrs.fr/~reyraud/PAutomaC.pdf
www.lif.univ-mrs.fr/~reyraud/PAutomaC.pdf


Verwer Eyraud de la Higuera

Nb S A SA ST size type solution Hulden Kepler Bailly Shibata Llorens

1 63 8 33 9 20k Hmm 29.898 30.131 30.547 30.147 29.994 30.395
2 63 18 33 2 20k Hmm 168.331 168.455 174.866 168.429 168.430 168.420
3 25 4 79 8 20k Pfa 49.956 50.044 55.540 50.174 50.042 50.675
4 12 4 44 15 100k Pfa 80.818 80.837 85.480 80.844 80.827 80.843
5 56 6 29 2 20k Hmm 33.235 33.241 33.427 33.237 33.237 33.238
6 19 6 48 5 20k Dpfa 66.985 67.044 82.35 67.059 67.007 67.000
7 12 13 24 8 20k Dpfa 51.224 51.265 52.092 51.264 51.249 51.259
8 49 8 36 6 100k Pfa 81.375 81.710 85.849 81.799 81.403 81.710
9 71 4 39 1 20k Dpfa 20.840 20.889 26.920 25.229 20.856 20.850
10 49 11 63 2 20k Pfa 33.303 33.401 34.554 33.724 33.334 34.039
11 47 20 49 2 20k Dpfa 31.811 32.138 33.248 32.138 31.853 32.546
12 12 13 35 11 20k Pfa 21.655 21.671 21.912 21.671 21.663 21.769
13 63 4 69 2 100k Dpfa 62.806 63.073 120.565 100.681 62.820 62.816
14 15 12 49 8 20k Hmm 116.792 116.841 118.602 116.914 116.836 116.839
15 26 14 41 7 20k Pfa 44.242 44.285 45.208 45.285 44.274 44.701
16 49 10 62 2 100k Dpfa 30.711 30.844 31.809 35.586 30.7187 30.7186
17 22 13 22 17 20k Pfa 47.311 47.354 48.109 48.735 47.352 47.9215
18 25 20 23 4 100k Dpfa 57.329 57.339 57.534 76.103 57.3316 57.3320
19 68 7 33 4 100k Hmm 17.877 17.930 18.816 19.316 17.880 17.919
20 11 18 39 15 20k Hmm 90.972 91.016 95.304 91.351 90.999 93.504
21 56 23 25 5 20k Hmm 30.519 30.605 35.578 30.714 30.568 32.217
22 55 21 25 6 100k Pfa 25.982 26.078 26.136 26.010 25.988 26.080
23 33 7 38 11 100k Hmm 18.408 18.418 18.720 18.547 18.413 18.447
24 6 5 50 17 20k Dpfa 38.729 38.737 42.366 38.753 38.7317 38.7322
25 40 10 58 5 20k Hmm 65.735 65.978 67.929 66.069 65.783 67.266
26 73 6 59 1 20k Dpfa 80.743 82.657 111.502 141.082 80.833 80.837
27 19 17 64 5 20k Dpfa 42.427 42.473 43.511 42.712 42.464 42.456
28 23 6 75 11 20k Hmm 52.744 52.855 53.583 53.084 52.841 53.198
29 36 6 38 4 20k Pfa 24.031 24.199 28.580 24.817 24.042 24.106
30 9 10 66 18 20k Pfa 22.926 22.932 23.394 22.960 22.934 23.211
31 12 5 38 20 20k Pfa 41.214 41.243 42.531 41.417 41.233 41.623
32 43 4 77 2 100k Dpfa 32.613 32.743 41.975 38.300 32.622 32.619
33 13 15 59 12 20k Hmm 31.865 31.872 32.2194 31.920 31.871 32.030
34 64 21 37 3 20k Pfa 19.955 20.428 20.581 20.476 19.969 20.542
35 47 20 36 2 20k Dpfa 33.777 34.326 34.714 33.835 33.800 34.295
36 54 9 63 7 100k Hmm 37.986 38.203 38.206 38.176 38.018 38.405
37 69 8 52 18 100k Pfa 20.980 21.016 21.025 21.027 21.001 21.016
38 14 10 79 19 20k Hmm 21.446 21.494 21.650 21.514 21.459 21.596
39 6 14 42 18 20k Pfa 10.002 10.0029 10.054 10.005 10.0034 10.004
40 65 14 65 2 20k Dpfa 8.201 8.255 8.366 8.496 8.207 8.206
41 54 7 69 14 100k Hmm 13.912 13.941 13.942 13.932 13.921 13.940
42 6 9 52 17 20k Dpfa 16.004 16.008 16.080 16.008 16.007 16.005
43 67 5 60 16 20k Pfa 32.637 32.747 32.841 32.817 32.723 32.777
44 73 13 63 6 20k Hmm 11.709 11.798 11.920 11.778 11.725 12.041
45 14 19 80 9 20k Hmm 24.042 24.048 24.252 24.084 24.050 24.045
46 19 23 49 10 20k Pfa 11.982 11.999 12.136 12.082 11.988 12.106
47 61 15 30 2 100k Dpfa 4.1190 4.124 4.144 4.120 4.1192 4.1191
48 16 23 70 6 20k Dpfa 8.036 8.042 8.183 8.045 8.039 8.191

r1 11 10k 3gram 70.112 70.581 70.659 79.570 71.083 70.599
r2 18 20k 3gram 5.108 5.126 5.128 5.129 5.124

Table 1: Perplexity scores of active participants and the solutions for all problem instances,
along with their parameters: number of states (S), alphabet size (A), symbol
sparsity (SA), transition sparsity (ST ), size of training set, and type of machine.

248


	Introduction
	An overview of PAutomaC
	Results
	Conclusion
	Detailed results.

