JMLR: Workshop and Conference Proceedings 21:237-242, 2012 The 11th ICGI

Induction of Non-Deterministic Finite Automata
on Supercomputers

Wojciech Wieczorek WOJCIECH.WIECZOREK@QUS.EDU.PL
Institute of Computer Science, University of Silesia, Poland

Editors: Jeffrey Heinz, Colin de la Higuera and Tim Oates

Abstract

The problem of inducing automata of minimal size consistent with finite sets of examples
and counter-examples is the combinatorial optimization task of grammatical inference and
is known to be computationally hard. Both an exact and a heuristic method of finding
a non-deterministic finite automaton (NFA) with a given number of states such that all
examples are accepted and all counter-examples are rejected by the automaton will be
evaluated. The methods are based on a translation of NFA identification into integer
nonlinear programming.

Keywords: Automata induction, Integer programming, Grammatical inference

1. Introduction

Selecting a minimal automaton consistent with examples and counter-examples is known
to be a very hard problem. Specifically, Gold (1978) proved that given a finite alphabet
X, two finite sets of strings S; and S— built from symbols taken from X, and an integer
k, then determining whether there is a k-state DFA (deterministic finite automaton) that
recognizes L such that every string from Sy is also in £ and no string from S_ is in L,
is a task which is NP-complete. Furthermore, it is known that even finding a DFA with
a number of states polynomial in the number of states of the minimal solution is NP-
complete (Pitt and Warmuth, 1993). As regards non-determinism, it is well known that
NFA or regular expression minimization is computationally hard: it is PSPACE-complete
(Meyer and Stockmeyer, 1972). Moreover, Jiang and Ravikumar (1993) showed that the
minimization problem for NFAs or regular expressions remains PSPACE-complete even
when specifying the regular language by a DFA. Angluin (1969) showed that there is no
polynomial time algorithm for finding a shortest compatible regular expression for arbitrary
given data (if P # NP). Thus the problem of inferring an NFA with a minimal size that
matches a labeled set of input strings is probably of exponential complexity. In order to
obtain an NFA from a complete sample as input, one can use an algorithm developed by
Garcia et al. (2008).

The purpose of the present proposal is threefold. The first objective is to formulate
finding a k-state NFA as a nonlinear integer programming problem (INLP), so as to take
advantage of massively parallel computers for its solution. The second objective is to
determine the limitations of these proposed algorithms in terms of the input data size
and time spent computing. The third objective is to report the results of some experiments
performed on some input data investigated by other researchers. The last objective includes

© 2012 W. Wieczorek.

WIECZOREK

checking these algorithms’ ability to solve a grammatical inference task. The present paper’s
content is organized into four sections. Section 2 translates the task into an INLP problem.
Section 3 gives the experimental results referred to. Concluding comments are contained in
Section 4.

2. Translation of NFA Identification into an INLP

Below, the problem of NFA induction will be formulated, then it will be re-formulated as
an INLP. Let X' be an alphabet, let S; (examples) and S_ (counter-examples) be two finite
sets of words over X, and let k be an integer. The goal of NFA induction is to determine
a k-state NFA A = (Q,X,4,s,F), as defined in Hopcroft et al. (2001), such that L(A)
contains Sy and is disjoint with S_.

Let § = S US- (S NS- =), and let P(S) be the set of all prefixes excluding the
empty word of all words of S. The integer variables will be z,, € {0,1}, p € P(S), ¢ € Q;
Yagr € {0,1}, a € X, ¢,7 € Q; and z; € {0,1}, ¢ € Q. The value of z,, is 1 if ¢ € (s,p)
holds in an automaton A, z,, = 0 otherwise. The value of yqq is 1 if r € §(¢,a), Yagr =0
otherwise. Finally, we let z, = 1 if ¢ € F and zero if not. Let us now see how to describe the
constraints of the relationship between an automaton A and a set S in terms of nonlinear
equations and inequalities.

1. Naturally, according to the presence of the empty word we require that
zs =1 Ae Sy
zs =10 re s

One of the above equations is needed only if A € S. In the opposite case, the variable
should not be settled in advance.

2. Every example has to be accepted by the automaton, but no counter-example should
be. This can be written as

prqzqz 1 pe Sy —{\}
qeQ

Z:quzq:() pesS-—{A}

qeQ

3. For P(S) 3 p = a € X we can have x,, equal to 1 only in cases in which ¢ € (s, a);
thus

Tpg — Ypsg = 0 pefacXY|acP(S)}, q€Q

4. Finally, we want to express the fact that whenever z,, = 1 for p = wa, w € X7,
a € X, we have q € §(r,a) for at least one state r such that x,, = 1. And vice versa,
if a word w is spelled out by a path from s to a state r and there is a transition
r - ¢, then Zpq = 1 has to be fulfilled. We can guarantee this by requiring

_qu—i_zxwryarqzo pe{wa€P(8)|w€2+/\a€E}
reQ
Lpq — TwrYarq >0 q,r € Q

238

INDUCTION OF NFAS ON SUPERCOMPUTERS

Consequently any instance of NFA induction with ¢ symbols in an alphabet, d = _, s |w],
and k states can be expressed as an INLP with O(ck? + dk) variables and O(ck + dk?)
equations and inequalities.

3. Experimental Results

At first, let us answer the question of whether NFA induction is a harder problem than
DFA induction. The search space for the automata induction problem can be assessed
by the number of automata with a fixed number of states. It has been shown that the
number of pairwise non-isomorphic minimal k-state DFAs over a c-letter alphabet is of
order k28—1k(c=DE while the number of NFAs on k states over a c-letter alphabet such that
every state is reachable from the start state is of order 2k (Domaratzki et al., 2002). Thus,
switching from determinism to non-determinism increases the search space enormously. On
the other hand, for ¢,k > 2, there are at least 25~2 distinct languages £ C X* such that:
(a) L can be accepted by an NFA with & states; and (b) the minimal DFA accepting £ has
2k states (Domaratzki et al., 2002). It is difficult to resist the conclusion that—despite its
hardness—NFA induction is extremely important and deserves exhaustive research. The
choice of a computer cluster as a place for performing these complex computations is fully
justified as well.

Since we are dealing with solving a system of nonlinear equations and inequalities which
requires in the worst case exponential time in the number of variables, there ought to
be opportunities for using an exact algorithm, parallel backtrack search (Quinn, 2004),
and a heuristic algorithm, parallel tabu search (Dréo et al., 2006). In all experiments, the
algorithms were implemented in C++-. The programs ran under the Linux operating system
on the following computer clusters: Zeus, Galera, and Reef (Poland). As regards parallel
programming, the MVAPICH (on Galera) and Open MPI (on Zeus and Reef) MPI (message
passing interface) libraries were used.

In order to compare this proposed automata induction approach with other patterns
from the literature, experiments were performed on the Tomita (1982) language set. These
programs were run on examples and counter-examples used by Angeline (1997), Luke et al.
(1999), and Unold (2009). For each target language attempts to construct a k-state NFA
for k = 1,2,... continued until one was obtained. Then, the correctness of the induced
automaton was checked. The computational results are presented in Table 1. The column
captioned N° contains the number of the language. In the second column the number of
states in the NFA is given. In the next two columns the cardinalities of the constraints
(after reformulating them as bit-wise expressions) and variables are given. The number of
processors, p, is given in the fifth (and seventh) column along with the corresponding CPU
time, 7, (in seconds) given in the sixth (and eighth) column. Next, we have the kind of
algorithm applied (backtrack search or tabu search). The programs were run several times
until automata equivalent to the prototype regular expressions were obtained. In the case
of a successful tabu search, the number of executed iterations in the last run is given in the
last but one column. Entries for ‘Run’ and ‘Iteration’ relate to the second pair of columns
D, T.

As far as the generalization context of these experiments is concerned, the results are
very good in comparison with those of Angeline (1997); Luke et al. (1999); Unold (2009).

239

WIECZOREK

Table 1: Problem characteristics and CPU time of computations

Ne k& m n p T p T Alg. Run Iteration Cluster
1 1 59 24 4 <1 8 <1l BS 1 — Reef
2 2 214 174 4 <1 8 <1l BS 1 — Galera
3 3 877 231 16 91 32 74 TS 1 no solut. Zeus
3 4 1437 316 — - 80 1757 TS 15 240795 Zeus
4 3 878 234 60 14 120 6 BS 1 — Zeus
5 3 742 198 60 55 120 28 BS 1 no solut. Reef
5 4 1214 272 - - 64 1688 TS 22 243813 Zeus
6 3 622 168 40 2 80 1 BS 1 — Zeus
7 3 853 228 120 110 240 68 BS 1 no solut. Zeus
7 4 1401 312 - - 72 1433 TS 17 327497 Zeus

With the present proposed algorithms it was possible to find an expected automaton (i.e.,
equivalent to a model regular expression) in all cases. Others had not discovered, in up
to 50 attempts: the 5th language (Luke et al., 1999); and the 7th language (priv. comm.)
(Unold, 2009). Angeline (1997), in a single run per language consisting of five sub-runs,
had not discovered: the 2nd, 3rd, 4th, 5th, and 7th languages. Unold (2009) reported also
that the evidence-driven approach, EDSM (de la Higuera, 2010), had failed in four out of
the seven data sets. The new proposals have also achieved satisfactory results in respect of
the efficiency of the parallel computation. It can be seen from the table that the algorithms
have the ability to decrease the time spent computing as the number of processors increases.
Of course, while choosing p, the total amount of time spent by all processors performing
communications and redundant computations has to be taken into account so as to fairly
predict the overall execution time.

4. Conclusions

This paper treated the induction of NFAs based on finite languages. That is constituted by
the following task: given two disjoint finite sets S+, S— C X* of words and an integer k > 0,
build a k-state NFA that accepts the language Sy and does not accept any word from the
set S_. For deterministic automata this problem has many theoretical results and practical
methods. In order to address the non-deterministic case, this problem was re-formulated
as an INLP. On this foundation, two further algorithms were designed: an exact one and
a heuristic one, which not only are able to generate concise automata, but also might
do this efficiently on today’s parallel platforms. The experiments conducted showed that
the new proposed algorithms work satisfactorily for standard benchmarks. From additional
experiments, it transpired that there are a number of languages for which the new approach
outperforms conventional methods such as RPNI (Oncina and Garcia, 1992) or EDSM,
especially when the learning sample is severely limited and inevitably is not structurally
complete.

240

INDUCTION OF NFAS ON SUPERCOMPUTERS

Acknowledgments

This research was supported in part by PL-Grid Infrastructure, and by Polish National
Science Centre, Grant No. DEC-2011/03/B/ST6/01588.

References

P. Angeline. An alternative to indexed memory for evolving programs with explicit state
representations. In Proceedings of the Second Annual Conference on Genetic Program-
ming, pages 423-430. Morgan Kaufmann, 1997.

D. Angluin. An application of the theory of computational complexity to the study of induc-
tive inference. PhD thesis, University of California, 1969.

C. de la Higuera. Grammatical Inference: Learning Automata and Grammars. Cambridge
University Press, 2010.

M. Domaratzki, D. Kisman, and J. Shallit. On the number of distinct languages accepted
by finite automata with n states. Journal of Automata, Languages and Combinatorics,
7:469-486, 2002.

J. Dréo, A. Pétrowski, P. Siarry, and E. Taillard. Meta-heuristics for Hard Optimization.
Springer, 2006.

Pedro Garcia, Manuel Vazquez de Parga, Gloria I. Alvarez, and José Ruiz. Universal
automata and nfa learning. Theoretical Computer Science, 407:192-202, 2008.

E. M. Gold. Complexity of automaton identification from given data. Information and
Control, 37:302-320, 1978.

J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata Theory, Lan-
guages, and Computation. Addison-Wesley, second edition, 2001.

T. Jiang and B. Ravikumar. Minimal NFA problems are hard. SIAM Journal on Computing,
22:1117-1141, 1993.

S. Luke, S. Hamahashi, and H. Kitano. “Genetic” programming. In Proceedings of the
Genetic and Evolutionary Computation Conference, pages 1098-1105. Morgan Kaufmann,
1999.

A. R. Meyer and L. J. Stockmeyer. The equivalence problem for regular expressions with
squaring requires exponential space. In Proceedings of the 13th Annual Symposium on
Switching and Automata Theory, pages 125-129, 1972.

J. Oncina and P. Garcia. Identifying regular languages in polynomial time. In H. Bunke,
editor, Advances in Structural and Syntactic Pattern Recognition, volume 5 of Machine
Perception and Artificial Intelligence, pages 99-108. World Scientific, 1992.

L. Pitt and M. Warmuth. The minimum consistent DFA problem cannot be approximated
within any polynomial. Journal of the ACM, 40:95-142, 1993.

241

WIECZOREK

M. J. Quinn. Parallel Programming in C with MPI and OpenMP. McGraw-Hill, 2004.

M. Tomita. Dynamic construction of finite automata from examples using hill-climbing.
In Proceedings of the Fourth Annual Conference of the Cognitive Science Society, pages
105-108, 1982.

O. Unold. Regular language induction with grammar-based classified system. In S. Soomro,
editor, Engineering the Computer Science and IT, pages 13-22. InTech, 2009.

242

	Introduction
	Translation of NFA Identification into an INLP
	Experimental Results
	Conclusions

