Generalized Optimal Reverse Prediction

9 Appendix

9.1 Proofs
Lemma 4 Dp(z||z) = Dp-(y||y) wherey = £(z) and 'y = f(z).

Proof: Recall that F*(y) = max, z7y — F(z), and solving for the maximum z we obtain

&y VR@ =y) =0
= z=1"'(y)
giving
Fiy)=f"'(»)"y - F(f ()
Now we can rewrite Dy (y||y) in terms of F and =1 = f*
Dp-(ylly) = F*(y) = F*(3) = £*&) " (y - ¥)
=ty - FE') @)Y+ FETE) -3 (v - 9)
=)y - FET)+ FET'@) - 7' 3) "y
Finally, recall that y = f(2) and y = f(z), giving us

Dp-(ylly) =

Theorem 1 Given rank n input t X n matrix, X, and rank k output t X k matrix, Y, with t > n and t > k, there exist
unique global minimizers, W* and U* for L(XW,Y') and R(X,YU) respectively:

W* = argmin Dp(XW||f~1(Y)) (28)
w

U* = argmin D« (YU||f(X)) (29)
U

Moreover, W* and U* are related in the following way
XTExw*) = £ 4(YU")TY (30)

Proof: Let F be a strictly convex function with Dom(F) = {XW : W € R"}, with any full rank X (i.e., X such that
XWy # XW, for Wy # W3). Then G = F(X-) has Dom(G) = R™ (which is convex). For Wy, W5 in Dom(G) such
that W1 75 Wy
GOAWL + (1 = Wa) = F(X(AW; + (1 — \)Wa))
— FOXW; + (1= \)XWs)
< AF(XWi)+ (1= A)F(XW3) because F is strictly convex and X W, # X Ws.
=AG(W1) + (1= NG(W2)

Therefore, G is strictly convex. The optimization miny G(W) therefore has a unique minimum. Notice that we can
always linearize X, W and Y to make sure that we are working with vectors.

Martha White and Dale Schuurmans

For the relation, since W* and U* are global minimizers of L(XW,Y") and R(X,YU), we know that the gradients

d * _ T *\ _
Ty LW Y)=XT(fF(XW*)—Y)=0 (nxk)
%R(X,YU*) =YT(f*(YU*) - X)=0 (kxn)
giving
XT(fF(XW*)—Y) =T (£ yYU*) - X))
XTf(xw*) - X7y = (yu)'y - Xy
E

XTE(XW*) = f*(YUHTY

L]
Theorem 11 For any X1, Xv, Yy, U and transfer function, f, with resulting affine feature set, Z, then for R(X,YU) =
Dp- (YU f(X))
E[R(X.,YLU)/tr) = E[R(X, Z*U) /ts|+
ER(Zp U YLU)/ty] (31
where X = [X1; Xy] and Z* = argmin D« (ZU|| f(X))
ZeZ
Proof: From the Generalized Pythagoras Theorem, we know that
E[Dp-(YLU||f(XL))/te] =
EDp-(ZLU||f(X1))/tr] + E[Dp-(ZLU|[YLU)/tL]
Since
EDp-(ZLU|f(X1))/tr] = E[Dp-(Z"U||f(X))/ts]
= E[R(X, Z"U)/ts]
we get the above result. []

9.2 Algorithms for clustering

To obtain the simplifications used for our modified clustering algorithms, we provide the following lemmas.
Lemma 12 Dp. (YU||f(X)) = Dp(X||f*(YU)) = Dp(X||YE*(U))

Proof: From Lemma 4, we know that D (X ||f*(YU)) = Dp-(YU||f(X)). Now, since Y € {0,1}*** and Y1 = 1,
we can see that YU simply selects rows of U, i.e. if there is a one at position 1 < j < k, then row j in U is selected.
Therefore,

£ (YU) = YE*(U)
and we conclude that D (X ||f*(YU)) = Dp(X||Y£*(U)). We can now optimize over M for D (X ||Y M). L]
Lemma 13 For a given'Y € {0,1}"** with Y1 = 1 and class j with X € Dom(f),

1

‘ Z X;. = argmin Z Dp(X,.||M.;)
J iy =1 MeDom(f) .y, '—1

Generalized Optimal Reverse Prediction

Proof: Let n; be the number of instances with class j, m = M,;, X = ni Z¢~Yij:1 X, m,x € RN and F =
% 2 ivi;=1 F1(Xi:). Now to simply - L Zizyij:1 Dp(X;.||m)

=3 DelXullm) = - 3T F(Xa) ~ Flm) - £m)” (X - m)
]iiyijz zYu—l
:F_% > F(m)—i-"(m)Tni > (X —m)
7 iy, =1 :Yi5=1

and by definition

Dp(x[jm) = F(x) — F(m) — f(m)" (x — m)

=
1 _
— > Dp(Xi|jm) = F - F(X) + Dp(x|/m)
" v, =1

=

> Dp(X:|lm) = n,;F — n;F(X) + n; Dp(X|/m)

1Y ;=1

-

min Y Dp(X;|lm) = min Dp(x|/m)
:Y;=1

Since the Bregman divergence is guaranteed to be greater than or equal to zero, the minimum value for Dy (X||m) is
zero, obtained by setting m = X. Therefore, for each instance 7, the optimal setting for the inner minimization of M.; =

1
ni‘j ZZ}/,,] =1 X
Notice that the objective value therefore is n; F' — n; F (), which is always non-negative because F is strictly convex so:

FR=F Y i < > L rx) = F

N
iYi=1 7 iYi=1 "7

From Lemmas 12 and 13, we get the following simplifications for Bregman hard clustering with non-linear transfers
(Equations (22) and (24) in the main paper).

min Ueg;gll(f*)DF* (ZU[f(X)) =

= min min Dp-(X||ZM)
zZezZ MEDom(f)CR"Xk

=min min Z Z Dp- (X3 ||Y M)

zZezZ MEDom(f)

=14:Z;;=1
k
=) grg; 2N
Ze
j=1 i 7

For mixture model clustering using standard EM, the unsimplified optimization given by Banerjee et al. [2005], with
S={Zel0,1]| Z1 =1}

1 .

IZnEHg mm;; og(Pp-(X;|U;))Z; (32)
t ok

_ 1 (*DF(XiHUJ‘)) 7. 33

= i i 2 2~ los . 63

i=1j=1

Martha White and Dale Schuurmans

They simplify the M -step using similar arguments to those for hard clustering. We define a slightly different optimization,
now optimizing for the transfer M = f(U) and then illustrate that we simplify the M -step for non-linear transfers. Note
that in our optimization we move the sum and probability scaling inside the log; this does not change the optimum because
log is monotonic and the probabilities are always greater than or equal to zero. Note that we also add a smoothness
parameter p; asp — o0, the objective approaches the hard clustering objective.

t k

i i — 1 ,—pDr(X:||M;) 7| — 4

B 2oy~ 2 TE | 2 e (4
n k

= i i — 1 Le—PDr(X:]|M;) 35

pzorgplleeIgéﬁ(f) ; 8 ;pje (35)

Again, the inner minimization over M simplifies to an expectation

1 n
My = i1y ; Y Xi. (36)

and we get the updates shown in Algorithm 2. For more details, look at the simplifications in Banerjee et al [2005].

9.3 Pseudocode and transfer functions

Below we provide pseudocode for our semisupervised regression approach, in Algorithm 9.3, and our semisupervised
classification approach, Algorithm 9.3. The classification algorithm uses similar tricks from the unsupervised clustering
algorithms provided in the paper. The regression algorithm simply uses a smooth optimizer (like limited memory BFGS)
to alternate between optimizing Z and U according to the objective provided in Equation 26.

Algorithm 3 RevSemiSupRegression(X,, X7, Y, Dp, 3)

1: // B is a weighting on samples, e.g. 3 = [1;]
2: Initialize Yy and U

3 X = [Xp: Xp], K = k(X,X), a=0.1
& er(Yy, U) = ADx- ([V1; Yol [£(K)

5: while (change in err(Yy, U)) > tol do

6: U = argming err(Yy,U)

7. Yy = argming err(Z,U)

8: end while

9: Y = [YL; YU]

10: A* = argmin, Dp(KA||f~1(Y)) + atr(AATK)

Below are the potential functions, inverses, forward losses and reverse losses for the transfers used in the paper. To make
the tables cleaner, sometimes we will refer to X = £~ (yU). We omit D~ because it is not used in the clustering algorithm
and is long, making the table difficult to read.

Generalized Optimal Reverse Prediction

Algorithm 4 RevSemiSupSoftCluster(X,, Xy, Yz, Dr, 3)
1: Initialize M (e.g. k randomly selected rows from X)
:p=1/k
N YU = []
. X = [XL7XU]
err(M, p) = = X2, log (32, py exp(—pBDr (Xil M))
: while (change in err(M, p)) > tol do
//Shift Breg. divergence with min to avoid underflow
E-Step:
Yu (i, §) = pj expl—pu(Dp(Xy (i, :)|[M:5) — ming Dp(Xu (i, :)||M;))]
YU(i’j) = YU(77.])/ Zj YU(iaj)
Z = [YL; YU}
M-Step:
M = diag(ZzT1)Z2TX
14: p=12Z"1
15: end while

—_— = = =
W N = O

Table 3: Transfer functions with their inverses and potential functions.

/(@) W) F(x) ()
IDENTITY x x x%/2 yv?/2
SiGMoID || o(z) =(1+e)7 | In(y/(1—y)) |17 In(1 4 e7) yln(y/(1—y))+1In(1 —y)
SOFTMAX || £(z) = ¢*/1Te* |In(y) — In(yx)1 In(17e®) (In(y) — In(yx)1]y — In(17 (y — y&1))
Exp e* In(y) 17ex [In(y) — 1]y~
CUBE x> x1/3 17x*/4 y/3yT —0.25y4/31

Table 4: Transfer functions with forward and reverse losses.

Drp(xW||f*(y)) Drp-(yUl|f(x))
IDENTITY || (xW —y)?/2 (x —yU)?/2
SieMoID || yIn(y/o(xW))+ (1 —y)In((1 —y)/(1 — o(xW) x((1 — e ™)/ 4+ e)N — %x((1 — e ¥/ +

e +1n((1+e7¥)/1+e7)"

SOFTMAX || In(e*™W1T) — In(1(y — yx1)T) — yW'xT + y(y — yx1)" | OMITTED

Exp 17eW _ywTxT [In(yU) —x — 1|JUTyT 4 ¢*

CUBE (xW)*17) /4 —ywTxT (yO)V3UTyT —0.25(yU)**1 — xUTy”

