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Abstract
We study the problems of classification and closeness testing. A classifier associates a test sequence
with the one of two training sequences that was generated by the same distribution. A closeness
test determines whether two sequences were generated by the same or by different distributions.
For both problems all natural algorithms are symmetric—they make the same decision under all
symbol relabelings. With no assumptions on the distributions’ support size or relative distance, we
construct a classifier and closeness test that require at most Õ(n3/2) samples to attain the n-sample
accuracy of the best symmetric classifier or closeness test designed with knowledge of the under-
lying distributions. Both algorithms run in time linear in the number of samples. Conversely we
also show that for any classifier or closeness test, there are distributions that require Ω̃(n7/6) sam-
ples to achieve the n-sample accuracy of the best symmetric algorithm that knows the underlying
distributions.
Keywords: Classification, closeness testing, competitiveness

1. Background

Classification is one of the most studied problems in statistics and machine learning. In its simplest
form, given two training sequences X and Y , each generated by an unknown i.i.d. distribution, a
classifier attempts to determine which of the two distributions generated a test sequence Z.

Traditional classifiers include the likelihood ratio test (LRT), the generalized likelihood ratio
test (GLRT), and the Chi-square test, as well as classifiers outlined in Ziv (1988); Gutman (1989).
The standard analysis is in the asymptotic regime where the underlying alphabet size k is fixed and
the sample size n, for simplicity assumed to be the same for X , Y , and Z, tends to infinity.

However, in many applications, the sample size is small relative to the alphabet size. For ex-
ample, the length of text documents is often much smaller than the size of the English vocabulary,
hence the asymptotic analysis does not apply. Recent work has therefore focused on classification
accuracy for general ranges of k and n.

If n = o(
√
k) and the distributions are close to uniform, the birthday problem suggests that

every element in X , Y , and Z, will appear just once, and classification is impossible. Kelly et al.
(2010) considered the complementary range, n = Ω(kα) for α > 1

2 . They showed that even for
this range, the above techniques may not work, e.g., Theorem 5 therein or the simpler Example 1
in Acharya et al. (2011), but proved that if all symbol probabilities are Θ

(
1
k

)
, and the `1 distance
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between the two underlying distributions is bounded away from 0, then comparing the `2 distance
between the empirical frequencies of X and Z to those of Y and Z results in error probability
strictly less than 1

2 . It may be worth observing that the `2-distance criterion corresponds to the
classification performed by the simplest possible support-vector-machine with linear kernel and just
two classes as defined e.g., in Scholkopf and Smola (2001). However, the `2-distance test fails if
the probabilities are not in the same range and the condition on `1 is relaxed.

Example 1 Consider the distributions P = (0.5, 0.5 − δ, δ, 0) and Q = (0.5, 0.5 − δ, 0, δ). The
`2 distance test cannot classify them with 100/δ samples, while GLRT can classify them with error
less than e−25 in 100/δ samples.

While showing that classification can be performed when the number of samples is sub-linear
in the support size, the probability and distance assumptions substantially limit the class of distribu-
tions for which this result applies. To classify a wider range of distributions, we draw on the related
problem of closeness-testing that asks whether two sequences X and Y were generated by the same
or by different distributions. For a precise connection between the two problems, see Lemma 3.

Over the last decade, closeness testing was considered by a number of researchers. Batu et al.
(2000) showed that closeness testing requires a sub-linear number of samples. They derived an
algorithm that distinguishes pairs of identical distributions from pairs with `1 distance ≥ δ with
error probability ε using n = O

(
k2/3 log k

δ4
log 1

ε

)
samples. They also constructed two distributions

requiring at least Ω
(
k2/3

δ2/3

)
samples for error probability 1/3. Valiant (2008) showed that for δ1 <

δ2, distinguishing between distribution pairs with `1 distance ≤ δ1 and those where it is ≥ δ2
requires between k1−o(1) and O(k) samples. Guha et al. (2009) derived O(k2/3) algorithms for
testing closeness in any f-divergence, such as the Hellinger and Chi-square norms, and Valiant and
Valiant (2011) considered linear estimators for `1 distance and KL divergence of distribution pairs.
Biau and Gyorfi (2005) constructed tests for the closely related problem of testing homogeneity of
two independent multivariate samples. Similar problems arising in property testing were considered
in Batu et al. (2001); Raskhodnikova (2003).

All of the above algorithms require an a priori knowledge of both an upper bound on the support
size k and of a lower bound on the distance δ between the two distributions. These requirements
often limit the applicability of the results. Many popular and useful distributions, such as Pois-
son, Zipf, or the distribution of English words, have infinite or very large support, rendering the
algorithms impractical, or the guarantees weak. And even when the support is finite and relatively
small, in many applications we do not have an upper bound on it, and therefore cannot construct the
algorithms. The same holds for the distance δ between the distributions.

Additionally, the support size k and the distance δ between the underlying distributions may
not be very indicative of the sample complexity. The next example shows two natural pairs of
distributions with essentially the same support size, yet the pair with the larger distance between the
two distributions requires many more samples to classify.

Example 2 Let P1 = U{1, . . . ,k} and Q1 = U{k + 1, . . . ,2k}, while P2 = U{1, . . . ,k} and
Q2(0) = δ and Q2(1) = . . . = Q2(k) = 1−δ

k . Observe that all distributions have essentially
the same support size, and that `1(P1, Q1) = 2 � 2δ = `1(P2, Q2). Yet the distribution with the
smaller `1 distance is easier to classify. By the birthday paradox, any symmetric test requires at
least

√
k samples to classify P1 and Q1. On the other hand, by considering just the most frequent

element, the pair (P2, Q2), with the lower-`1-distance, can be classified using justO( log kδ ) samples.
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For these reasons, Acharya et al. (2011) considered a competitive approach to closeness testing.
Instead of analyzing the performance relative to the distributions’ alphabet size or some distance
between them, they considered the lowest error probability achieved by the best symmetric close-
ness test designed specifically for the given underlying distributions. They constructed a general
closeness test T that is based on knowledge of just ε, and not the alphabet size or the distance be-
tween the distributions, and showed that for any distribution pair (P,Q), if any test uses n samples
to distinguish this pair from all identical distribution pairs with error probability ε, then T achieves
the same error probability using O

(
n3

log(1/ε)

)
samples.

Adopting the competitive-optimality framework, we derive a general closeness test and a clas-
sifier that use Õ(n3/2) samples to achieve the best accuracy possible with n samples by algorithms
designed with knowledge of the underlying distributions. The closeness test needs as a parameter
an upper bound on the error probability, but the classifier is constructed without any parameters.

Conversely, we show that for every closeness test or classifier, there are distributions where
these algorithms would require at least Ω̃(n7/6) samples to attain the same accuracy achieved with
n samples by an algorithm that knows the underlying distributions.

2. Definitions

A closeness test is a mapping T : A∗ ×A∗ → {same, diff}, where T (x, y) indicates whether
x and y are believed to be generated by the same or by different distributions. T wrongly declares
P and Q as same or diff based on n samples with probability

ĒT
P,Q

(n)
def
=

{
Pr (T (Xn, Y n) = same) if P 6= Q,

Pr (T (Xn, Y n) = diff) if P = Q,

where (Xn, Y n) ∼ (P,Q). The worst-case error of T for two distinct distributions P 6= Q based
on n samples is

ET
P,Q

(n)
def
= max

(
ĒT
P,Q

(n),max
R
{ĒT

R,R
(n)}

)
,

the highest probability that T declares (P,Q) same, or declares any identical i.i.d. distributions R

different. For P = Q, we define ET
P,Q

(n)
def
= 1

2 .
Since no prior knowledge is assumed, any reasonable classifier or closeness test must be sym-

metric, e.g., see Batu (2001); Acharya et al. (2011). In other words, its outcome should remain the
same under any relabeling of the symbols. For example, if a closeness test declares two sequences
aab and cbc to be generated by different distributions, it must reach the same conclusion for uut
and gtg. Similarly if given training sequences aab and cbc, a classifier associates abd with aab,
then given uut and gtg, the classifier should associate utz with uut. We therefore compare the
performance of a classifier with that of the best symmetric classifier designed with knowledge of
the underlying distributions.

Let T be the collection of symmetric closeness tests. For every distribution pair P 6= Q,

E t
P,Q

(n)
def
= min

T∈T
ET
P,Q

(n),

is the lowest error probability of any symmetric test, including those designed with prior knowledge
of P and Q. Note that such a test has error probability at most E t

P,Q
for (P,Q) as well as all pairs of

identical distributions R and R.
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A classifier is a mapping S : A∗ ×A∗ ×A∗ → {x, y}, where S(x, y, z) indicates whether z is
generated by the same distribution as x or y. Its error probability is

ES
P,Q

(n)
def
=

{
Pr (S(Xn, Y n, Zn) = y) if Zn ∼ Xn,

Pr (S(Xn, Y n, Zn) = x) if Zn ∼ Y n.

Let S be the collection of symmetric classifiers. For every distribution pair P 6= Q, let

Es
P,Q

(n)
def
= min

S∈S
ES
P,Q

(n),

be the lowest error achieved for P and Q by any symmetric classifier, where the classifier achieving
this lowest error is typically designed with prior knowledge of P and Q.

A closeness test or classifier for n samples, can be used to construct closeness tests or classifiers
for multiples of n samples with exponentially smaller error probability. Simply partition the larger
sample into groups of n samples, use the original test on each group, and take a majority decision.
This notion is quantified in Lemma 4.

Hence once the error falls below some fixed value < 1
2 , any error ε can be achieved with just

C log 1
ε times the number of samples. It is therefore of interest to determine when the error falls

below some fixed value, which for simplicity we take to be 10%. Let

NT
P,Q(ε)

def
= min{n : ET

P,Q
(n) ≤ ε} and N t

P,Q(ε)
def
= min{n : E t

P,Q
(n) ≤ ε}

be the smallest number of samples a test T , and the best test for (P,Q), need to achieve error
probability ε. Similarly for classification

NS
P,Q(ε)

def
= min{n : ES

P,Q
(n) ≤ ε} and N s

P,Q(ε)
def
= min{n : Es

P,Q
(n) ≤ ε}.

Finally, we will typically use ε = 1/10, hence will abbreviate

NT
P,Q

def
= NT

P,Q(1/10).

Similarly for N t
P,Q(1/10), NS

P,Q(1/10) and N s
P,Q(1/10).

3. Results

In Section 4 we relate classification and closeness testing. In Lemma 3 we show that classification
is strictly easier, but not much more so than closeness testing.

In Section 5 we construct a symmetric closeness test T described in Algorithm 1 and a sym-
metric classifier S described in Algorithm 2. In Theorem 8 we bound the competitive sample
complexities of these algorithms, showing that for every (P,Q),

NT
P,Q ≤ O(N t

P,Q
1.5

logN t
P,Q) and NS

P,Q ≤ O(N s
P,Q

1.5 logN s
P,Q),

where the algorithms and implied constants do not depend on the alphabet size, the distributions, or
anything else.
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For any smaller error probability, these algorithms can be combined with a simple majority
decision to derive closeness test T ′ and classifier S′ with a similar competitive performance. In
Corollary 9 we bound the sample complexity to achieve a lower error probability ε as

NT ′
P,Q(ε) ≤ O

(
N t
P,Q

1.5
logN t

P,Q log
1

ε

)
and NS′

P,Q(ε) ≤ O
(
N s
P,Q

1.5 logN s
P,Q log

1

ε

)
.

In Section 6 we prove lower bounds on competitive guarantees for sample complexity. In Theo-
rem 11 we show that for every closeness test T and classifier S there are distribution pairs (P,Q)
(which may differ for the two cases) such that

NT
P,Q ≥ Ω

(
N t
P,Q

7/6

logN t
P,Q

)
and NS

P,Q ≥ Ω

(
N s
P,Q

7/6

logN s
P,Q

)
.

4. Preliminaries

Profiles

The multiplicity µ(x) of a symbol x in a sequence is the number of times it appears. The profile ϕ′

of a sequence is the multiset of multiplicities of all symbols appearing in it Orlitsky et al. (2004b,a).
For example, the sequence ababcde has multiplicities µ(a) = µ(b) = 2, µ(c) = µ(d) = µ(e) = 1,
and profile {1, 1, 1, 2, 2}.

The joint profile Dhulipala and Orlitsky (2006); Acharya et al. (2010b) ϕ(x, y) of two sequences
x and y is the multiset ϕ of pairs of multiplicities of all symbols appearing in at least one of them.
For example, ϕ(ababcde, babbdef) = {(2, 3), (2, 1), (1, 1), (1, 1), (1, 0), (0, 1)}. The prevalence
ϕµ (respectively, ϕ(µ,µ′)) of µ (respectively (µ, µ′)) is the number of times it appears in the profile.
For example, in the above, ϕ(1,1) = 2. For symmetric closeness and classification tests under i.i.d.
sampling, the joint profiles of the observed sequences are a sufficient statistic, hence we consider
only tests that operate on the joint profile.

Poisson sampling

When a distribution P is sampled n times, the symbol multiplicities are mutually dependent, for
example, they add to n. A standard approach to overcoming the dependence, e.g., Mitzenmacher and
Upfal (2005), samples the distribution a random number of times∼ Poi(n), the Poisson distribution
with parameter n. Some useful properties of Poisson sampling include:

Fact 1 If a distribution P is sampled i.i.d. Poi(n) times, then:

• A symbol of probability p appears Poi(np) times.

• The numbers of times different symbols appear are independent of each other.

• For any fixed n0, conditioned on the length Poi(n) ≥ n0, the distribution of the first n0
elements is identical to sampling P i.i.d. exactly n0 times. �

Next we relate the closeness-test error with Poi(2n) samples to that of exactly n samples.

Lemma 2 For all (P,Q) pairs, E t
P,Q

(Poi(2n)) ≤ Et
P,Q

(n) + 2e−n/4.
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Proof When a distribution is sampled Poi(2n) times, the simple Poisson-tail bound of Fact 12 in
the Appendix shows that the sequence length is < n with probability ≤ e−n/4. Hence the proba-
bility that one of the sequences has < n samples is ≤ 2e−n/4. With the remaining probability, both
samples have length ≥ n, and Fact 1 along with a standard closeness test on n show that the error
probability is at most E t

P,Q
(n) + 2e−n/4.

Profile probabilities

The probability of a profile ϕ′ under a distributions P sampled Poi(n) times is the probability of
observing a sequence with profile ϕ′. Similarly the probability of a joint profile ϕ is the probability
of observing sequence pairs with joint profile ϕ.

Pr(ϕ) =
∑

ϕ(x,y)=ϕ

Pr(x, y).

Let P1,2 denote the product distribution of P and Q. For A ⊂ A, the sub-profile ϕA of a sequence
as the set of non-zero joint-multiplicities of symbols in A. For example, for A = {a, c, g}, the
sequence pair ababcde and babbdef has ϕA = {(2, 1), (1, 0)}. The probability of a sub-profile
ϕA = {(µ1, µ′1), (µ2, µ′2), . . .} when P and Q are sampled Poi(n) times is

P1,2(ϕA) =

∑
σ

∏
i∈A e

−npi−nqi(npi)
µσi (nqi)

µ′σi

Nd(ϕA)
,

where the summation is over all symbol permutations, and

Nd(ϕA)
def
=

∏
µ1,µ2

ϕµ1,µ2 !(µ1!µ2!)
ϕµ1,µ2 (1)

is related to the number of patterns of a profile ϕA . In the above example,

P1,2(ϕA) =
1

2
n3e−n(pa+pc+pg+qa+qc+qg)

(
p2aqa(pc + pg) + p2cqc(pa + pg) + p2gqg(pa + pc)

)
.

Due to the large number of permutations, Pr(ϕA) is hard to analyze. Various techniques to compute
them are studied in Zhang (2005); Acharya et al. (2010a); Orlitsky et al. (2012). Clearly, when
A = A, we obtain the probability of ϕ. The equation is explained in Acharya et al. (2011). A
related quantity that will be used in the closeness test is

Ns(ϕA)
def
=
∏
µ′′

( ∑
µ+µ′=µ′′

ϕµ,µ′
)
!(µ′′!)(

∑
µ+µ′=µ′′ ϕµ,µ′ )

1

2
∑
µ,µ′ ϕµ,µ′ (µ+µ

′)
. (2)

Properties of closeness testing and classification

We first show that closeness testing and classification have similar sample complexities. If two
distributions can be classified by n samples, then by few more samples they can be tested for close-
ness. Conversely, if they can be tested for closeness in n samples, by few more samples they can be
classified. The proof is given in Appendix B.1.
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Algorithm 1 Closeness Test T(x, y)

1: Parameters: Constants c1 and c2 determined later in the proofs irrespective of the distributions and n.
2: Input: Two sequences x and y of length 4c1n

3/2 log n.
3: Output: same or diff
4: n1 ← Poi(c1n3/2 log n) x1 ← xn1

1

n2 ← Poi(c1n3/2 log n) x2 ← xn1+n2
n1+1

n3 ← Poi(n0
def
= c2n log3 n) x3 ← xn1+n2+n3

n1+n2+1 .
5: Repeat for y.
6: µi(x)← multiplicity of symbol i in x.
7: A← {i | µi(x1) + µi(y1) ≥ c1

√
n

logn }.

C1 ←
∑
i∈A

(µi(x2)−µi(y2))
2−µi(x2)−µi(y2)

µi(x2)+µi(y2)−1
≥ c1

24

√
n log n.

C2 ← Nd(ϕAc )

Ns(ϕAc )
≥ 34e120 log3 n0 for x3 and y3, where Ns and Nd are defined in Equations (1) and (2).

8: if C1 = true ∨ C2 = true then
9: return diff

10: else
11: return same
12: end if

Lemma 3 For all (P,Q) and ε < 1
2 ,

1

log(1/ε)
·N t

P,Q

(
ε log

1

ε

)
≤ N s

P,Q(ε) ≤ N t
P,Q(ε).

Next we prove that once the error falls below some number strictly smaller than 0.5, then lower
error probabilities can be achieved by a simple majority decision. Using this lemma we will relate
sample complexities for any error ε ≤ 1/10 to that of 1/10.

Lemma 4 For all (P,Q), n, and m

E t
P,Q

(nm) ≤ 1

2

(
2
√
E t
P,Q

(n)(1− E t
P,Q

(n))
)m

and Es
P,Q

(nm) ≤ 1

2

(
2
√
Es
P,Q

(n)(1− Es
P,Q

(n))
)m

.

Proof See Appendix B.2.

5. Algorithms for closeness testing and classification

Broadly speaking, we separately consider symbols with high probability (≥ 1
n log2 n

) and those
small probability. We first construct a test with error at most

√
ε that uses either only the sub-profile

of the high-probability elements or only the sub-profile of the low-probability elements.
For any distribution pair, if there is a test that uses only high probability elements to achieve

error
√
ε, then we show a test that has error at most ε when cn3/2 log n samples are provided for

some constant c. The algorithm estimates the Chi-square distance between distributions from the
multiplicities. If the distributions were different, then we show that the Chi-square distance must
be at least a certain quantity and then show that given cn3/2 log n samples, the expected value of
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Algorithm 2 Classifier S(x, y, z)

1: Parameters: A constant c3 determined later in the proof irrespective of the distributions, and n.
2: Input: Three sequences x, y and z of length c3n1.5 log n.
3: Output: x or y.
4: if T (x, z) = same then
5: return x
6: else
7: return y
8: end if

the estimate is much larger than its standard deviation, hence attaining small error probability. A
similar argument works for identical distributions.

Similarly, for any distribution pair for which there is a test that uses only the small sub-profile
we use a variation of the N(ϕ) test proposed in Acharya et al. (2011). The algorithm relies on the
observation that when all probabilities are small, then the number of likely joint profiles is small.
Using this, we bound the probability of a sub-profile efficiently using a deterministic function of
ϕA .

In the following section we provide a complete proof of the correctness of the algorithm and
explain the steps in greater detail. In Lemma 3, we prove that closeness tests and classifiers are
closely related. Hence, the classifier tests for closeness between x, z and y, z and outputs the
sequence for which the output is same. The classifier given in Algorithm 2. Using Algorithm 2,
we prove the latter part of Theorem 8. Next we relate the error probability of an optimal test to the
Chi-Square distance between P and Q, and use this relation to bound N t

P,Q(ε). For simplicity we
denote the joint probability distribution of P and Q by P1,2 and the joint probability of R and R by
P3,3.

Lemma 5 If E t
P,Q

(Poi(n)) ≤ ε, then for any set A ⊆ A at least one of the following holds:

1. For any possible sub-profile ϕ
Ac

, either P1,2(ϕAc ) ≤
√

2ε, or P3,3(ϕAc ) <
√

2ε for all
distributions R.

2. ∑
i∈A

(pi − qi)2

pi + qi
≥ 1

2n
log

(
1

8ε

)
.

Proof Since the P1,2 (and therefore P3,3) are unknown, the error E t
P,Q

(Poi(n)) is larger than that of
the hypothesis testing problem with two equally likely hypotheses—one where the joint profile is
generated by P1,2 and the other by P3,3. This error in turn decreases if we are told which multiplic-
ities derive from A, and which from Ac. Therefore, identifying ϕA with the set of sequences of that
sub-profile, we see that ϕA∩B = ϕA ∩ ϕB , we obtain

ε ≥ Pe =
1

2

∑
ϕ
A
,ϕ
Ac

min
(
P1,2(ϕA ∩ ϕAc ), P3,3(ϕA ∩ ϕAc )

)

≥ 1

2

∑
ϕ
A

min
(
P1,2(ϕA), P3,3(ϕA)

)∑
ϕ
Ac

min
(
P1,2(ϕAc ), P3,3(ϕAc )

),
22.8
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where the inequality follows by Poisson sampling, all the multiplicities are independent and hence
P (ϕA ∩ ϕAc ) = P (ϕA)P (ϕ

Ac
), and also min(ab, cd) ≥ min(a, c) min(b, d).

Since the product of the two summations is less than 2ε, at least one of them is less than
√

2ε.
If the second summation is less than

√
2ε, then for any profile ϕ

Ac
, if P1,2(ϕAc ) ≥

√
2ε then for all

R, P3,3(ϕAc ) <
√

2ε and vice versa. This proves Condition 1.
If the first summation in the product is less than

√
2ε, we bound it by the probability of types.

Let type TA denote the ordered set of joint multiplicities of elements in A. Clearly, P (ϕA) =∑
TA|{TA}=ϕA

P (TA). Since the min(
∑

i ai,
∑

i bi) ≥
∑

i min(ai, bi),∑
ϕ
A

min (P1,2(ϕA), P3,3(ϕA)) ≥
∑
TA

min (P1,2(TA), P3,3(TA))

(a)

≥ 1

2EP1,2

(
P1,2(TA)
P3,3(TA)

)
(b)

≥ 1

2
exp

(
−
∑
i∈A

n(pi − qi)2

pi + qi

)
,

where (a) follows from Lemma 13. (b) follows from moment generating function of Poisson distri-
butions and setting R to be P+Q

2 . Condition 2 therefore holds.

The next lemma bounds the probability that the probability of a profile is less than ε.

Lemma 6 Let X1, X2 be sequences of Poi(n0) elements generated i.i.d. according to P1,2 and let
A be the set of all symbols such that n0pi ≤ 2 log n0, then

Pr(P1,2(ϕA) ≤ ε) ≤ εe120 log
3 n0 +

1

100
.

Proof See Appendix B.3.

Next we show that Nd(ϕA) and Ns(ϕA) can be used to derive fairly good estimates of sub-profile
probabilities. The proof is given in Appendix B.4.

Lemma 7 For any profile ϕA and distributions P1,2 = (P,Q), P3,3 = (R,R)

P3,3(ϕA),≤ Ns(ϕA)

Nd(ϕA)
≤ P4,4(ϕA)

P1,2(ϕA)
,

where P4,4 = (P+Q
2 , P+Q

2 ). �

We can now prove the competitive optimality of the closeness test T of Algorithms 1 and the clas-
sifier S in Algorithm 2.

Theorem 8 For every (P,Q),

NT
P,Q ≤ O(N t

P,Q
1.5

logN t
P,Q) and NS

P,Q ≤ O(N s
P,Q

1.5 logN s
P,Q).
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Proof We first prove that if the sequences are generated from the same distribution then T returns
same with probability ≥ 0.9, note that this part holds for every n. Similarly, we prove that if
N t
P,Q ≤ n, then T returns diff with probability ≥ 0.9.

By Fact 12, with probability at least 1− e−c1n3/2/8, n1 +n2 +n3 ≤ 4c1n
3/2 log n. If c1 ≥ 40,

then this probability is less than 1/60. By the Poisson-tail bounds, Pr(∃i | i ∈ A, pi + qi ≤
1/(2n log2 n)) ≤ 1/120. Similarly Pr(∃i | i ∈ Ac, pi + qi ≥ 2/(n log2 n)) ≤ 1/120. Throughout
the proof, let µi and µ′i denote the multiplicities of symbol i in sequences x2 and y2. Let ϕ

Ac
denote

the joint sub-profile of sequences x3 and y3.
We first prove that if the sequences are generated by the same distribution then T returns same

with probability ≥ 0.9. Since both the sequences are generated by the same distribution, (pi−qi)2
pi+qi

=

0, for all i ∈ A. If all the probabilities in A are bigger than 1/(2n log2 n), then A contains at most
2n log2 n elements. By Chebyshev bound and Lemma 14 if c1 ≥ 200, then

Pr

(∑
i∈S

(µi − µ′i)2 − µi − µ′i
µi + µ′i − 1

≥ c1
24

√
n log n

)
≤ 1

30
,

Probability that C2 holds is

Pr

(
Nd(ϕAc )

Ns(ϕAc )
≥ 34e120 log

3 n0

)
(a)

≤ Pr

(
P3,3(ϕAc ) ≤

1

34e120 log
3 n0

)
(b)

≤ 1

30
.

(a) follows from Lemma 7 and (b) follows from Lemma 6. By the union bound, any of the condi-
tions is satisfied is at most 1/60 + 1/60 + 1/30 + 1/30 = 1/10.

We now prove that if the sequences are from (P,Q) such that N t
P,Q ≤ n, then T returns diff

with probability ≥ 0.9. If N t
P,Q ≤ n, by Lemma 4, N t

P,Q(ε′
def
= 1

20.6c2 log
3 n) ≤ c2n log3 n. Hence,

by Lemma 2, E t
P,Q

(Poi(2n0)) ≤ ε′ + 2e−c2n log3 n/4 ≤ 2ε′. Therefore, by Lemma 5 for any profile
ϕA , if P1,2(ϕAc ) ≥

√
2ε′ then P3,3(ϕAc ) <

√
2ε′ and vice versa or for c2 ≥ 14

∑
i∈A

(pi − qi)2

pi + qi
≥ 1

4c2n log3 n
log

(
1

8(0.6)c2 log
3 n

)
≥ 1

12n
.

If c1 ≥ 6000, then by Chebyshev bounds and Lemma 14

Pr

(∑
i∈A

(µi − µ′i)2 − µi − µ′i
µi + µ′i − 1

≤ c1
24

√
n log n

)
≤ 2

30
.

If Condition 2 is satisfied in Lemma 5, then

Pr

(
Nd(ϕAc )

Ns(ϕAc )
≤ 34e120 log

3 n0

)
(a)

≤ Pr

(
P1,2(ϕAc )

P4,4(ϕAc )
≤ 34e120 log

3 n0

)
(b)

≤ Pr(P1,2(ϕAc ) ≤
√

2ε′) + Pr
(
P1,2(ϕAc ) ≤

√
68ε′e120 log

3 n0

)
≤ 2
√

68ε′e240 log
3 n0 +

1

100

(c)

≤ 2

30
.
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(a) follows from Lemma 7. (b) follows from the fact that if P4,4(ϕA) ≥ ε′, then P1,2(ϕA) ≤ ε′. (c)
holds when c2 ≥ 300000. By the union bound, probability the none of the conditions are satisfied
at most 1/30 + 2/30 = 1/10. By settting, c1 ≥ c2, we obtain c1n3/2 log n ≥ c2n log n.

Next we prove that if n ≥ N s
P,Q, Algorithm 2 classifies P and Q with error ≤ 1/10. By

Lemma 4, N s
P,Q(1/100) ≤ 8N s

P,Q ≤ 8n. Therefore, by Lemma 3, N t
P,Q ≤ 40n. Hence, if

z and x are generated by same distribution and have length c3n1.5 log n ≥ 900c1n
1.5 log n, then

algorithm 1 returns same with probability ≥ 9/10. Similarly if z and y are from same distribution
then the algorithm returns diff with probability ≥ 9/10.

We relate the sample complexity to achieve ε error to N t
P,Q is given by the following corollary.

Corollary 9 For all (P,Q) and ε < 1/10,

NT
P,Q(ε) ≤ O

(
N t
P,Q

1.5
logN t

P,Q log
1

ε

)
and NS

P,Q(ε) ≤ O
(
N s
P,Q

1.5 logN s
P,Q log

1

ε

)
.

Proof Follows from Lemma 4 and Theorem 8.

The algorithms can be slightly modified to improve the competitiveness for any given ε to
O(N t

P,Q
1.5

(ε) logN t
P,Q(ε)) and O(N s

P,Q
1.5(ε) log2N s

P,Q(ε)) respectively. Details are omitted for
brevity.

6. Lower bounds on sample complexity

Using arguments similar to LeCam (1986); Paninski (2008), we prove the lower bounds by con-
structing a set of distributions that cannot all be simultaneously distinguished by a single algorithm.
LetQ be the distribution over i = 1, 2, . . . , n

1/3

logn where qi = 3i2 log3 n
cn , and c =

(
1 + logn

n1/3

)(
1 + logn

2n1/3

)
is a normalization factor. Let t = n1/6

500 logn , and define P to be the collection of 2n
1/3/2 logn distri-

butions where in every P ∈ P , for all odd i, pi = qi ± i logn
tn and pi+1 = qi+1 ∓ i logn

tn , namely,
pi + pi+1 = qi + qi+1. The next lemma, proved in Appendix B.5, states that each distribution in P
can be easily distinguished from Q.

Lemma 10 For all P ∈ P , N t
P,Q ≤ n and N s

P,Q ≤ n. �

Theorem 11 For every closeness test T and classifier S, there are distribution pairs (P,Q) (that
may differ for the two cases) such that

NT
P,Q ≥ Ω

(
N t
P,Q

7/6

logN t
P,Q

)
and NS

P,Q ≥ Ω

(
N s
P,Q

7/6

logN s
P,Q

)
.

Proof We prove that no classifier S can classify Q from all P with Ω(n7/6/ log n) samples. Since
extra information decreases the error probability, we aid the symmetric classifier with about the
label-probability mapping. Any such classifier dividesAn into two setsA1 andAc1. If z ∈ A1, then
the classifier associates z with P , else Q. If Q can be distinguished from the set P with error Pe,
then

Pe ≥
1

2
min
A1

max
P∈P

Q(A1) + P (Ac1).
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Similarly, for the closeness test T we provide additional information about labellings and further
restrict that the first sequence is from P and the second sequence is either from P or Q, the error
probability of such a closeness test is also lower bounded by the above equation. Hence, the error
probability is lower bounded by,

Pe ≥
1

2
min
A1

max
P∈P

Q(A1) + P (Ac1)
(a)
=

1

2

(
min
A1

max
µ

Q(A1) +
∑
P∈P

µPP (Ac1)

)
(b)

≥ 1

2

(
max
µ

min
A1

Q(A1) +
∑
P∈P

µPP (Ac1)

)
(c)

≥ 1

2
max
µ

∑
z

min

(
Q(z),

∑
P∈P

µPP (z)

)
,

where µ is any measure over P . (a) follows from the fact that maximum of a linear optimization
problem occurs at the boundary. Min-max is bigger than max-min, hence (b). (c) follows from the
error probability of the optimal hypothesis test with known prior.

Since the inequality is true for any measure we choose µ to be uniformly over the set P . Apply-
ing Lemma 13 to R(Z) and

∑
P µPP (Z)

Pe ≥
1

4EµpP (Z)
µpP (Z)

Q(Z)

(a)

≥ 1

4
exp

(
−(n′)2

∑
i

δ4i

(
1

q22i−1
+

1

q22i

))
, (3)

where δi = i logn
tn . Proof of (a) is given in Appendix B.6. Substituting the values,

Pe ≥
1

4
exp

(
−16(n′)2

n1/3

log(n)

c2

9n2t4 log2 n

)
≥ 1

4
exp

(
−16(n′)2 log(n)

5004c2

9n7/3

)
.

For lower bound to be lesser than 1/10, n′ = Ω(n7/6/ log n) samples are necessary.
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Appendix A. General probability bounds

We use the following Poisson-tail bound.

Fact 12 If X ∼ Poi(λ), then for x ≥ λ,

Pr(X ≥ x) ≤ exp

(
−(x− λ)2

2x

)
,

and for x ≤ λ,

Pr(X ≤ x) ≤ exp

(
−(x− λ)2

2λ

)
.

Lemma 13 For every (P,Q) over any alphabet A,∑
z∈A

min(P (z), Q(z)) ≥ 1

2EP

(
P (z)
Q(z)

) .
Proof ∑

z

min (P (z), Q(z))
(a)

≥
∑
z

P (z)Q(z)

P (z) +Q(z)
= EP

(
Q(z)

P (z) +Q(z)

)
(b)

≥ 1

EP

(
P (z)+Q(z)

Q(z)

) =
1

EP

(
P (z)
Q(z)

)
+ 1

(c)

≥ 1

2EP

(
P (z)
Q(z)

) ,
where (a) follows from min(a, b) ≥ ab

a+b , (b) follows from Jensen’s inequality and the convexity of
1
x , and (c) since by the Cauchy-Schwarz inequality, EP

(
P (z)
Q(z)

)
≥ 1.

Lemma 14 For two Poisson random variables, µ and µ′ with means λ and λ′ respectively,

E

(
(µ− µ′)2 − µ− µ′

µ+ µ′ − 1

)
=

(λ− λ′)2

λ+ λ′

(
1− e−λ−λ′

)
,

Var

(
(µ− µ′)2 − µ− µ′

µ+ µ′ − 1

)
≤ 4

(λ− λ′)2

λ+ λ′
+ 4 +O((λ+ λ′)5e−λ−λ

′
).

Proof

E

(
(µ− µ′)2 − µ− µ′

µ+ µ′ − 1

)
= E

(
µ(µ− 1) + µ′(µ′ − 1)− 2µµ′

µ+ µ′ − 1

)
.
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Analyzing the first term in the expression,

E

(
µ(µ− 1)

µ+ µ′ − 1

)
= e−λ−λ

′
λ2

∞∑
µ=2,µ′=0

λµ−2λ′µ
′

(µ− 2)!µ′!(µ+ µ′ − 1)

= e−λ−λ
′
λ2

∞∑
µ′′=0,µ′=0

λµλ′µ
′′

(µ′′)!µ′!(µ+ µ′ + 1)

= λ2
∞∑

µ′′′=0

e−λ−λ
′ (λ+ λ′)µ

′′′

(µ′′′)!(µ′′′ + 1)

=
λ2

λ+ λ′

∞∑
µ′′′=0

e−λ−λ
′ (λ+ λ′)µ

′′′+1

(µ′′′ + 1)!

=
λ2

λ+ λ′
(1− e−λ−λ′).

Similarly E
(
µ′(µ′−1)
µ+µ′−1

)
= λ′2

λ+λ′ (1 − e
−λ−λ′) and E

(
µµ′

µ+µ′−1

)
= λλ′

λ+λ′ (1 − e
−λ−λ′), completing

the expectation argument. The variance calculation can be done similarly by separating terms as in
(a) and proving the upper bound,

E

(
(µ− µ′)2 − µ− µ′

µ+ µ′ − 1

)2
(a)
= (λ− λ′)4E

(
1

(µ+ µ′ + 3)2

)
+ 4(λ− λ′)2(λ+ λ′)E

(
1

(µ+ µ′ + 2)2

)
+ 2(λ+ λ′)2E

(
1

(µ+ µ′ + 1)2

)
≤ (λ− λ′)4

(λ+ λ′)2
+ 4

(λ− λ′)2

λ+ λ′
+ 4 +O((λ+ λ′)5e−λ−λ

′
).

Appendix B. Proofs of lemmas in Sections 5 and 6

B.1. Proof of Lemma 3

To prove the upper bound, take an optimal closeness test that decides whether two sequences of
N t
P,Q(ε) samples are generated according to P and Q or by the same distribution, with error proba-

bility ≤ ε. Given classification sequences X , Y , and Z, apply the test to X and Z. If the test finds
them to be generated according to the same distribution, classify Z to X , and otherwise to Y . The
error probability is clearly ≤ ε.

To prove the lower bound, take an optimal classifier which xclassifies with error probabil-
ity ≤ ε. Divide the N s

P,Q(ε) log(1/ε) samples from both sequences into log(1/ε) independent
N s
P,Q(ε) length sequences: X1, X2, . . . X log(1/ε) and Y 1, Y 2, . . . Y log(1/ε). Classify, X2i, Y 2i us-

ing X2i−1, Y 2i−1, ∀ i. If all the log(1/ε) sequences are classified correctly, then declare diff, else
same.

If the sequences are generated by the same distribution, then each of X2i and Y 2i are classified
as X2i−1 or Y 2i−1 with probability 0.5. The error probability is the probability that all of them are
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classified correctly, which is 2− log(1/ε) = ε. If the sequences are from P and Q, then probability
that any one of X2i or Y 2i incorrectly classified is ε. Therefore, by the union bound the probability
that any one of them is classified incorrectly is at most log(1/ε)ε. The error probability of this test
is ε log(1/ε), proving the lower bound. �

B.2. Proof of Lemma 4

We prove the result for closeness testing. Similar result holds for classification and is omitted for
brevity. Divide the two sequences of length nm into m sequences of length n. Run the closeness
test for each one of them. If majority of m sequences declare same, declare same, else diff.
Since each of m sub-tests fail with error probability E t

P,Q
(n), the error probability that majority test

fails is at most

Pe ≤
m∑

i=bm
2
c+1

(
m

i

)
E t
P,Q

i
(1− E t

P,Q
)m−i ≤

 m∑
i=bm

2
c+1

(
m

i

) max
i≥bm

2
c+1
E t
P,Q

i
(1− E t

P,Q
)m−i

≤ 1

2
2mE t

P,Q

m/2
(1− E t

P,Q
)m/2 =

1

2

(
2E t

P,Q

1/2
(1− E t

P,Q
)1/2

)m
.

B.3. Proof of Lemma 6

Since the distribution is sampled Poi(n0) times, the multiplicities are independent, and the Poisson-
tail bounds in Mitzenmacher and Upfal (2005) yields,

Pr (µi ≥ 7.7 log n0) ≤
1

100n0
.

Since Pr(max(X,Y ) ≥ ε) ≤ Pr(X + Y ≥ ε), grouping terms increases the probability. Group all
symbols so that the sum of the λ’s in each group is between log n0 and 2 log n0. There are at most
n0 such groups, hence by the union bound,

Pr

(⋃
i∈A

µi ≥ 7.7 log n0

)
≤ 1

100
.

Since,
∑

i npi ≤ n0, the probability that
∑

i µi ≥ 2n0 is exponentially small. The number of
profiles such that all multiplicities are less than 15 log n0 and the sum of multiplicities is less than
2n. There are at most (7.7 log n0)

2 prevalences and each one of them is at most 2n0. Hence the total
number of profiles with probability less than ε is at most (2n0)

(7.7 logn0)2 . Hence, the probability
that P1,2(ϕA) ≤ ε is upper bounded by,

Pr(P1,2(ϕA) ≤ ε) ≤ εe120 log
3 n0 +

1

100
.

B.4. Proof of Lemma 7

Recall that

P1,2(ϕA) =

∑
σ

∏
i∈A e

−npi−nqi(npi)
µσi (nqi)

µ′σi

Nd(ϕA)
,
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where the summation is over all symbol permutations. For a joint profile ϕ, let ϕ′ be the con-
catenated profile whose multiplicities are the sum of the multiplicities of each element in ϕ. For
example, if ϕ = {(0, 1), (1, 2), (2, 1)}, then ϕ′ = {1, 3, 3}. Again identifying ϕ′

A
with the set of all

concatenated sequences XnY n whose sub-profile corresponding to A is ϕ′
A

, then

PP,P (ϕ′
A

) =

∑
σ

∏
i∈A e

−2npi(npi)
µσi

Ns(ϕA)
.

The lower bound then follows as for all R

Ns(ϕA)

Nd(A)
=
P3,3(ϕA)

R(ϕ′
A

)
≥ P3,3(ϕA).

For the upper bound, since the sum of a Poi(λ) and an independent Poi(λ′) is Poi(λ + λ′), we
obtain PP,Q(ϕ′

A
) = PP+Q

2
,P+Q

2
(ϕ′

A
), and since ϕA ∈ ϕ′A , P1,2(ϕA) ≤ P1,2(ϕ

′
A

). Combining all
the above terms

Ns(ϕA)

Nd(ϕA)
=

P4,4(ϕA)

PP+Q
2

,P+Q
2

(ϕ′
A

)
=

P4,4(ϕA)

PP,Q(ϕ′
A

)
≤ P4,4(ϕA)

P1,2(A)
.

B.5. Proof of Lemma 10

If we prove that N s
P,Q(1/1000) ≤ n/10, then by Lemma 3

N t
P,Q(log(1000)/1000) ≤ log(1000)N s

P,Q(1/1000) ≤ n.

We construct a symmetric classifier with prior knowledge of P and Q to prove N s
P,Q(1/1000) ≤

n/10. The classifier selects first Poi(n/20) samples from z, denoted by z′. It assigns symbol i to the
symbol with ith highest multiplicity. It assigns z to the distribution that assigns higher probability.
Let H be the event that the probabilities are assigned to symbols incorrectly. The error probability
of the classifier is upper bounded by

Pe ≤ Pr(Hc) +
1

2
Pr(H)

(
Pr
P

(P (Z
′
) ≤ Q(Z

′
) | H) + Pr

Q
(Q(Z

′
) ≤ P (Z

′
) | H)

)
.

By Poisson tail bounds 12 Pr(H) ≤ poly(1/n). Furthermore PrP (P (Z
′
) ≤ Q(Z

′
) | H) =

PrP (P (Z) ≤ Q(Z)). Note that

Pr
P

(P (Z) ≤ Q(Z)) + Pr
Q

(P (Z) ≤ Q(Z)) =
∑
z

min(P (z), Q(z)).

Therefore

Pe − poly(1/n) ≤ 1

2

∑
z

min(P(z),Q(z)) ≤
∑

z

√
P(z)Q(z)

2

(a)
=

1

2

∑
i

exp
(
− n

20
(
√

pi −
√

qi)
2
)

≤ 1

2
exp

(
− n

20

∑
i

(pi − qi)2

4qi

)
≤ 1

2
exp

(
− n1/3c

480 log2(n)t2

)
,

where (a) follows from the moment generating functions of Poisson distributions and by Fact 1. If
t = n1/6

500log(n) , then all each of P ∈ P , N s
P,Q(1/1000) ≤ n/10. �
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B.6. Proof of Equation (3)

Let δi = (2i−1)
nt and Poi(λ, i) = e−λ λ

i

i! Since the selected mixture is uniform, it can be decomposed

into product over individual symbols. Therefore, EµPP (Z)

(
µPP (Z)

Q(Z)

)
is given by

=
∏
i

∑
j,k


(∑

t={−1,1} Poi(n(q2i−1 + tδi), j)Poi(n(q2i − tδi), k)
)2

4Poi(nq2i−1, j)Poi(nq2i, k)


(a)
=
∏
i

1

2
exp

(
δ2i
( 1

nq2i−1
+

1

nq2i

))
+ exp

(
−δ2i

( 1

nq2i−1
+

1

nq2i

))
(b)

≤
∏
i

exp

(
1

2
n2δ4i

( 1

q2i−1
+

1

q2i

)2)
(c)

≤ exp
∑
i

(
n2δ4i

( 1

q22i−1
+

1

q22i

))
,

where (a) follows from by evaluating the expressions using moment generating functions of Poisson
distributions, (b) follows from 1

2(et + e−t) ≤ et2/2, and (c) follows from the AM-GM Inequality.
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