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Abstract
The disagreement coefficient of Hanneke has become a central concept in proving active learning
rates. It has been shown in various ways that a concept class with low complexity together with a
bound on the disagreement coefficient at an optimal solution allows active learning rates that are
superior to passive learning ones.

We present a different tool for pool based active learning which follows from the existence of
a certain uniform version of low disagreement coefficient, but is not equivalent to it. In fact, we
present two fundamental active learning problems of significant interest for which our approach
allows nontrivial active learning bounds. However, any general purpose method relying on the
disagreement coefficient bounds only fails to guarantee any useful bounds for these problems.

The tool we use is based on the learner’s ability to compute an estimator of the difference be-
tween the loss of any hypotheses and some fixed “pivotal” hypothesis to within an absolute error
of at most ε times the `1 distance (the disagreement measure) between the two hypotheses. We
prove that such an estimator implies the existence of a learning algorithm which, at each iteration,
reduces its excess risk to within a constant factor. Each iteration replaces the current pivotal hy-
pothesis with the minimizer of the estimated loss difference function with respect to the previous
pivotal hypothesis. The label complexity essentially becomes that of computing this estimator.

The two applications of interest are: learning to rank from pairwise preferences, and clustering
with side information (a.k.a. semi-supervised clustering). They are both fundamental, and have
started receiving more attention from active learning theoreticians and practitioners.
Keywords: active learning, learning to rank from pairwise preferences, semi-supervised clustering,
clustering with side information, disagreement coefficient, smooth relative regret approximation

1. Introduction

Unlike in standard PAC learning, an active learner chooses which instances to learn from. In the
streaming setting, they may reject labels for instances arriving in a stream, and in the pool set-
ting they may collect a pool of instances and then choose a subset from which to ask labels for.
Although a relatively young field compared to traditional (passive) learning, there is by now a sig-
nificant body of literature on the subject (see, e.g., Freund et al., 1997; Dasgupta, 2005; Castro et al.,
2005; Kääriäinen, 2006; Balcan et al., 2006; Sugiyama, 2006; Hanneke, 2007; Balcan et al., 2007;
∗ Supported by a Marie Curie International Reintegration Grant PIRG07-GA-2010-268403
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Dasgupta et al., 2007; Bach, 2007; Castro and Nowak, 2008; Balcan et al., 2008; Dasgupta and Hsu,
2008; Cavallanti et al., 2008; Hanneke, 2009; Beygelzimer et al., 2009, 2010; Koltchinskii, 2010;
Cesa-Bianchi et al., 2010; Yang et al., 2010; Hanneke and Yang, 2010; El-Yaniv and Wiener, 2010;
Hanneke, 2011; Orabona and Cesa-Bianchi, 2011; Cavallanti et al., 2011; Yang et al., 2011; Wang,
2011; Minsker, 2012). Refer to a survey by Settles (2009) for definition of active learning.

The disagreement coefficient of Hanneke (2007) has become a central data independent invari-
ant in proving active learning rates. It has been shown in various ways that a concept class with
low complexity together with a bound on the disagreement coefficient at an optimal solution allows
active learning rates that are superior to passive rates under certain low noise conditions (see, e.g.,
Hanneke, 2007; Balcan et al., 2007; Dasgupta et al., 2007; Castro and Nowak, 2008; Beygelzimer
et al., 2010). The best results assuming bounded VC dimension d and disagreement coefficient θ
only can roughly be stated as follows: If the sought excess risk µ is the same order of magnitude
as the optimal error ν or larger, then the number of required queries is roughly Õ(θd log(1/µ)).1

Otherwise, the number is roughly Õ(θdν2/µ2). Note that these results make no assumption on the
noise (except maybe for its magnitude). Better results can be made by assuming certain statistical
properties of the noise (especially the model of Mammen and Tsybakov, 1999; Tsybakov, 2004).

The idea behind the disagreement coefficient is intuitive and simple. If a hypothesis h is r-close
to optimal, then the difference between their losses (the regret of h) can be computed from instances
in the disagreement region only, defined as the set of instances on which the r-ball round the optimal
is not unanimous on. This means that for minimizing regret, one may restrict attention to hypotheses
lying in iteratively shrinking version spaces and to instances in the corresponding disagreement
region, which is shrinking in tandem with the version space if the disagreement coefficient is small.
As pointed out by Beygelzimer et al. (2010), ignoring hypotheses outside the version space is brittle
business, because a mistake in computation of the version space dooms the algorithm to fail. They
propose a scheme in which no version space is computed. Instead, a certain importance weighted
scheme is used. We also use importance weighting, but in the pool based setting and not in the
streaming setting as they do.2

Analyzing the difference between losses (“relative regrets”) of hypotheses is used almost in
all theoretical work on active learning, but not attacked directly. In this work we argue that by
carefully constructing empirical processes uniformly estimating the relative regret of all hypotheses
with respect to a fixed “pivotal” hypothesis (the current solution) yields fast active learning rates.
We call such constructions SRRA (Smooth Relative Regret Approximations).

We also show that (not surprisingly) low disagreement coefficient and VC dimension assump-
tions imply such efficient constructions, and give rise to yet another proof for the usefulness of the
disagreement coefficient in active learning via an algorithm that does not need to compute or restrict
itself to shrinking version spaces. We then present two fundamental pool based learning problems
for which direct SRRA construction yields superior active learning rates, whereas any known ar-
gument that uses the disagreement coefficient only, requires the practitioner to obtain labels for the
entire pool (!) even for moderately chosen parameters. We conclude that the SRRA method is, up
to minor factors, at least as good as the disagreement coefficient method, but can be significantly
better in certain cases.

1. The Õ notation suppresses polylogarithmic terms.
2. Note that a practitioner can pretend that any pool based input is a stream, though that approach would probably not

take full advantage of the data.
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We note that another important line of design and analysis of active learning algorithms makes
certain structural or Vayesian assumptions on the noise (e.g., Balcan et al., 2007; Castro and Nowak,
2008; Hanneke, 2009; Koltchinskii, 2010; Yang et al., 2010; Wang, 2011; Yang et al., 2011; Minsker,
2012). We expect that one can get yet improved analysis in our framework under these assumptions.
We leave this to future work.

The rest of the paper is laid out as follows: In Section 2 we present notations and basic def-
initions, including an introduction to our method. In Section 3 we show that existence of low
disagreement coefficient implies our method, in some sense. In Section 4 we present our two main
applications, learning to rank from pairwise preferences (LRPP) in Section 4.1 and clustering with
side information in Section 4.2. Finally in Section 5 we present additional results and practical con-
siderations, and in particular how to use our methods with convex relaxations if the ERM3 problems
that arise in the discussion are too difficult (computationally) to optimally solve. We conclude in
Section 6 and suggest future directions. Due to lack of space, all proofs, as well as certain literature
surveys and historical notes appear in a full version text (Ailon et al., 2012).

2. Definitions and Notation

We follow the notation of Hanneke (2011): Let X be an instance space, and let Y = {0, 1} be a
label space. Denote by D the distribution over X × Y , with corresponding marginals DX and DY .
In this work we assume for convenience that each label Y is a deterministic function of X , so that
if X ∼ DX then (X,Y (X)) is distributed according to D.

By C we denote a concept class of functions mapping X to Y . The error rate of a hypothesis
h ∈ C equals

erD(h) = E(X,Y )∼D[h(X) 6= Y ] .

The noise rate ν of C is defined as ν = infh∈C erD(h). We will focus on the scenario in which ν is
attained at an optimal hypothesis h∗, so that erD(h∗) = ν. Define the distance dist(h1, h2) between
two hypotheses h1, h2 ∈ C as PrX∼DX [h1(X) 6= h2(X)]; observe that dist(·, ·) is a pseudo-metric
over pairs of hypotheses. For a hypothesis h ∈ C and a number r ≥ 0, the ball B(h, r) around h
of radius r is defined as {h′ ∈ C : dist(h, h′) ≤ r}. For a set V ⊆ C of hypotheses, let DIS(V )
denote

DIS(V ) = {x ∈ X : ∃h1, h2 ∈ V s.t. h1(x) 6= h2(x)} .

2.1. The Disagreement Coefficient

The disagreement coefficient of h with respect to C under DX is defined as

θh = sup
r>0

PrDX [DIS(B(h, r))]

r
, (2.1)

where PrDX [W] forW ⊆ X denotes the probability measure with respect to the distribution DX .
Define the uniform disagreement coefficient θ as suph∈C θh, namely

θ = sup
h∈C

sup
r>0

PrDX [DIS(B(h, r))]

r
. (2.2)

3. Empirical Risk Minimization.
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Remark 1 A useful slight variation of the definitions of θh and θ can be obtained by replacing
supr>0 with supr≥ν in (2.1) and (2.2). We will explicitly say when we refer to this variation in what
follows.

2.2. Smooth Relative Regret Approximations (SRRA)

Fix h ∈ C (which we call the pivotal hypothesis). Denote by regh : C 7→ R the function defined as

regh(h′) = erD(h′)− erD(h) .

We call regh the relative regret function with respect to h. Note that for h = h∗ this is simply the
usual regret, or excess risk function.

Definition 2 Let f : C 7→ R be any function, and 0 < ε < 1/5 and 0 < µ ≤ 1. We say that f is an
(ε, µ)-smooth relative regret approximation ((ε, µ)-SRRA) with respect to h if for all h′ ∈ C,

|f(h′)− regh(h′)| ≤ ε ·
(
dist(h, h′) + µ

)
.

If µ = 0 we simply say that f is an ε-smooth relative regret approximation with respect to h.

Although the definition is general, the applications we study in details fall under the category of
pool based active learning, in which X is a finite set and PrDX is the uniform measure. This allow
us to take µ = 0, and will be useful in what follows. The following theorem and corollary constitute
the main ingredient in our work. The corresponding proofs are deferred to Appendices A, and B.

Theorem 3 Let h ∈ C and f be an (ε, µ)-SRRA with respect to h. Let h1 = argminh′∈C f(h′).
Then

erD(h1) = (1 +O(ε)) ν +O (ε · erD(h)) +O(εµ) .

A simple inductive use of the theorem proves the following corollary, bounding the query complex-
ity of an ERM based active learning algorithm (see Algorithm 1 for corresponding pseudocode).
Note that the proposed algorithm never restricts itself to a shrinking version space.

Corollary 4 Let h0, h1, h2, . . . be a sequence of hypotheses in C such that for all i ≥ 1,
hi = argminh′∈C fi−1(h

′), where fi−1 is an (ε, µ)-SRRA with respect to hi−1. Then for all i ≥ 0,

erD(hi) = (1 +O(ε)) ν +O(εi)erD(h0) +O(εµ) .

We will show below problems of interest in which (ε, µ)-SRRA’s with respect to a given hy-
pothesis h can be obtained using queries Y (X) at few randomly (and adaptively) selected points
X ∈ X , if the uniform disagreement coefficient θ is small. This will constitute another proof for the
usefulness of the disagreement coefficient in design and analysis of active learning algorithms. We
then present two problems for which a direct construction of an SRRA yields a significantly better
query complexity than that guaranteed using the disagreement coefficient alone.

3. Constant Uniform Disagreement Coefficient Implies Efficient SRRA’s

We show that a bounded uniform disagreement coefficient implies existence of query efficient
(ε, µ)-SRRA’s. This constitutes yet another proof of the usefulness of the disagreement coefficient
in design of active learning algorithms, via Algorithm 1.
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Algorithm 1 An Active Learning Algorithm from SRRA’s
Input: an initial solution h0 ∈ C, estimation parameters ε ∈ (0, 1/5), µ > 0, and number of

iterations T
1: i← 0
2: repeat
3: hi+1 ← argminh′∈C , f(h′), where f is an (ε, µ)-smooth relative regret approximation with

respect to hi
4: i← i+ 1
5: until i equals T
6: return hT

3.1. The Construction

Returning to our problem, assume the uniform disagreement coefficient θ corresponding to C is
finite and ν > 0. Fix some failure probability δ. We consider the range space (X , C∗), defined by

C∗ =

(⋃
h′∈C

{
{X ∈ X : h′(X) = 0}

})
∪

(⋃
h′∈C

{
{X ∈ X : h′(X) = 1}

})
.

In other words, C∗ is the collection of all subsets S ⊆ X , whose elements X ∈ S are mapped to the
same value (0 or 1) by h′, for some h′ ∈ C. Assume (X , C∗) has VC dimension d, and fix h ∈ C.
Let L = dlogµ−1e. Define X0 = DIS(B(h, µ)) and for i = 1, 2, . . . , L, define Xi to be

Xi = DIS(B(h, µ2i)) \DIS(B(h, µ2i−1)) .

Let ηi = PrDX [Xi] be the measure of Xi. For each i ≥ 0 draw a sample Xi,1, . . . , Xi,m of
m = O

(
ε−2θ

(
d log θ + log

(
δ−1 log(1/µ)

)))
examples in Xi, each of which drawn indepen-

dently from the distribution DX |Xi (with repetitions). (By DX |Xi we mean, the distribution DX
conditioned on Xi.) We will now define an estimator function f : C 7→ R of regh, as follows. For
any h′ ∈ C and i = 0, 1, . . . , L let

fi(h
′) , ηim

−1
m∑
j=1

(
1Y (Xi,j)6=h′(Xi,j) − 1Y (Xi,j)6=h(Xi,j)

)
.

Our estimator is now defined as f(h′) ,
∑L

i=0 fi(h
′). We next show:

Theorem 5 Let f , h, h′, m be as above. With probability at least 1 − δ, f is an (ε, µ)-SRRA with
respect to h.

A main tool to be exploited in the proof is called relative ε-approximations. We defer the details
to Appendix C (see also Li et al., 2000, for further details). We conclude:

Corollary 6 An (ε, µ)-SRRA with respect to h can be constructed, with probability at least 1 − δ,
using at most

m (1 + dlog(1/µ)e) = O
(
θε−2(log(1/µ))

(
d log θ + log(δ−1 log(1/µ))

))
(3.1)

label queries.
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Combining Corollaries 4 and 6 (Algorithm 1), we obtain an active learning algorithm in the
ERM setting, with query complexity depending on the uniform disagreement coefficient and the
VC dimension. Assume δ is a constant. If we are interested in excess risk of cν for some con-
stant constant c > 0, then we may take ε to be θ(c) and µ = θ(ν) and build an (ε, µ)-SRRA’s using
O(θd(log(1/µ))(log θ)), once for each ofO(log(1/ν)) iterations of Algorithm 1. If we seek a solu-
tion with error (1+ε)ν, we would need to construct (ε, ν)-SRRA’s usingO(θdε−2(log(1/ν))(log θ))
query labels, one for each of O(log(1/ν)) iterations of the algorithm. The total label query com-
plexity for a fixed ε value is O(θd(log2(1/µ))(log θ)), which is O(log(1/ν)) times the best known
bounds using disagreement coefficient and VC dimension bounds only.

A few more comparison notes are in place. First, note that in known arguments bounding query
complexity using the disagreement coefficient, the disagreement coefficient θh∗ with respect to the
optimal hypothesis h∗ is used in the analysis, and not the uniform coefficient θ. Also note that both
in previously known results bounding query complexity using disagreement coefficient and VC
dimension bounds as well as in our result, the slight improvement described in Remark 1 applies.
That is, all arguments remain valid if we replace the supremums in (2.1) and (2.2) with supr≥ν .

4. Two Important Applications

In this section, we present two cases for which we construct (ε, µ)-SRRA’s directly, and thus obtain
query efficient active learning algorithms. On the flip side, we show that any known argument
based on the disagreement coefficient and the VC dimension only, and in particular Corollary 6
fails to guarantee useful active learning bounds. From this we conclude that, although bounded
disagreement coefficient and VC dimension may lead to construction of SRRA’s, studying SRRA’s
directly may allow stronger query complexity bounds.

The setting of these two problems is basically a distribution-free setting over finite X (that
is “transductive”). Taking PrDX to be the uniform measure allows us to keep with the original
definitions of Section 2. In addition it allows us to take µ = 0. Thus, instead of using (ε, 0)-SRRA
we simply ignore the parameter µ and refer to our estimators as ε-SRRA in what follows.

4.1. Application #1: Learning to Rank from Pairwise Preferences (LRPP)

We describe a learning problem of significant interest. We refer the reader to Appendix D for a
detailed history of the problem, which we omit due to lack of space, except for necessary direct
comparisons to previous work, which we mention as we go.

Let V be a set of n elements (alternatives). The instance space X is taken to be the set of
all distinct pairs of elements in V , namely V × V \

{
(u, u) : u ∈ V

}
. The distribution DX

is uniform on X The label function Y : X 7→ {0, 1} encodes a preference function satisfying
Y
(
(u, v)

)
= 1 − Y

(
(v, u)

)
for all u, v ∈ V .4 By convention, we think of Y

(
(u, v)

)
= 1 as a

stipulation that u is preferred over v. For convenience we will drop the double-parentheses in what
follows.

The class of solution functions C we consider is all h : X → {0, 1} such that h(u, v) =
1 − h(v, u) and h(u, z) ≤ h(u, v) + h(v, z) (transitivity) for all distinct u, v, z ∈ V . This is

4. We chose this definition for convenience in what follows. Note, however, that we could have defined X to be
unordered pairs of elements in V without making any assumptions on Y . For example, by assuming an arbitrary
indexing order over X and thinking of Y ({u, v}) = 1 as a stipulation that the alternative with minimal index is
preferred over its counterpart.
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equivalent to the space of permutations over V , and we will use the notation π, σ, . . . instead of
h, h′, . . . in the remainder of the section. We also use notation u ≺π v as a predicate equivalent to
π(u, v) = 1. EndowingX with the uniform measure, dist(π, σ) turns out to be (up to normalization)
the well known kendall-τ distance: dist(π, σ) = N−1

∑
u6=v 1π(u,v)6=σ(u,v), where N , n(n− 1)

is the number of all ordered pairs.
Let us first see if we can get a useful active learning algorithm using disagreement coefficient

arguments. It has been shown in Ailon (2012) that the uniform disagreement coefficient of C is Θ(n)
(to see this simple fact, notice that if we start from some permutation π and swap the positions of
any two elements u, v ∈ V , then we obtain a permutation of distance at most O(1/n) away from π,
hence the disagreement region of the ball of radiusO(1/n) around π is the entire spaceX ). It is also
known that the VC dimension of C is n− 1 (see, Radinsky and Ailon, 2011). Using Corollary 6, we
conclude that we would need Ω(n2) preference labels to obtain an (ε, µ)-SRRA for any meaningful
pair (ε, µ). This is uninformative because the cardinality ofX isO(n2). A similar bound is obtained
using any known active learning bound using disagreement coefficient and VC-dimension bounds
only.

Remark: A slight improvement can be obtained using Remark 1: Using the refined definition
of disagreement coefficient, it is not hard to see that the uniform disagreement coefficient, as well as
the disagreement coefficient at the optimal solution h∗ becomes5 θ = θh∗ = O(1/ν), if ν ≥ n−1.
This improves the query complexity bound to O(nν−1). If ν tends to n−1 from above, in the limit
this becomes a quadratic (in n) query complexity.

We next show how to construct more useful (in terms of query complexity) SRRA’s for LRPP,
for arbitrarily small ν.

4.1.1. BETTER SRRA FOR LRPP

Consider the following idea for creating an ε-SRRA for LRPP, with respect to some fixed π ∈ C.
We start by defining the following sample size parameter:

p , O
(
ε−3 log3 n

)
. (4.1)

For all u ∈ V and for all i = 0, 1, . . . , dlog ne, let Iu,i denote the set of elements v such that
2ip ≤ |π(u)− π(v)| < 2i+1p where, abusing notation, π(u) is the position of u in π (e.g. π(u) is 1
if u beats all other elements, and n if it is beaten by all others). From this set, choose a random subset
Ru,i of d|Iu,i|/2ie elements, each chosen uniformly (with repetitions).6,7 For distinct u, v ∈ V and
a permutation σ ∈ C, let Cu,v(σ) denote the contribution of the pair u, v to erD(σ), namely:

Cu,v(σ) , N−11σ(u,v)6=Y (u,v) . (4.2)

(Note that Cu,v ≡ Cv,u.) Our estimator f(σ) of regπ(σ) = erD(σ)− erD(π) is defined as

f(σ) =
∑
u∈V

dlogne∑
i=0

|Iu,i|
|Ru,i|

∑
v∈Ru,i

(
Cu,v(σ)− Cu,v(π)

)
. (4.3)

5. Due to symmetry, the uniform disagreement coefficient here equals θh for any h ∈ C.
6. Think of the size of the set Ru,i as exactly p - the number d|Iu,i|/2ie is a technicality required for dealing with sets
Iu,i that are clipped at the edges and are not of maximal size 2ip.

7. A variant of this sampling scheme is as follows: For each pair (u, v), add it to S with probability proportional to
min{1, p/|π(u)−π(v)|}. A similar scheme can be found in the work of Ailon et al. (2007); Halevy and Kushilevitz
(2007); Ailon (2012), but the strong properties proven here were not known.
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Note that the inner sum treats Ru,i as a multi-set, because elements were chosen with repetition.
Clearly, f(σ) is an unbiased estimator of regπ(σ). Our goal is to prove that f(σ) is an ε-SRRA.

Theorem 7 With probability at least 1− n−3, the function f is an ε-SRRA with respect to π.

The proof, which is deferred to the full version (Ailon et al., 2012), is based on decomposing
regh(h′) − f(h′) and dist(h′, h) vis a vis a careful partition of X . Note that the number of pref-
erence queries required for computing f is O(ε−3n log3 n). We conclude from the theorem, our
bound on the number of preference queries and the iterative algorithm described in Corollary 4 (see
Algorithm 1):

Corollary 8 There exists an active learning algorithm for obtaining a solution π ∈ C for LRPP with
erD(π) ≤ (1 +O(ε)) ν with total query complexity of O

(
ε−3n log4 n

)
. The algorithm succeeds

with probability at least 1− n−2.

The corollary improves a recent result (Ailon, 2012) in two ways. First, it shaves off log n and
ε−1 factors from the query complexity. Secondly, and more importantly, by using Algorithm 1, our
optimization method avoids the divide and conquer method on which Ailon (2012) heavily relied
on, and thus lifts a highly restrictive practical requirement arising when searching in restricted
permutation spaces. We refer the reader to Appendix D for a more detailed explanation.

Corollary 8 allows us to find a solution of cost (1 + ε)ν with query complexity that is slightly
above linear in n (for constant ε), regardless of the magnitude of ν. In comparison, as we saw in
Section 4.1, known active learning results (and in particular Corollary 6) that used disagreement
coefficient and VC dimension bounds only guaranteed a query complexity of Ω(nν−1), tending to
the pool size of n(n− 1) as ν becomes small. Note that ν = o(1) is quite realistic for this problem.
For example, consider the following noise model. A ground truth permutation π∗ exists, Y (u, v) is
obtained as a human response to the question of preference between u and v with respect to π∗, and
the human errs with probability proportional to |π∗(u)− π∗(v)|−ρ, for some ρ > 0. Namely, closer
pairs of item in the ground truth permutation are more prone to confuse a human labeler. This is
quite natural. The resulting noise is ν = n−ρ.8

4.2. Application #2: Clustering with Side Information

We refer the reader again to Appendix D for a detailed history and account of previous results for
the problem below, which we omit for lack of space.

Let V be a set of points of size n. Our goal now is to partition V into k sets (clusters), where k
is fixed. In most applications, V is endowed with some metric, and the practitioner uses this metric
in order to evaluate the quality of a clustering solution. In some cases, known as semi-supervised
clustering, or clustering with side information, additional information comes in the form of pairwise
constraints. Such a constraint tells us for a pair u, v ∈ V whether they should be in the same cluster
or in separate ones. We concentrate on using such information.

Using the notation of our framework, X denotes the set of distinct pairs of elements in V (same
as in Section 4.1), and DX is the corresponding uniform measure. The label Y

(
(u, v)

)
= 1 means

that u and v should be clustered together, and Y
(
(u, v)

)
= 0 means the opposite. Assume that

Y
(
(u, v)

)
= Y

(
(v, u)

)
for all u, v.9

8. Our work does not assume Bayesian noise, and we present this scenario for illustration purposes only.
9. Equivalently, assume that X contains only unordered distinct pairs without any constraint on Y . For notational

purposes we preferred to define X as the set of ordered distinct pairs.
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The concept class C is the set of equivalence relations over V with at most k equivalence classes.
More precisely, every h ∈ C is identified with a disjoint cover V1, . . . , Vk of V (some Vi’s possible
empty), with h

(
(u, v)

)
= 1 if and only if u, v ∈ Vj for some j. As usual, Y may induce a non-

transitive relation (e.g., we could have Y
(
(u, v)

)
= Y

(
(v, z)

)
= 1 and Y

(
(u, z)

)
= 0). In what

follows, we will drop the double parentheses. Also, we will abuse notation by viewing h as both
an equivalence relation and as a disjoint cover {V1, . . . , Vk} of V . We take DX to be the uniform
measure on X . The error of h ∈ C is given as erD(h) = N−1

∑
(u,v)∈X 1h(u,v)6=Y (u,v) where, as

before,N = |X | = n(n−1). We will define costu,v(h) to be the contributionN−11h(u,v)6=Y (u,v) of
(u, v) ∈ X to erD. The distance dist(h, h′) is given as dist(h, h′) = N−1

∑
(u,v)∈X 1h(u,v)6=h′(u,v).

We check again what disagreement coefficient based arguments can contribute to this prob-
lem. It is easy to see that the uniform disagreement coefficient of C is Θ(n). Indeed, starting
from any solution h ∈ C with corresponding partitioning {V1, . . . , Vk}, consider the partition ob-
tained by moving an element u ∈ V from its current part Vj to some other part Vj′ for j′ 6= j.
In other words, consider the clustering h′ ∈ C given by

{
Vj′ ∪ {u}, Vj \ {u}

}
∪
⋃
i6∈{j,j′} {Vi}.

Observe that dist(h, h′) = O(1/n). On the other hand, for any v ∈ V and for any u ∈ V
there is a choice of j′ so that h and h′ obtained as above would disagree on (u, v) ∈ X . Hence,
PrDX [DIS (B (h,O(1/n)))] = 1.

It is also not hard to see that the VC dimension of C is Θ(n). Indeed, any full matching over V
constitutes a set which is shattered in C (as long as k ≥ 2, of course). On the other hand, any set
S ⊆ X of size n must induce an undirected cycle on the elements of V . Clearly the edges of a cycle
cannot be shattered by functions in C, because if h(u1, u2) = h(u2, u3) = · · · = h(u`−1, u`) = 1
for h ∈ C, then also h(u1, u`) = 1.

Using Corollary 6, we conclude that we’d need Ω(n2) preference labels to obtain an (ε, µ)-
SRRA for any meaningful pair (ε, µ). This is uninformative because the cardinality of X is O(n2).
As in the problem discussed in Section 4.1, this can be improved using Remark 4.1 to Ω(nν−1),
which tends to quadratic in n as ν becomes smaller. We next show how to construct more useful
SRRA’s for the problem, for arbitrarily small ν.

4.2.1. BETTER SRRA FOR SEMI-SUPERVISED k-CLUSTERING

Fix h ∈ C, with h = {V1, . . . , Vk} (we allow empty Vi’s). Order the Vi’s so that |V1| ≥ |V2| ≥
· · · ≥ |Vk|. We construct an ε-SRRA with respect to h as follows. For each cluster Vi ∈ h and for
each element u ∈ Vi we draw k− i+1 independent samples Sui, Su(i+1), . . . , Suk as follows. Each
sample Suj is a subset of Vj of size q (to be defined below), chosen uniformly with repetitions from
Vj , where

q = c2 max
{
ε−2k2, ε−3k

}
log n (4.4)

for some global c2 > 0. Note that the collection of pairs {(u, v) ∈ X : v ∈ Sui for some i}
is, roughly speaking, biased in such a way that pairs containing elements in smaller clusters (with
respect to h) are more likely to be selected.
We define our estimator f to be, for any h′ ∈ C,

f(h′) =
k∑
i=1

|Vi|
q

∑
u∈Vi

∑
v∈Sui

fu,v(h
′) + 2

k∑
i=1

∑
u∈Vi

k∑
j=i+1

|Vj |
q

∑
v∈Suj

fu,v(h
′) , (4.5)

where fu,v(h′) , costu,v(h
′) − costu,v(h) and costu,v(h) , N−11h(u,v)6=Y (u,v). Note that the

summations over Sui above takes into account multiplicity of elements in the multiset Sui.
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Theorem 9 With probability at least 1− n−3 the function f is an ε-SRRA with respect to h.

The proof, which is deferred to the full version (Ailon et al., 2012), is based on decomposing
regh(h′) − f(h′) and dist(h′, h) vis a vis a careful partition of X . The technical details are quite
involved and require a non intuitive charging scheme. Clearly the number of label queries required
for obtaining the ε-SRRA is O(nmax{ε−2k3, ε−3k2} log n). Combining the theorem with this
bound and the iterative algorithm described in Corollary 4 (Algorithm 1), we obtain the following:

Corollary 10 There exists an active learning algorithm for obtaining a solution π ∈ C for LRPP
with erD(π) ≤ (1 +O(ε)) ν with total query complexity ofO

(
nmax

{
ε−2k3, ε−3k2

}
log2 n

)
. The

algorithm succeeds with success probability at least 1− n−2.

As in the case of Corollary 8 and the ensuing discussion around LRPP, this significantly beats known
active learning results using disagreement coefficient and VC dimension bounds only, for small ν.

5. Additional Results and Practical Considerations

We discuss two practical extensions of our results.

5.1. LRPP over Linearly Induced Permutations in Constant Dimensional Feature Space

A special class of interest is known as LRPP over linearly induced permutations in constant dimen-
sional feature space. We use the same definition of X as in Section 4.1, except that now each point
v ∈ V is associated with a feature vector, which we denote using bold face: v ∈ Rd. The concept
space C now consists only of permutations π such that there exists a vector wπ ∈ Rd satisfying

π(u, v) = 1 ⇐⇒ 〈w,u− v〉 > 0 . (5.1)

We are assuming familiarity with the theory of geometric arrangements, and refer the reader to
de Berg et al. (2008) for further details. Geometrically, each (u, v) ∈ X is viewed as a halfspace
Hu,v , {x : 〈x,u− v〉 > 0}, whose (closure) supporting hyperplane is hu,v , {x : 〈x,u− v〉 = 0}.
Let H be the collection of these

(
n
2

)
hyperplanes {hu,v : (u, v) ∈ X}.10 The collection C corre-

sponds to the maximal dimensional cells in the underlying arrangement A(H). We thus call A(H)
from now on the permutation arrangement, and we naturally identify full dimensional cells with
their induced permutations. We denote by Cπ ⊆ Rd the unique cell corresponding to a permutation
π ∈ C.

Bounding the VC dimension and disagreement coefficient. Using standard tools from combi-
natorial geometry, the VC dimension of C is at most d− 1. Roughly speaking, this property follows
from the fact that in an arrangement of m hyperplanes in d-space, each of which meeting the origin,
the overall number of cells is at most O(md−1), see de Berg et al. (2008).

As for the uniform disagreement coefficient, we show below that it is bounded by O(n). Let
π ∈ C be a permutation with a corresponding cell Cπ in A(H). The ball B(π, r) is, geometri-
cally, the closure of the union of all cells corresponding to “realizable” permutations σ satisfying
dist(σ, π) ≤ r. The corresponding disagreement region DIS(B(π, r)) corresponds to the set of
ordered pairs (halfspaces) intersecting B(π, r). We next show:

10. Note that hu,v = hv,u.
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Proposition 11 The measure of DIS (B(π, r)) in DX is at most 8rn.

The proof is deferred to the full version (Ailon et al., 2012). By the proposition we have that
the disagreement coefficient θ is always bounded by O(n), establishing our bound. We now invoke
Corollary 6 with µ = O(1/n2) (which is tantamount to µ = 0 for this problem, because |X | =
O(n2) and we are using the uniform measure), and conclude:

Theorem 12 An ε-SRRA for LRPP in linearly induced permutations in d dimensional feature space
can be constructed, with respect to any π ∈ C, with probability at least 1 − δ, using at most
O
(
ndε−2 log2 n+ nε−2(log n)

(
log(δ−1 log n)

))
label queries.

Combining Theorem 12, and the iterative algorithm described in Corollary 4:

Corollary 13 There exists an algorithm for obtaining a solution π ∈ C for LRPP in linearly in-
duced permutations in d dimensional feature space with erD(π) ≤ (1 +O(ε)) ν with total query
complexity of

O
(
ε−2nd log3 n+ nε−2(log2 n)

(
log(δ−1 log n)

) )
(5.2)

The algorithm succeeds with success probability at least 1− δ.

We compare this bound to that of Corollary 8. For the sake of comparison, assume δ = n−2, so
that (5.2) takes the simpler form of O

(
ε−2nd log3 n

)
. This bound is better than that of Corollary 8

as long as the feature space dimension d is O(ε−1 log n). For larger dimensions, Corollary 8 gives a
better bound. It would be interesting to obtain a smoother interpolation between the geometric struc-
ture coming from the feature space and the combinatorial structure coming from permutations. We
refer the reader to (Jamieson and Nowak, 2011) for a recent result with improved query complexity
under certain Bayesian noise assumptions.

5.2. Convex Relaxations

So far we focused on theoretical ERM aspects only. Doing so, we made no assumptions about
the computability of the step hi = argminh′∈C fhi−1

(h′) in Corollary 4 (Step 3 in Algoroithm 1).
Although ERM results are interesting in their own right, we take an additional step and consider
convex relaxations.

Instead of optimizing erD(h) over the set C, assume we are interested in optimizing ˜erD(h̃)
over h̃ ∈ C̃, where C̃ is a convex set of functions from X to R. Also assume there is a mapping
φ : C̃ 7→ C which is used as a “rounding” procedure. For example, in the setting of Section 5.1
the set C̃ consists of all vectors w ∈ Rd, and the rounding method φ : C̃ 7→ C converts w to
a permutation π satisfying (5.1). When optimizing in C̃, one conveniently works with a convex
relaxation ẽrD : C̃ → R+ as surrogate for the discrete loss erD, defined as follows

ẽrD(h̃) = E(X,Y )∼D

[
L̃
(
h̃(X), Y

)]
. (5.3)

where L̃ : R× {0, 1} 7→ R+ is some function convex in the first argument, and satisfying

1(φ(h̃))(X)6=Y ≤ cL̃
(
h̃(X), Y

)
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for all h̃ ∈ C and X ∈ X , where c > 0 is some constant. In words, this means that L̃ upper
bounds the discrete loss (up to a factor of c). A typical choice for the example in Section 5.1
would be to define for all w ∈ C̃ and X = (u, v) ∈ X : w(X) = 〈w,u − v〉, and L̃(a, b) =
max{1−a(2b−1), 0}. Using this choice, (5.3) becomes the famous SVMRank with the hinge loss
relaxation.

We now have a natural extension of relative regret: r̃egh̃(h̃′) = ẽrD(h̃′) − ẽrD(h̃). By our
assumptions on convexity, r̃egh̃ : C̃ 7→ R+ can be efficiently optimized. We now say that f : C̃ 7→
R+ is an (ε, µ)-SRRA with respect to h̃ ∈ C̃ if for all h̃′ ∈ C̃,∣∣∣regh̃′(h̃

′)− f(h̃′)
∣∣∣ ≤ ε(dist

(
φ(h̃), φ(h̃′)

)
+ µ

)
.

If µ = 0 then we simply say that f is an ε-SRRA. The following is an analogue to Corollary 4:

Theorem 14 Let h̃0, h̃1, h̃2, . . . be a sequence of hypotheses in C̃ such that for all i ≥ 1, h̃i =
argminh̃′∈C̃ fi−1(h̃

′), where fi−1 is an (ε, µ)-SRRA with respect to h̃i−1. Then for all i ≥ 1,

ẽrD(hi) = (1 +O(ε)) ν̃ +O(εi)ẽrD(h0) +O(εµ) ,

where ν̃ = inf h̃∈C̃ ẽrD(h̃) and the O-notations may hide constants that depend on c.

The proof is very similar to that of Corollary 4, and we omit the details. It can be shown that the
sampling techniques used for constructing an ε-SRRA from Section 4.1.1 can be used for construct-
ing an ε-SRRA for the SVMRank relaxed version as well, as long as C is restricted to bounded
vectors w and all the feature vectors v corresponding to v ∈ V are bounded as well. The conclu-
sion is that we can solve SVMRank, in polynomial time, to within an error of (1 + ε)ν̃ using only
O
(
n poly(log n, ε−1)

)
preference queries. We leave the details of this simple extension to the full

version.

6. Conclusions and Future Work

In this work we showed that being able to estimate the relative regret function using carefully bi-
ased sampling methods can yield query efficient active learning algorithms. We showed that such
estimations can be obtained when the only assumptions we make are bounds on the disagreement
coefficient and the VC dimension. This leads to active learning algorithms that almost match the
best known using the same assumptions. On the other hand, we presented two problems of vast
interest (mostly outside but increasingly inside the active learning community), for which a direct
analysis of the relative regret function produced better active learning strategies. The two problems
we studied are concerned with learning relations over a ground set, where one problem dealt order
relations and the other with equivalence relations (with bounded number of equivalence classes).
In both problems our query complexity bounds had an undesirable factors of ε−3 which we believe
should be reduced to ε−2 using more advanced measure concentration tools. We leave this to future
work. It would also be interesting to identify other problems for which our approach yields active
learning algorithms with faster than previously known convergence rates. Immediate candidates are
hierarchical clustering and metric learning. Finally, for LRPP, we discussed a practical scenario
in which the ground set is endowed with feature vectors. We showed how to take the underlying
geometry into account in our framework. We did not do so for clustering with side information. The
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work of Eriksson et al. (2011) indicates that incorporating geometric information into our analysis
is a fruitful direction to pursue.

Our work made no assumptions on the noise, except maybe for its magnitude. Another promis-
ing future research direction would be to incorporate various standard noise assumptions known to
improve active learning rates (especially the model of Mammen and Tsybakov, 1999; Tsybakov,
2004) within our setting.
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Appendix A. Proof of Theorem 3

Let h∗ , argminh′∈C regh(h′). Applying the definition of ε-SRRA we have:

erD(h1)≤erD(h) + f(h1) + εdist(h, h1) + εµ

≤erD(h) + f(h∗) + εdist(h, h1) + εµ

≤erD(h) + ν − erD(h) + εdist(h, h∗) + εdist(h, h1) + 2εµ

≤ν + ε
(

2dist(h, h∗) + dist(h1, h
∗)
)

+ 2εµ. (A.1)

The first inequality is from the definition of (ε, µ)-SRRA, the second is from the fact that h1 mini-
mizes f(·) by construction, the third is again from definition of (ε, µ)-SRRA and from the definition
of the relative regret function regh, the fourth is by the triangle inequality. Now, clearly for any two
hypotheses g, g′ ∈ C we have that dist(g, g′) ≤ erD(g) + erD(g′) by the triangle inequality. The
proof is completed by plugging dist(h, h∗) ≤ erD(h) + ν, and dist(h1, h

∗) ≤ erD(h1) + ν into
Equation A.1, subtracting ε · erD(h1) from both sides, and dividing by (1− ε).
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Appendix B. Proof of Corollary 4

Applying Theorem 3 with hi and hi−1, we have erD(hi) = (1 +O(ε)) ν + O (ε · erD(hi−1)) +
O(εµ) . Solving this recursion, one gets erD(hi) =

∑i
j=1 ε

j−1 (1 +O(ε)) ν + O(εi) · erD(h0) +

O
(∑i

j=1 ε
j
)
µ . The result follows easily by bounding geometric sums.

Appendix C. Proof of Theorem 5

Proof Let h ∈ X 7→ R+ be some function, and let µh = EX∼DX [h(X)]. Let X1, . . . , Xm denote
i.i.d. draws from DX , and let µ̂h , 1

m ·
∑m

i=1 h(Xi) denote the empirical average. Let κ > 0 be
an adjustable parameter. We are going to use the following measure of distance between µh and its
estimator µ̂h, to determine how far the latter is from the true expectations:

dκ(µh, µ̂h) =
|µh − µ̂h|
µh + µ̂h + κ

.

This measure corresponds to a relative error when approximating µ by µ̂h (called relative
ε-approximations in Haussler, 1992). Indeed, let ε > 0 be our approximation ratio, and put
dκ(µh, µ̂h) < ε. This easily yields

|µh − µ̂h| <
2ε

1− ε
· µh +

ε

1− ε
· κ. (C.1)

In other words, this implies that |µh − µ̂h| < O(ε)(µh + κ).
Let us fix a parameter 0 < δ < 1. Assume C is a set of {0, 1} valued functions on X of VC

dimension d. Li et al. (2000) have shown that if one samples m , c(ε−2κ−1(d log κ−1 + log δ−1))
examples as above, then (C.1) holds uniformly for all h ∈ C with probability at least 1− δ.

For any h′, define

R++
h′ = {X ∈ X : h′(X) = Y (X) = 1 and h(X) = 0}

R+−
h′ = {X ∈ X : h′(X) = 1 and h(X) = Y (X) = 0}

R−+h′ = {X ∈ X : h′(X) = 0 and h(X) = Y (X) = 1}
R−−h′ = {X ∈ X : h′(X) = Y (X) = 0 and h(X) = 1} .

Observe that the set {X ∈ X : h(X) 6= h′(X)} equals to the disjoint union of R++
h′ , R+−

h′ ,
R−+h′ and R−−h′ . For each i = 0, . . . , L and b ∈ {++,+−,−+,−−} let Rbh′,i = Rbh′ ∩ Xi. Let
Rbi = {Rbh′,i : h′ ∈ C}. It is easy to verify that the VC dimension of the range spaces

(
Xi,Rbi

)
is at

most d. Each set in Rb
i is an intersection of a set in C∗ with some fixed set.

For any R ⊆ Xi let ρi(R) = PrX∼DX |Xi
[X ∈ R], and ρ̂i(R) = m−1

∑m
j=1 1Xi,j∈R. Note that

ρ̂i(R) is an unbiased estimator of ρi(R).
By the choice of m, inequality (C.1), and the properties discussed earlier Section 3.1 we have

that with probability at least 1− δ/L, for all R ∈ R++
i ∪R+−

i ∪R−+i ∪R−−i ,

|ρi(R)− ρ̂i(R)| = O(ε) ·
(
ρi(R) + θ−1

)
, (C.2)
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and by the probability union bound we obtain that this uniformly holds for all i = 0, . . . L, with
probability at least 1− δ.

Now fix h′ ∈ C and let r = dist(h, h′). Let r(i) = dlog(r/µ)e. By the definition of Xi,
h(X) = h′(X) for all X ∈ Xi whenever i > r(i). We can therefore decompose regh(h′) as:

regh(h′) = erD(h′)− erD(h)

=
L∑
i=0

ηi ·
(

Pr
X∼DX |Xi

[Y (X) 6= h′(X)]− Pr
X∼DX |Xi

[Y (X) 6= h(X)]

)

=

i(r)∑
i=0

ηi ·
(

Pr
X∼DX |Xi

[Y (X) 6= h′(X)]− Pr
X∼DX |Xi

[Y (X) 6= h(X)]

)

=

i(r)∑
i=0

ηi ·
(
− ρi(R++

h′ ) + ρi(R
+−
h′ ) + ρi(R

−+
h′ )− ρi(R−−h′ )

)
.

On the other hand, we similarly have that

f(h′) =

i(r)∑
i=0

ηi ·
(
− ρ̂i(R++

h′ ) + ρ̂i(R
+−
h′ ) + ρ̂i(R

−+
h′ )− ρ̂i(R−−h′ )

)
.

Combining, we conclude using (C.2) that

∣∣regh(h′)− f(h′)
∣∣ ≤ O

ε i(r)∑
i=0

ηi ·
(
ρi(R

++
h′ ) + ρi(R

+−
h′ ) + ρi(R

−+
h′ ) + ρi(R

−−
h′ ) + 4θ−1

)(C.3)

But now notice that
∑i(r)

i=0 ηi ·
(
ρi(R

++
h′ ) + ρi(R

+−
h′ ) + ρi(R

−+
h′ ) + ρi(R

−−
h′ )

)
equals r, since it

corresponds to those elements X ∈ X on which h, h′ disagree. Also note that
∑r(i)

i=0 ηi is at most
2 max {PrDX [DIS (B(h, r))] ,PrDX [DIS (B(h, µ))]}. By the definition of θ, this implies that the
RHS of (C.3) is bounded by ε(r + µ), as required by the definition of (ε, µ)-SRRA.11

Appendix D. Notes

“Learning to Rank” takes various forms in theory and practice of learning, as well as in combina-
torial optimization. In all versions, the goal is to order a set V based on constraints.

A large body of learning literature considers the following scenario: For each v ∈ V there is a
label on some discrete ordinal scale (say, {1, 2, 3, 4, 5}, as in hotel/restaurant star quality), and the
goal is to learn how to order V so as to respect induced pairwise preferences. That is to say, if u
had a label of 5 (“very good”) and v had a label of 1 (“very bad”), then any ordering that places
v ahead of u is penalized. Note that even if the labels are noisy, the induced pairwise preferences

11. The O-notation disappeared because we assume that the constants are properly chosen in the definition of the sample
size m.
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here are always transitive, hence no combinatorial problem arises. Our work does not deal with this
problem.

When the basic unit of information consists of pairwise preferences over pairs u, v ∈ V , then the
problem becomes combinatorially interesting. In case all quadratically many pairwise preferences
are given for free, the corresponding optimization problem is known as Minimum Feedback Arc-Set
in Tournaments (MFAST). (A maximization version exists as well.) MFAST is NP-hard (Alon,
2006). Recently Kenyon-Mathieu and Schudy (2007) show a (non query efficient) PTAS for this
problem. Several important recent works address the challenge of approximating the minimum
feedback arc-set problem (Ailon et al., 2008; Braverman and Mossel, 2008; Coppersmith et al.,
2010).

Here we consider a query efficient variant of the problem, in which each preference comes
at a cost, and the goal is to produce a competitive solution while reducing the preference-query
overhead. Other very recent work consider similar settings (Jamieson and Nowak, 2011; Ailon,
2012). Our main result Corollary 8 is a slight improvement over the main result in (Ailon, 2012) in
query complexity, but it provides another significant improvement. The querying strategy of Ailon
(2012) is based on a divide and conquer strategy. The weakness of such a strategy can be explained
by considering an example in which we want to search a restricted set of permutations (e.g., the
setting of Section 5.1). When dividing and conquering, the algorithm in (Ailon, 2012) is doomed
to search a cartesian product of two permutations spaces (left and right). There is no guarantee that
there even exists a permutation in the restricted space that respects this division. In our querying
algorithm this limitation is lifted.

Clustering with side information is a fairly new variant of clustering first described, indepen-
dently, by Demiriz et al. (1999), and Ben-Dor et al. (1999). In the machine learning community
it is also widely known as semi-supervised clustering. There are a few alternatives for the form
of feedback providing the side-information. The most natural ones are the single item labels (e.g.,
Demiriz et al., 1999), and the pairwise constraints (e.g., Ben-Dor et al., 1999).

Here we consider pairwise side information: “must”/“cannot” link for pairs of elements u, v ∈
V . Each such information bit comes at a cost, and must be treated frugally. In a combinatorial
optimization theoretical setting known as correlation clustering there is no input cost overhead, and
similarity information for all (quadratically many) pairs is available. The goal there is to optimally
clean the noise (nontransitivity). Correlation clustering was defined in (Bansal et al., 2004), and
also in (Shamir et al., 2004) under the name cluster editing. Constant factor approximations are
known for various minimization versions of this problems (Charikar and Wirth, 2004; Ailon et al.,
2008). A PTAS is known for a minimization version in which the number of clusters is fixed to be
k (Giotis and Guruswami, 2006), as in our setting.

In machine learning, there are two main approaches for utilizing pairwise side information. In
the first approach, this information is used to fine tune or learn a distance function, which is then
passed on to any standard clustering algorithm such as k-means or k-medians (see, e.g., Klein et al.,
2002; Xing et al., 2002; Cohn et al., 2000; Shamir and Tishby, 2011; Voevodski et al., 2012). The
second approach, which is more related to our work, modifies the clustering algorithms’s objective
so as to incorporate the pairwise constraints (see, e.g., Basu, 2005; Eriksson et al., 2011). Basu
(2005) in his thesis, which also serves as a comprehensive survey, has championed this approach
in conjunction with k-means, and hidden Markov random field clustering algorithms. In our work
we isolate the use of information coming from pairwise clustering constraints, and separate it from
the geometry of the problem. In future work it would be interesting to analyze our framework in

19.19



AILON BEGLEITER EZRA

conjunction with the geometric structure of the input. Interestingly Eriksson et al. (2011) study
active learning for clustering using the geometric input structure. Unlike our setting, they assume
either no noise or Bayesian noise.
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