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Abstract
In manifold learning, algorithms based on graph Laplacian constructed from data have received
considerable attention both in practical applications and theoretical analysis. Much of the exist-
ing work has been done under the assumption that the data is sampled from a manifold without
boundaries and singularities or that the functions of interest are evaluated away from such points.

At the same time, it can be argued that singularities and boundaries are an important aspect
of the geometry of realistic data. Boundaries occur whenever the process generating data has
a bounding constraint; while singularities appear when two different manifolds intersect or if a
process undergoes a “phase transition”, changing non-smoothly as a function of a parameter.

In this paper we consider the behavior of graph Laplacians at points at or near boundaries and
two main types of other singularities: intersections, where different manifolds come together and
sharp “edges”, where a manifold sharply changes direction. We show that the behavior of graph
Laplacian near these singularities is quite different from that in the interior of the manifolds. In
fact, a phenomenon somewhat reminiscent of the Gibbs effect in the analysis of Fourier series, can
be observed in the behavior of graph Laplacian near such points. Unlike in the interior of the do-
main, where graph Laplacian converges to the Laplace-Beltrami operator, near singularities graph
Laplacian tends to a first-order differential operator, which exhibits different scaling behavior as a
function of the kernel width. One important implication is that while points near the singularities
occupy only a small part of the total volume, the difference in scaling results in a disproportion-
ately large contribution to the total behavior. Another significant finding is that while the scaling
behavior of the operator is the same near different types of singularities, they are very distinct at a
more refined level of analysis.

We believe that a comprehensive understanding of these structures in addition to the standard
case of a smooth manifold can take us a long way toward better methods for analysis of complex
non-linear data and can lead to significant progress in algorithm design.
Keywords: Graph Laplacian, singularities, limit analysis

1. Introduction

Dealing with high-dimensional non-linear data is one of the key challenges in modern data analy-
sis. In recent years a class of methods based on the mathematical notion of a manifold has become
popular in machine learning, starting with the papers Roweis and Saul. (2000); Tenenbaum et al.
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(2000). The underlying intuition is that a process with a small number of parameters will gener-
ate a low-dimensional surface in the potentially very high-dimensional space of features and that
this situation is ubiquitous in real-world data. This idea is captured nicely by the technical notion
of a smooth embedded Riemannian manifold, which provides the first realistic model for general
non-linear data. Still it does not reflect certain important aspects of real data, which can be mathe-
matically understood as singularities and boundaries.

The most basic and, arguably, the most important singularity in real data
is an intersection, where two different manifolds come together in a region
of space. This often happens in classification where two classes with pre-
sumably different structure can give rise to similar objects (consider, e.g., the
similarity of MNIST digits “7” and “1” on the right). Another important type
of singularity is a (co-dimension one) “edge”, which is ubiquitous in com-
puter graphics (think of an edge of the surface of a table) and happens whenever the behavior of an
underlying process changes rapidly beyond a certain point (a “phase transition”). Finally, bound-
aries occur when there are bounding constraints on the underlying process (think how poses of the
human body are constrained by the range of motion of the joints) or on the representation in the
ambient space (e.g., pixels cannot have negative intensity).

In this paper we provide an analysis of these three cases for Laplacian-based learning algo-
rithms. It turns out that all of these singularities result in a behavior near the singularity markedly
different from that inside the manifold, a phenomenon somewhat reminiscent of the Gibbs effect in
Fourier analysis. In particular, the scaling of the operator is different near singularities. As a result
of this scaling behavior, singularities cannot be ignored, even globally, despite the fact that rela-
tively few points are located near them, since each of these points contributes disproportionately to
the total operator. We also find that at a finer level of analysis these singularities have quite different
effects, which are discussed below.

We believe that a comprehensive understanding of these structures in addition to the standard
case of a smooth manifold can take us a long way toward better methods for analysis of complex
non-linear data and can lead to significant progress in algorithm design.

Related work. Methods based on graph Laplacians constructed from data have gained acceptance
for a range of inference tasks including clustering von Luxburg (2007), semi-supervised learning
(e.g. Chapelle et al. (2006); Zhu (2006)) and dimensionality reduction Belkin and Niyogi (2003),
as well as others. An analysis in Belkin and Niyogi (2003) provided a mathematical framework
for many of these methods by connecting graph Laplacian constructed from data to the Laplace-
Beltrami operator of the underlying manifold based on the relation of the Laplacian and the heat
equation. That analysis was extended and generalized in Lafon (2004); Hein (2005); Coifman and
Lafon (2006); Belkin and Niyogi (2008b); Singer (2006); Giné and Koltchinskii (2006); Hein et al.
(2007); Belkin and Niyogi (2008a) providing a detailed understanding of graph Laplacians obtained
from manifold data. While boundary effects have been studied in non-parametric kernel smoothing
(see, e.g., (Härdle, 1992, Chapter 4.4)), they have not been considered in the Laplacian-related
literature, although we note that boundary behavior for the infinite data case can be derived from the
Taylor series expansion in Lemma 9 of Coifman and Lafon (2006). To the best of our knowledge,
other singularities are not considered in that literature. (In fact, the reason causing the different
scaling behavior for intersection and edge types of singularities is somewhat different from that for
the boundary case.)
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In related developments, a considerable amount of recent work has been aimed at understanding
the case of intersecting linear spaces using various techniques from algebraic geometry to spectral
clustering (e.g., Vidal et al. (2005); Chen and Lerman (2009); Lerman and Zhang (2010)) both in
terms of algorithms and theoretical guarantees. In our setting, this is a special case of a singular
manifold with intersection singularities. Another related work is Goldberg et al. (2009), where the
authors analyze a model based on a mixture of manifolds in the context of semi-supervised learning.

We also note that there has been much recent interest in reconstructing topological invariants of
manifolds and other spaces (see, e.g, Chazal et al. (2009); Chazal and Oudot (2008); Niyogi et al.
(2008, 2011)). The line of work most related to our results is on learning stratified spaces, where
multiple submanifolds (strata) are “glued” nicely together Aanjaneya et al. (2011); Bendich et al.
(2012); Haro et al. (2008), which provides an even more general model for a singular space.

Summary of results. Consider the (appropriately scaled, see Section 2) graph Laplacian Ln,t con-
structed from n data points, using the Gaussian kernel with bandwidth t. It can be shown (see the
references above) that as t tends to zero and n tends to infinity at an appropriate rate, Ln,t converges
to the Laplace-Beltrami operator ∆ (a second order differential operator) inside the manifold. In
this paper, we show that for singular manifolds Ln,t exhibits a very different behavior near the sin-
gularity set. Specifically, for a sufficiently smooth function f and a small t, within distance

√
t of

the singularity set, Ln,tf is approximated by 1√
t
D, where D is some first order derivative operator

that will be described explicitly. The difference in scaling becomes crucial when t is small as the
1√
t
D term becomes dominant. To simplify the discussion, we will first assume that the data is infi-

nite, and thus Ln,tf can be replaced by Ltf . Finite sample bounds and rates will be discussed later.
The types of singularities considered in the paper are as follows:

Boundary. At a point x near manifold boundary, Lt can be approximated
by 1√

t
φ( R√

t
)∂n, where R is the distance from x to the boundary and n is

the unit vector toward the nearest boundary point (outward normal at the
boundary). ∂n denotes the directional derivative, while φ(z) is a scalar
function of the form φ(z) = Ce−z

2
.

Intersection and edge. The situation is more complicated for other types
of singularities, where two different manifolds Ω1 and Ω2 intersect or
come together. Given a point x1 ∈ Ω1 consider its projection x2 onto Ω2 and its nearest neighbor
x0 in the singularity. Similarly to the boundary case, let n1 and n2, be the directions to x0 from x1

and x2 respectively and letR1 andR2 be the corresponding distances. Ltf(x1) can be approximated
by 1√

t
φ1(R1√

t
)∂n1f(x0) + 1√

t
φ2(R2√

t
)∂n2f(x0). Importantly, the form of the scalar functions φ1, φ2

is different for different types of singularities: for intersection-type singularity, we have: φi(z) =
Aize

−Cz2
, while for edge-type we have1: φi(z) = Aize

−Cz2
+Bie

−Cz2
. Here the coefficients Ai,

Bi and C depend on the angle between the manifolds and can be written explicitly.

Significant points and observations:
1. Scaling. Within O(

√
t) distance of the singularity, Lt is dominated by a differential operator

different from the Laplace-Beltrami operator. Away from the singularity, the higher-valued (1/
√
t)

term fades and Lt becomes an approximation to the Laplace-Beltrami operator ∆.
2. Contributions of singular points. Let the dimension of the manifold be d. The volume of
points within

√
t of the singularity is approximately

√
t vold−1(S), where vold−1(S) is the d −

1. For compactness, we are simplifying φ’s for edge singularities by removing some higher order terms (see Section 3.3).
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1 dimensional volume of the singular points2. Fix a function f . As t → 0, the integral Ltf
over the points within

√
t of the singularity does not disappear and, in fact, will converge to a

constant, depending on the function and the d−1 dimensional volume of the singularity vold−1(S).
Moreover, because of the scaling, the contribution of those near-singular points to the L2 norm will
tend to infinity. We remark that, while different from a technical point of view, this phenomenon is
reminiscent to the Gibbs effect in Fourier series, where the effects of discontinuity do not vanish as
approximation becomes more precise.

(a) boundary (b) intersection (c) edge

3. Shape near the boundary. While the 1√
t

scaling is common for all singularities, the
type of singularity is reflected in the shape
of the function φ, which is very different for
different types of singularities. Somewhat
over-simplifying matters, one can think of
φ = e−z

2
for the boundary case, φ = ze−z

2
for the intersection singularity and φ = e−z

2
+ ze−z

2

for the edge (see figures above). These differences lead to quite distinctive patterns, when the
operator is applied to a fixed function. For example, the directional derivative terms disappear at
the intersection-type singular points. In fact for these points Lt converges to the usual Laplace-
Beltrami operator. However, at points within

√
t distance of these points we expect to see Ltf take

both positive and negative values of magnitude
√
t. We think that this difference may be a key to

future algorithms.
4. Rates and finite sample bounds. Convergence rates for t as well as finite sample bounds are
provided in Section 4. Interestingly, and perhaps counter-intuitively, the scaling implies that fewer
data points are required to ensure that Lt,n is an accurate (relative) estimate of Lt near the boundary
than inside the domain.
5. Impact on eigenfunctions. Eigenfunctions of the graph Laplacian associated to data are used
in a large number of applications. While the question of convergence is very subtle (see Belkin
and Niyogi (2008a) for the proof in the case of a smooth manifold), our results for fixed functions
provide an indication of the expected answer assuming the convergence holds. We provide a brief
discussion of it in Section 5. It turns out that the boundary case automatically leads to Neumann
boundary conditions (even though the operator does not ”see” the boundary explicitly). Quite sur-
prisingly, the edge singularity appears to have no effect on the limit behavior of eigenfunctions, at
least if the singular manifold is isometric to a smooth one (think of bending a sheet of paper). The
case of the intersection is more complex, but intersections of co-dimension two or more seem to
have no effect on the limit behavior of eigenfunctions (in L2 norm).
6. Normalized Laplacians. Multiple manifolds. While we do not provide a detailed discussion
due to space constraints, our analysis can be fairly straightforwardly generalized to other versions
of graph Laplacians, including the random walk normalized, symmetric normalized, and twice nor-
malized graph Laplacian discussed in Coifman and Lafon (2006); Hein et al. (2007). Interestingly,
the popular symmetric normalized Laplacian does not lead to Neumann boundary conditions as a
density term appears inside the directional derivative, i.e.,

√
p(x)∂n[f(x)/

√
p(x)]. The resulting

expression involves derivatives of the density and does not appear to be a natural boundary condi-
tion.

2. The set of singular points S is always d−1 dimensional (co-dimension one), for the boundary and “edge” singularities
(although not necessarily for the intersection).
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The analysis can also be extended to the case of multiple manifolds. We restrict our discussion
to the case of two manifolds to simplify the exposition.

Finally, some experimental results can be found in Appendix C.

2. Problem Setup

Let Ω be the set of k smooth compact Riemannian submanifolds of intrinsic dimension3 d embedded
in RN . For each smooth component Ωi, let Ωi denote its interior and ∂Ωi the boundary of Ωi. We
assume the boundaries ∂Ωi satisfy the necessary smoothness conditions4. Let Ω be the union of Ωi,
and ∂Ω be the union of ∂Ωi. Ωi and Ωj may not be disjoint, and we will consider the following two
ways that they can associate with each other: they intersect in their interior (i.e, Ωi ∩ Ωj 6= ∅) or
they are “glued” along (part of) their boundaries. More precisely, given a point x ∈ Ω, we say that
x is regular if it falls in the interior of exactly one submanifold Ωi; that is, x ∈ Ωi, x /∈ Ωj , j 6= i.
Otherwise, x is a singular point. There are several possible singularities, and this paper considers
the following three general classes:
1. boundary-type: Boundary points that belong to exactly one smooth submanifold Ωi: that is,
x ∈ ∂Ωi, x /∈ Ωj , j 6= i;
2. intersection-type: Points at the intersection of two smooth submanifolds. For simplicity of
exposition, we assume that the intersection happens between the interior of the submanifolds; that
is, x ∈ Ωi ∩ Ωj , i 6= j;
3. edge-type: Boundary points that belong to the boundaries of two smooth submanifolds. That is,
x ∈ ∂Ωi ∩ ∂Ωj , i 6= j.

For technical reasons, we will assume that the set of singular points is also a smooth manifold
of lower dimension, at least locally. Moreover, for edge and intersection singularities the tangent
space at each point of the singular manifold is the intersection of the tangent spaces to each “piece”.
We will call a union of smooth manifolds Ω with the above types of singularities a singular man-
ifold. Notice that for a regular point x, the manifold is smooth at x, and the tangent space at x is
homeomorphic to Rd.

For a singular manifold Ω, we consider the following piecewise-smooth function f : Ω 7→ R. In
particular, set fi := f |Ωi , i = 1, . . . , k, be f restricted to the submanifold Ωi. We require that each
fi is C2-continuous on interior points. let p(x) be a piecewise smooth probability density function
on Ω and we assume that 0 < a ≤ pi(x) ≤ b <∞.

Graph Laplacian. Given n random samples X = {X1, · · · , Xn} drawn i.i.d. from a distribution
with density p(x) on Ω, we can build a weighted graph G(V,E) by mapping each sample point Xi

to vertex vi and assigning a weight wij to edge eij . One typical weight function is the Gaussian,
which is used in this paper and defined as follows:

wn,t(Xi, Xj) =
1

nt
Kt(Xi, Xj) =

1

n

1

td/2+1
e−
‖Xi−Xj‖

2
RN

t .

Notice that in this Gaussian weight function, the Euclidean distance is used. The normalization by
1

ntd/2+1 is for the convenience of limit analysis.
Let Wn,t be the edge weight matrix of graph G with Wn,t(i, j) = wn,t(Xi, Xj), and Dn,t be a

diagonal matrix such that Dn,t(i, i) =
∑

j wn,t(Xi, Xj), then the unnormalized graph Laplacian is

3. For convenience we assume that the submanifolds have the same dimension. However, the same analysis can be
applied to a mixture of manifolds with different dimensionality after normalizing the probability density.

4. We require that the derivatives of the first two orders of the transition map exist, i.e.,M is a C2-manifold
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defined as the n × n matrix Ln,t = Dn,t −Wn,t. Now for a fixed smooth function f(x), and any
point x ∈ Ω, the graph Laplacian applied to this function f is thus

Ln,tf(x) =
1

nt

n∑
j=1

Kt(x,Xj)[f(x)− f(Xj)].

Limit behavior of graph Laplacian. The limit study of graph Laplacians primarily involves the
limits of two parameters, sample size n and weight function bandwidth t. As n increases, one typ-
ically decreases t to let the graph Laplacian capture progressively a finer local structure. With a
proper rate as a function of n and t, the limit of Ln,t and its various aspects at regular points, in-
cluding the finite sample analysis, are studied in Belkin (2003); Lafon (2004); Hein (2005); Singer
(2006); Giné and Koltchinskii (2006); Hein et al. (2007); Belkin and Niyogi (2008b,a). The basic
result is that the limit of Ln,tf(x) at a regular point x is Ln,tf(x)

p→ −1
2π

d/2p(x)∆p2f(x) =

−1
2π

d/2p(x){ 1
p2 div[p2grad f(x)]}, where ∆p2 is called the weighted Laplacian, see Grigor’yan

(2006). See Hein et al. (2007) for the limit analysis of other versions of graph Laplacians at regular
points.

3. Limit Analysis of Graph Laplacian on Singular Manifolds

The limit analysis of graph Laplacians typically involves limits of two parameters, the sample size
n and the (Gaussian) kernel bandwidth t. This is usually done in two steps, first analyzing the
limit t → 0 for infinite data and then obtaining finite sample results and rates as n → ∞ using
concentration inequalities.

In this section we analyze the behavior of the infinite graph Laplacian (i.e., Ln,t, n = ∞),
Ltf(x), when x is on or near a singular point, t is small and the function f : Ω→ R, is fixed. Finite
sample results and rates are given in Section 4.

For a fixed t we define Lt as the limit of Ln,t as the amount of data tends to infinity:

Ltf(x) = L∞,tf(x) = Ep(X)[Ln,tf(x)]f(x) =
1

t

∫
Ω
Kt(x, y)(f(x)− f(y))p(y)dy. (1)

Local coordinate system: The above integral is defined on the manifold Ω. In order to study the
behavior of this integral for a small t, we need to introduce a local coordinate systems at x. The most
convenient coordinate system for our purposes5 is obtained by a local projection from the manifold
to its tangent space πx : Ω → Tx. This projection is one-to-one and smooth for points sufficiently
close to x. Hence its inverse, π−1

x exists as well. Note that on an intersection or edge singularity the
projection is onto the union of tangent spaces. However, it is still one-to-one as long as we restrict
the projection of points from each piece to their respective tangent space.

In what follows, we often use change of variables to convert an integral over a manifold to an
integral over the tangent space at a specific point. The following bounds are used throughout the
paper. For two points x, y ∈ Ωi, let y′ = πx(y) be the projection of y in the tangent space Tx of
Ωi at x. Let Jπx|y (resp. Jπ−1|y′) denote the Jacobian of the map πx at point y ∈ Ωi (resp. of the
inverse map π−1

x at y′ ∈ Tx). For y sufficiently close to x, we have (e.g., Niyogi et al. (2008))
‖x− y‖ = ‖x− y′‖+O(‖x− y′‖3)⇒ ‖x− y‖2 = ‖x− y′‖2 +O(‖x− y′‖4), (2)

|Jπx|y − 1| = O(‖x− y‖2) and |Jπ−1|y′ − 1| = O(‖x− y′‖2). (3)

5. We note that another possibility is to use the coordinate system given by the exponential map (as in Belkin (2003);
Coifman and Lafon (2006)). This has an advantage of being independent of the embedding, but requires more subtle
analysis in the presence of singularities.
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3.1. Boundary-type: Manifold with Boundary

We first analyze the limit of Ltf(x) when x is near a smooth boundary of a single smooth manifold
Ω as the results for the boundary case are simpler to state.

Theorem 1 Let f ∈ C2(Ω), p(x) ∈ C∞(Ω) with 0 < a ≤ p(x) ≤ b < ∞, and ∂Ω be the smooth
boundary of Ω. Given a point x near the boundary, let x0 be its nearest neighbor on the boundary
∂Ω, and n the inward normal direction of Ω at x0. Put ‖x− x0‖ = r

√
t. For t sufficiently small we

have
Ltf(x) = − 1√

t

π(d−1)/2

2
e−r

2
p(x0)∂nf(x0) + o

(
1√
t

)
. (4)

Consequently, if x is on the boundary, i.e., r = 0, then x = x0 and

Ltf(x) = − 1√
t

π(d−1)/2

2
p(x)∂nf(x) + o

(
1√
t

)
.

The proof of the theorem can be found in Appendix A.1. For comparison, the corresponding
result for interior points is as follows:

Ltf(x) = −1

2
πd/2p(x)∆p2f(x) + o(1), (5)

Hence the graph Laplacian has a different behavior on or near a boundary point from interior points.
The values of Ltf(x) are of different order, O(1/

√
t) near the boundary as opposed to O(1) in the

interior. Intuitively, the scaling difference stems from integrating over a half-plane for boundary
points versus integrating over a (high-dimensional) plane for points away from boundary, which
causes the integration of the first-order derivative terms non-vanishing in the former case.

In practice, we do not know the boundary, and apply the same global normalization for all
x ∈ Ω. The result is that the large values of Ltf(x) are likely to correspond to points near the
boundary (or other singular set, see below).

We think that these observation could lead to useful techniques for data analysis and algorithms
that respect singularities. See Appendix C.2 for some experiments on MNIST dataset.

3.2. Intersection-type: Intersection of Manifolds

We now present results on the behavior of the graph Laplacian near the intersection of two d-
manifolds Ω1 and Ω2 embedded in RN withN > d. Note that we do not assume that the intersection
is of codimension one. We also remark that while the boundary behavior is caused by the integration
over a half-disk (which causes asymmetry in the integration of first-order terms) for boundary points,
this is not the case for points around intersection singularity and edge-type singularity. The behavior
around these latter two types of singularities are more involved and are more subtle to analyze.

Theorem 2 Let Ω1 and Ω2 be two d-dimensional smooth manifolds in RN potentially with bound-
aries, and their intersection Ω1 ∩ Ω2 is a smooth manifold of dimension l(≤ d − 1). Let f be
a continuous function over Ω = Ω1 ∪ Ω2 whose restriction fi := f |Ωi on Ωi, i = 1, 2, is C2-
continuous. Given a point x ∈ Ω1 near the intersection, let x0 be its nearest neighbor in Ω1 ∩ Ω2,
and x1 (resp. x2) be its projection in the tangent space of Ω1 at x0 (resp. in the tangent space of Ω2

at x0). Put ‖x− x0‖ = r
√
t. For a sufficiently small t, we have

Ltf(x) =
1√
t
πd/2re−r

2 sin2 θp(x0)(∂n1f1(x0) + cos θ∂n2f2(x0)) + o

(
1√
t

)
, (6)

where n1 and n2 are the unit vectors in the direction of x0 − x1 and x0 − x2, respectively, and θ is
the angle between n1 and n2.
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Proof. Given x ∈ Ω1 and its nearest neighbor x0 in Ω1 ∩ Ω2, recall that
x1 and x2 are the orthogonal projection of x onto the tangent space Tx0,Ω1

of Ω1 at x0, and onto the tangent space Tx0,Ω2 of Ω2 at x0, respectively. For
any y ∈ Ω2, let y′ denote its orthogonal projection onto the tangent space
Tx0,Ω2 . See the right figure for an illustration. By the definition of Lt, we
have Ltf(x) = 1

t

∫
ΩKt(x, y)(f(x) − f(y))p(y)dy. Since Ω = Ω1 ∪ Ω2,

this can then be decomposed as

Ltf(x) =
1

t

∫
Ω1

Kt(x, y)(f1(x)− f1(y))p(y)dy +
1

t

∫
Ω2

Kt(x, y)(f1(x)− f2(y))p(y)dy (7)

The first term above, which is the integral over Ω1, is exactly the graph Laplacian of f1 at an
interior point x of Ω1. Thus, it is bounded by O(1). We now focus on the second integral over Ω2.
Let B(x) denote the ball in RN center around x with radius t

1
2
−ε for a sufficiently small constant

ε > 0. In the derivation below, we will approximate the integral over the manifold Ω2 by an integral
over the region B(x)∩Ω2 ⊆ Ω2. The error term induced is O(e−t

−ε
) = o(1) for small t. Using the

fact that f1(x0) = f2(x0), we have:

1

t

∫
Ω2

Kt(x, y)(f1(x)− f2(y))p(y)dy =
1

t

∫
B(x)∩Ω2

Kt(x, y)(f1(x)− f2(y))p(y)dy + o(1)

=
1

t

∫
B(x)∩Ω2

Kt(x, y)(f1(x)− f1(x0))p(y)dy +
1

t

∫
B(x)∩Ω2

Kt(x, y)(f2(x0)− f2(y))p(y)dy + o(1)

=
1

t
(f(x)− f(x0))

∫
B(x)∩Ω2

Kt(x, y)p(y)dy +
1

t

∫
B(x)∩Ω2

Kt(x, y)(f(x0)− f(y))p(y)dy + o(1).

(8)

Since ‖x−x0‖ = r
√
t, it follows from Eqn (2) that ‖x0−x1‖ = r

√
t+O(t3/2). It can then be

shown that ‖x−x2‖ = r
√
t · sin θ+O(t) and ‖x0−x2‖ = r

√
t · | cos θ|+O(t). For simplicity, let

Õ(tβ) denote O(tβ−ε) for a sufficiently small positive constant ε. For a point y ∈ B(x)∩Ω2 and its
projection y′ in Tx0,Ω2 , we have that ‖x−y‖ = Õ(t

1
2 ) and ‖x0−y‖ ≤ ‖x0−x‖+‖x−y‖ = Õ(t

1
2 ).

This implies that ‖y− y′‖ = Õ(t) and ‖x− y′‖ = Õ(t
1
2 ) by Eqn (2). Using these distance bounds,

we have:

Kt(x, y) =
1

td/2
e−‖x−y‖

2/t =
1

td/2
e−‖x−y

′+y′−y‖2/t =
1

td/2
e−‖x−y

′‖2/t · e−‖y′−y‖2/t · e
O(‖x−y′‖·‖y′−y‖)

t

=
1

td/2
e−‖x−y

′‖2/t · (1 + Õ(t)) · (1 + Õ(t1/2)) =
1

td/2
e−‖x−y

′‖2/t · (1 + Õ(t1/2))

=
1

td/2
e−
‖x−x2‖

2

t
+
‖x2−y

′‖2
t · (1 + Õ(t1/2)) =

1

td/2
(e−r

2 sin2 θ · eO(t
1
2 ))e−

‖x2−y
′‖2

t · (1 + Õ(t1/2))

=
1

td/2
e−r

2 sin2 θe−‖x2−y′‖2/t(1 + Õ(t1/2)) = e−r
2 sin2 θKt(x2, y

′)(1 + Õ(t1/2)). (9)

Now consider the first term in Eqn (8). Let πx0 denote the projection map from Ω2 onto Tx0,Ω2

and π−1 its inverse. Denote byB := πx0(B(x)∩Tx0,Ω2) to be the projection of B(x)∩Tx0,Ω2 on the
tangent space Tx0,Ω2 . By applying Taylor expansion to f(x) at x0 and p(y) at x0, and combining
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Eqn 2 and 3, we have that:

1

t
(f(x)− f(x0))

∫
B(x)∩Ω2

Kt(x, y)p(y)dy =
1

t
(〈∇f(x0), x1 − x0〉+ Õ(t))

∫
B(x)∩Ω2

Kt(x, y)p(y)dy

=
1

t
d+1

2

(r · 〈∇f(x0),n1〉+ Õ(t
1
2 ))

∫
B

[
(e−r

2 sin2 θe−
‖x2−y

′‖2
t (1 + Õ(t

1
2 )))(p(x0) + Õ(t

1
2 ))

]
Jπ−1|y′dy′

=
1

t
d+1

2

(r∂n1f1(x0) + Õ((t
1
2 ))e−r

2 sin2 θ(1 + Õ((t
1
2 ))(p(x0) + Õ((t

1
2 ))

∫
B
e−‖x2−y′‖2/tdy′

=
1

t
d+1

2

(r∂n1f1(x0) + Õ(t
1
2 ))e−r

2 sin2 θ(1 + Õ(t
1
2 ))(p(x0) + Õ(t

1
2 ))(

∫
Tx0,Ω2

e−
‖x2−y

′‖2
t dy′ +O(1))

=
1√
t
C3p(x0)re−r

2 sin2 θ∂n1f1(x0) + o

(
1√
t

)
, (10)

where C3 =
∫
Tx0,Ω2

e−‖u‖
2
du =

∫
Rd e

−‖u‖2du = πd/2. Note that we use the fact that 1√
t
Õ(
√
t) =

O
(

1
tε

)
= o

(
1√
t

)
in the above derivation. From the first line to the second line we perform a change

of variable. From the third line to the fourth line in the above derivation, we relax
∫
B e
−‖x2−y′‖2/tdy′

to be
∫
Tx0,Ω2

e−‖x2−y′‖2/tdy′+O(e−t
−ε

) =
∫
Tx0,Ω2

e−‖x2−y′‖2/tdy′+O(1) based on the result from
Appendix B in Coifman and Lafon (2006).

For the second item in Eqn (8), we have

1

t

∫
B(x)∩Ω2

Kt(x, y)(f(x0)− f(y))p(y)dy

=
1

t

∫
B(x)∩Ω2

Kt(x, y)(f(x0)− f(x2) + f(x2)− f(y))p(y)dy

=
1

t
[f(x0)− f(x2)]

∫
B(x)∩Ω2

Kt(x, y)dy +
1

t

∫
B(x)∩Ω2

Kt(x, y)(f(x2)− f(y))dy

=
1√
t
C3p(x0)r cos θ · e−r2 sin2 θ∂n2f2(x0) + o

(
1√
t

)
(11)

Intuitively, the first term in the third line is bounded by the quantity in the last line by a similar
argument as the one carried out in Eqn (10) above. For the second term in the third line, observe
that if we replace the kernel Kt(x, y) by Kt(x2, y), then 1

t

∫
B(x)∩Ω2

Kt(x2, y)(f(x2) − f(y))dy
roughly corresponds to the standard weighted graph Laplacian of function f2 at an interior point x2

in Ω2. Furthermore, by a derivation similarly to the one in Eqn (9), replacing Kt(x, y) by Kt(x2, y)
only changes the integral by a factor of e−r

2 sin2 θ. Hence the second term can be bounded by o( 1√
t
).

See Appendix A.2 for details 6. The theorem then follows from Eqn 10 and 11.
From the theorem, we can see that for a point x on the intersection or near intersection, Ltf(x)

is of the form 1√
t
Cre−r

2
where the coefficient C is determined by the derivatives of f and the

position of x. Furthermore, for a point x on the intersection, we have r = 0. Hence it follows that
the order of Ltf(x) at an intersection point is the same as those at regular points, i.e., O(1), instead
of order O(1/

√
t) as for points near singularities.

6. Note x2 is in Tx0,Ω2 . In Eqn (11), to illustrate the intuition behind the derivation, we abuse the notation slightly and
use f(x2) to refer to f(π−1(x2)), where π−1(x2) is the point from Ω2 whose projection in Tx0,Ω2 is x2.
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3.3. Edge-type: Gluing Boundaries

We now consider the case where two manifolds are glued along (a part of) their boundaries. The
behavior of graph Laplacian for edge-type points is in some sense the combination of that for
boundary-type and for intersection-type points: locally, a point can both “see” the boundary (thus
will have terms arised from boundary effect) and the other manifold (which has effects similar to
those produced by Eqn (8)). See Appendix A.3 for the proof of the following theorem.

Theorem 3 Let Ωi (i = 1, 2) be two d-dimensional smooth manifolds in RN with interior Ωi and
nonempty boundary ∂Ωi. Assume their shared boundary ∂Ω1 ∩ ∂Ω2 is a d− 1-dimensional smooth
manifold. Let f be a continuous function over Ω = Ω1 ∪ Ω2 whose restriction fi := f |Ωi , i = 1, 2

is C2-continuous. Given a point x ∈ Ω1 near the glued boundary, let x0 be its nearest neighbor in
∂Ω1 ∩ ∂Ω2, and put ‖x− x0‖ = r

√
t. Then for a sufficiently small t, we have that

Ltf(x) = − 1√
t
p(x0)[α(r, θ)∂n1f(x0) + β(r, θ)∂n2f(x0)] + o

(
1√
t

)
, (12)

where θ is the angle between the two inward boundary normal n1 and n2 of ∂Ω1 and ∂Ω2 at x0

respectively,
α(r, θ) = 1

2π
(d−1)/2e−r

2 − rπd/2Φ(
√

2r cos θ)e−r
2 sin2 θ,

β(r, θ) = 1
2π

(d−1)/2e−r
2

+ rπd/2Φ(
√

2r cos θ) cos θe−r
2 sin2 θ,

and Φ(x) is the cumulative distribution function of the standard normal distribution.
Furthermore, if x is on the edge, i.e., r = 0, then we have

Ltf(x) = − 1

2
√
t
p(x)π(d−1)/2[∂n1f(x) + ∂n2f(x)] + o

(
1√
t

)
.

The theorem indicates that for a point x near ∂Ω1 ∩ ∂Ω2, the limit of Ltf(x) is close to the
weighted sum of two normal gradients. As x moves to the set ∂Ω1 ∩ ∂Ω2, the weights for the two
normal gradients will be equal. Finally, for a point x on the boundary ∂Ω1 ∩ ∂Ω2, the behavior
Ltf(x) is equivalent to the addition of the two boundary effects from Ω1 and Ω2 together.

Intersection-type singularity again. Notice that for the case of two manifolds Ω1 and Ω2 inter-
sect at Ω1 ∩Ω2 of co-dimension 1, we can actually regard this scenario as four pieces of manifolds,
Ω+

1 ,Ω
−
1 ,Ω

+
2 and Ω−2 , glued together by Ω1∩Ω2. Here, we use Ω+

i and Ω−i to denote the two pieces
of Ωi but on the different side of Ω1 ∩ Ω2. The advantage of taking this view is that we allow the
functions on manifolds Ω1 and Ω2 to be only C0-continuous at the intersection Ω1 ∩ Ω2, instead of
C2-continuous as required in Theorem 2. (However, note that Theorem 2 also holds for the cases
when the co-dimension of the intersection is higher than 1.) Using the same argument as in the
proof of Theorem 3 to this case of gluing 4 d-manifolds along a common d−1-boundary, we obtain
the following corollary.

Corollary 4 Let Ω1 and Ω2 be two d-dimensional smooth manifolds in RN potentially with bound-
aries, and their intersection Ω1 ∩ Ω2 is a smooth manifold of dimension 1. Let f be a continuous
function over Ω = Ω1 ∪ Ω2 whose restriction fi := f |Ωi on Ωi, i = 1, 2, is C2-continuous at any
regular point and C0-continuous at points in Ω1 ∩ Ω2. Given a point x ∈ Ω1 near the intersection,
let x0 be its nearest neighbor in Ω1 ∩Ω2, and x1 (resp. x2) be its projection in the tangent space of
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Ω1 at x0 (resp. in the tangent space of Ω2 at x0). For a sufficiently small t, we have

Ltf(x) = −π
(d−1)/2

2

1√
t
p(x)[∂n1f

+
1 (x0)+∂(−n2)f

−
1 (x0)+∂n2f

+
2 (x0)+∂(−n2)f

−
2 (x0)]+o

(
1√
t

)
(13)

where ∂n1f
+
1 (x0), ∂(−n1)f

−
1 (x0) are the directional derivatives of f1 on two sides of Ω1∩Ω2, same

for ∂n1f
+
2 (x0), ∂n1f

−
2 (x0).

Interestingly, it appears the eigenfunctions for a singular manifold with intersection-type sin-
gularity can be only C0-continuous across the intersection (instead of C2-continuous) within each
piece of manifold. Hence the above Corollary will be useful in analysing the eigenfunctions around
intersection singularities (or co-dimension 1).

4. Finite Sample Complexity and Convergence Rate

Theorem 5 Let x1, · · · , xn, be i.i.d. random variables in RN sampled from a probability distribu-
tion on Ω with the intrinsic dimension d with density p(x), 0 < a ≤ p(x) ≤ b <∞, defined on the
manifold on Ω with the intrinsic dimension d. Let f be a bounded function, |f(x)| < M . Then for
any x ∈ Ω we have

P (|Ln,tf(x)− Ltf(x)| > ε) ≤ 2n exp

(
− ntd/2+2ε2

2Cv + 2Cmεt/3

)
(14)

where Cv and Cm are constants depending on the manifold.

The proof is based on an application of the Bernstein inequality and the union bound and can be
found in Appendix B.
The immediate corollary is that to get an asymptotic convergence for an arbitrary fixed point (that
is an error of the order of o(1)), we need to select t so that ntd/2+2/ log(n) → ∞. That is, we can
choose t = (log(n)/n)

2
d+4 g(n), where g(n) is an arbitrary function such that limn→∞ g(n) =∞.

On the other hand, for points near the singular set the scaling of the operator Ln,t changes.
While inside the domain Ln,tf(x) = O(1) for a smooth (fixed) function f , for x on the sin-
gular set or sufficiently close to it (within

√
t distance), Ln,tf(x) = O( 1√

t
). Thus an accurate

estimate for the appropriately rescaled operator requires that ntd/2+1/ log(n) → ∞ leading to
t = (log(n)/n)

2
d+2 g(n). This may seem counter-intuitive as fewer points are required on the

singularity than inside the domain to obtain an accurate estimate. One explanation is that near a
singularity we are effectively estimating a degree one differential operator, while inside the domain
we are estimating the Laplace-Beltrami operator, which is degree two.

5. Discussion of Impact on Laplacian Eigenfunctions

Eigenfunctions of graph Laplacians obtained from data play an important role in a variety of appli-
cations from spectral clustering to dimensionality reduction and semi-supervised learning. While
full proof of their convergence is likely to be very subtle and is beyond the scope of this paper
(see Belkin and Niyogi (2008a) for the proof of eigenfunction convergence for the smooth case), we
would like to discuss the implications of our results for eigenfunctions under the assumption that
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such convergence takes place. Let φt be an eigenfunction of Lt (normalized to norm 1 in L2). We
put λ = limt→0 λt and φ = limt→0 φt (with the functions converging in L2 norm). We will also
assume that the necessary derivatives exist.

Below, we briefly discuss the impact of each type of singularity. Some numerical experiments
are provided in Appendix C.3. For simplicity, we will assume the samples to be infinite and the
multiplicity of each eigenfunction to be one.

Boundary singularity: For a point x on or near (within
√
t of) the boundary our results indicate

λtφt(x) = Ltφt(x) = C
1√
t
∂nφ(x) + o

(
1√
t

)
where C is a constant independent of t. Thus, for small values of t, and λtφt(x) = O( 1√

t
)∂nφ(x),

which is clearly impossible unless ∂nφt(x) = O(
√
t). Passing to the limit7 we see that for x on the

boundary, ∂nφ(x) = 0, meaning that the limit eigenfunctions of the graph Laplacian automatically
satisfy the Neumann boundary conditions. The experimental results in Appendix C.3 are consistent
with this finding.

Edge singularity: Consider now a point x at the edge where two ”sheets” Ω1 and Ω2 come to-
gether. From Theorem 3 we have

Ltφt(x) =
C√
t
(∂n1φt(x) + ∂n2φt(x)] + o

(
1√
t

)
.

where n1 and n2 are the two directions normal to the singular set at x. By an argument following
the one above, we have ∂n1ϕt(x) + ∂n2ϕt(x) = O(

√
t). and hence

∂n1ϕ(x) + ∂n2ϕ(x) = 0

In other words the directional derivatives for the limit eigenfunction must cancel each other. This is
quite surprising for the following reason: suppose, that the edge singularity is obtained by folding
a smooth manifold (imagine folding a sheet of paper, creating an edge). Then the above condition
means that the eigenfunctions of the original surface are invariant under this ”folding”, despite the
fact that the graph Laplacian operator is very different near the singular set! In other words if a
singular surface is isometric to a smooth manifolds, the spectral structure appears to be preserved,
even though the distances computed for points near the edge are very far from the intrinsic distances
on smooth and the operator near the edge is not the Laplace-Beltrami operator.

Some numerical illustrations of this phenomenon are given in the Appendix C.3.

Intersection singularity: For the intersection singularity the analysis follows that of the edge
case, but the implications for the shape of eigenfunctions are not completely clear, and warrant
further investigation. One intriguing observation is that if the co-dimension of the singularity is
greater than one, it has only a local effect on the shape of eigenfunctions. The situation is analogous
to the disjoint union of manifolds. The reason is easy to see – the volume of

√
t-neighborhood B

around the singular set of co-dimension at least two, will be at most O((
√
t)2) = O(t). Recall that

an eigenfunction minimizes the quantity 〈Ltφt, φt〉L2(p) under orthogonality conditions. We see
that the contribution of the points around the singular set is bounded by O(t)O( 1√

t
) = O(

√
t) and

vanishes as t→ 0.

7. Since this is an informal argument, the subtleties related to convergence in L2 are ignored.
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Appendix A. Proofs for Theorems on Graph Laplacian Limit

A.1. Sketch of Proof for Theorem 1

For a sufficiently small t, let Ωbd be the set of points that are within distance t1/2−ε from the
boundary ∂Ω (a thin layer of “shell”), where ε is any sufficiently small positive constant. Set
Ωin = Ω/Ωbd. We will show that for a small t, Ltf(x) is approximated by two different terms
on Ωdb and Ωin, and more importantly they have different orders of t.

Points away from boundary. Given a point x ∈ Ω, let B(x) denote the ball of radius t1/2−ε

centered at x, where ε is any sufficiently small positive constant. First, we approximate the integral
in Eqn (1) when the integral is taken inside the ball B(x). By results from Appendix B of Coifman
and Lafon (2006), the error induced by constraining the integral to within B(x)∩Ω is onlyO(e−t

−ε
).

Now given a point y ∈ B(x), let u be the projection of y onto the tangent space Tx,Ω of Ω at
x. Choose x to be the origin of Tx,Ω. We have the following approximations for each of the three
terms in the integral in Eqn (1) (see e.g, (Belkin, 2003, Chapter 4.2) and (Coifman and Lafon, 2006,
Appendix B)). Here K(a) denotes K(a) = e−

a
t . N and d are the dimension of the ambient space

and of the tangent space, respectively.

K(‖x− y‖2RN ) = K(‖u‖2Rd) +O(‖u‖4Rd)

f(x)− f(y) = −uT∇f(x)− 1
2u

TH(x)u+O(‖u‖3Rd)

p(y) = p(x) + uT∇p(x) +O(‖u‖2Rd)

(15)

where H(x) is the Hessian of f(x) at x.
Now for simplicity let Õ(tβ) denote O(tβ−ε) for any sufficiently small positive constant ε > 0.

Let πx : Ω→ Tx,Ω be the projection from Ω onto the tangent space Tx,Ω, and setR := πx(B(x)∩Ω).
Obviously, R ⊂ Tx,Ω. Combing the above approximations together with the fact that y ∈ B(x) and
thus ‖x− y‖ = Õ(t), and using a change of variable u→

√
tw, we obtain the following:

Ltf(x) = 1
t

∫
ΩKt(x, y)(f(x)− f(y))p(y)dy

= 1
t

∫
B(x)∩ΩKt(x, y)(f(x)− f(y))p(y)dy +O(e−t

−ε
)

= − 1
td/2

∫
R

1
tK(‖u‖2Rd)[(

√
tuT∇f(x) + t

2u
TH(x)u)×

(p(x) +
√
tuT∇p(x))]td/2Jπ−1|udu+ 1

t · Õ(t1/2)

= −
∫
Tx,Ω

e
−‖w‖2

Rd{ 1√
t
[p(x)(wT∇f(x))]+

[wT∇f(x)× wT∇p(x) + 1
2p(x)wTH(x)w]}dw + o( 1√

t
)

(16)
From the first line to the second line, we replace the integral over Ω with ball B(x), generating an
exponentially small error for sufficiently small t (Coifman and Lafon, 2006, Appendix B). From
the second line to the third line, by changing the variable from y to πx(y) = u, this integral can be
rewritten as an integral over the region R ⊂ Tx,Ω. In the fourth line, we relax this integral over R to
be the integral over the entire tangent space Tx,Ω, plus another exponentially small error O(e−t

−ε
)

which is consumed by o( 1√
t
).
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For an interior point x ∈ Ωin, Tx,Ω is a d-dimensional linear space, and the function e−‖w‖
2
Rd is

an even function on Tx,Ω. When taking the integral, the first term in the last integral in Eqn (16) with

order O
(

1√
t

)
is odd and therefore vanishes. The remaining three terms in the last line of Eqn (16)

are of order O(1) inside the integral, and they are exactly the weighted Laplacian at x as previously
studied in the literature, and hence Ltf(x) = o( 1√

t
). The kernel is however not symmetric for

points on or near the boundary, which are studied next.

Figure 1: Gaussian weight at x near the boundary.

Points near boundary. We now consider x ∈ Ωbd (the “shell”) near the boundary. See Figure 1,
where we show the local neighborhood around x projected in Tx,Ω. Let x0 be the nearest boundary
point on ∂Ω to x. Choose a local coordinate system of Tx,Ω with x at the origin, and assume
the projection of x0 in Tx,Ω is at −z. Let n the unit direction along x − z. When x is close to
the boundary, the kernel Kt(x, y) is no longer symmetric. In particular, consider an orthonormal
coordinate system around x, the Gaussian kernel is symmetric in all coordinate-axis other than along
x−z. Along the direction n, the Gaussian convolution is from−z/

√
t (as we have changed variable

from u→
√
tw) to +∞, which is not symmetric. Therefore, e−‖w‖

2
Rd is not an even function in the

normal direction n, and the integral of the highest order term (i.e, the first term of O
(

1√
t

)
) in the

last integral of Eqn (16) will not vanish.
Specifically, let u = (u1, u2, . . . , ud) be the coordinate of u in the aforementioned coordinate

system of Tx,Ω. Assume that u1 is the coordinate along the normal direction n. Recall that we
have applied the change of variable u →

√
tw. So let w = (w1, w2, . . . , wd) be the coordinate of

w. Since we have assumed in the theorem that ‖x − x0‖ = r
√
t, we have that z√

t
= r + O(r3).

When we integrate the last integral in Eqn (16), all the odd terms of ui still vanish in all directions
except the normal direction n, and the most important point is that the leading term along the normal
direction is of order O

(
1√
t

)
, different from O(1) for the interior points. In particular, we have:

Ltf(x) = − 1√
t
p(x)∂nf(x)

∫ +∞

−∞
· · ·
∫ +∞

−∞

∫ ∞
−z/
√
t
e
−‖w‖2

Rdw1dw1dw2 · · · dwd + o

(
1√
t

)
= − 1√

t
· 1

2
π
d−1

2 e−r
2
∂nf(x) + o(

1√
t
).

The theorem follows from further performing the Taylor expansion of f(x) at x0.
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A.2. Details for the Intersection Case

Our goal is to bound the integral 1
t

∫
B(x)∩Ω2

Kt(x, y)(f(x0) − f(y))p(y)dy as in Eqn (11). First,

recall that πx0 : Ω2 → Tx0,Ω2 is the projection map from Ω2 to the tangent space of Ω2 at x0.
For points on Ω2 sufficiently close to x0, this map is in fact a bijection and its inverse π−1 exsits.
Hence for t sufficiently small (and thus x2 is close enough to x), π−1(x2) exists and we set it to be
x3 := π−1(x2) ∈ Ω2. Since ‖x0 − x2‖ = r cos θ

√
t + O(t), we have ‖x2 − x3‖ = O(t) by Eqn

(2). It follows from triangle inequality that ‖x− x3‖ = ‖x− x2‖+O(t) = r sin θ
√
t+O(t). We

can then apply a similar derivation as in Eqn (9) to show that

Kt(x, y) = e−r
2 sin2 θKt(x3, y) ·(1+Õ(

√
t)); and Kt(x, y) = e−r

2 sin2 θKt(x3, y
′) ·(1+Õ(

√
t)),
(17)

where y′ is the projection of y on Tx0,Ω2 as defined in Section 3.2. We now have

1

t

∫
B(x)∩Ω2

Kt(x, y)(f(x0)− f(y))p(y)dy

=
1

t
(f(x0)− f(x3))

∫
B(x)∩Ω2

Kt(x, y)p(y)dy +
1

t

∫
B(x)∩Ω2

Kt(x, y)(f(x3)− f(y))p(y)dy

(18)

Following the same derivation as in Eqn (10), and combining with ‖x0 − x2‖ = r cos θ
√
t+O(t),

the first term can be bound by:

1

t
(f(x0)− f(x3))

∫
B(x)∩Ω2

Kt(x, y)p(y)dy

=
1√
t
(‖x0 − x2‖∂n2f2(x0) + Õ(t

1
2 ))e−r

2 sin2 θ(1 + Õ(t
1
2 ))(p(x0) + Õ(t

1
2 ))

∫
Tx0,Ω2

Kt(x2, y
′)dy′

=
1√
t
C3p(x0)r cos θ · e−r2 sin2 θ∂n2f2(x0) + o(

1√
t
). (19)

By using Eqn (17), the second term in Eqn (18) is:

1

t

∫
B(x)∩Ω2

Kt(x, y)(f(x3)− f(y))p(y)dy

=
1

t

∫
B(x)∩Ω2

e−r
2 sin2 θ(1 + Õ(

√
t)) ·Kt(x3, y)(f(x3)− f(y))p(y)dy

=e−r
2 sin2 θ(1 + Õ(

√
t)) · 1

t

∫
B(x)∩Ω2

Kt(x3, y)(f(x3)− f(y))p(y)dy + o(
1√
t
). (20)

Now observe that since the radius of B(x) is Θ(t
1
2
−ε) for a sufficiently small positive ε, and since

the distance from x to x3 is O(t1/2), we have that there exists some ball B′(x3) of radius still in the
asymptotic order of Θ(t

1
2
−ε) around x3 such that B′(x3) is contained inside B(x). This implies that

B′(x3) ∩ Ω2 ⊆ B(x) ∩ Ω2. Hence by results from Appendix B of Coifman and Lafon (2006),∫
B′(x3)∩Ω2

Kt(x3, y)(f(x3)−f(y))p(y)dy =

∫
B(x)∩Ω2

Kt(x3, y)(f(x3)−f(y))p(y)dy+O(e−t
−ε

).
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On the other hand, 1
t

∫
B′(x3)∩Ω2

Kt(x3, y)(f2(x3)−f2(y))p(y)dy is simply an approximation of the

functional Laplacian Ltf2(x3) of the function f2 at an interior point x3 over a manifold Ω2. Hence
by Eqn (5),

1

t

∫
B′(x3)∩Ω2

Kt(x3, y)(f(x3)− f(y))p(y)dy = −1

2
πd/2p(x3)∆p2f2(x3) + o(1).

It then follows from Eqn (20) that

1

t

∫
B(x)∩Ω2

Kt(x, y)(f(x3)− f(y))p(y)dy

=e−r
2 sin2 θ 1

t

∫
B(x)∩Ω2

Kt(x3, y)(f(x3)− f(y))p(y)dy + o(
1√
t
)

=− 1

2
πd/2p(x3)∆p2f2(x3) + o(

1√
t
) = o(

1√
t
). (21)

Putting Eqn (18), (19) and (21) together, we conclude that

1

t

∫
B(x)∩Ω2

Kt(x, y)(f(x0)− f(y))p(y)dy =
1√
t
C3p(x0)r cos θ · e−r2 sin2 θ∂n2f2(x0) + o(

1√
t
),

which is what we claimed in Eqn (11).

A.3. Proof for Edge-type Points

Figure 2: Edge case.

Suppose we have two manifolds forming the “edge”, denote them by Ω1 and Ω2. We use the
same notation as in the proof for the intersection case; see the illustration in Figure 2. In particular,
let x0 denote the closest point from ∂Ω1 ∩ ∂Ω2 to a point x ∈ Ω1. Let x1 and x2 be the projection
of x on the tangent space Tx0,Ω1 and Tx0,Ω2 at x0, respectively. Note that ‖x − x0‖ = r

√
t. Let
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f1, f2 be the restriction of f on Ω1 and Ω2 respectively; we know that f1(x0) = f2(x0). Again,
B(x) denotes the ball centered at x with radius t

1
2
−ε. Then we have

1

t

∫
Ω
Kt(x, y)(f(x)− f(y))p(y)dy =

1

t

∫
B(x)∩Ω

Kt(x, y)(f(x)− f(y))p(y)d+ o(1);

and
1

t

∫
B(x)∩Ω

Kt(x, y)(f(x)− f(y))p(y)dy

=
1

t

∫
B(x)∩Ω1

Kt(x, y)(f1(x)− f1(y))p(y)dy +
1

t

∫
B(x)∩Ω2

Kt(x, y)(f1(x)− f2(y))p(y)dy

(22)

The first integral in Eqn (22) on B(x)∩Ω1 is exactly what we had before for the boundary singularity
(recall the second line in Eqn (16)), which we have shown to be the following in Appendix A.1:

− 1√
t
· 1

2
π(d−1)/2p1(x0)e−r

2〈∇f1,n1〉+ o

(
1√
t

)
. (23)

Now consider the second integral in Eqn (22) on B(x) ∩ Ω2:

1

t

∫
B(x)∩Ω2

Kt(x, y)(f1(x)− f2(y))p(y)dy

=
1

t

∫
B(x)∩Ω2

Kt(x, y)(f1(x)− f2(x0) + f2(x0)− f2(y))p(y)dy

=
1

t

∫
B(x)∩Ω2

Kt(x, y)(f1(x)− f1(x0))p(y)dy +
1

t

∫
B(x)∩Ω2

Kt(x, y)(f2(x0)− f2(y))p(y)dy

=
1

t
(f1(x)− f1(x0))

∫
B(x)∩Ω2

Kt(x, y)p(y)dy +
1

t

∫
B(x)∩Ω2

Kt(x, y)(f2(x0)− f2(y))p(y)dy

(24)

Let πx denote the projection from Ω2 to Tx0,Ω2 , and set y′ = πx(y) for any point y ∈ Ω2. Since
the notation is the same with intersection case, we have by Eqn (9)

Kt(x, y) =
1

td/2
(e−r

2 sin2 θe−‖x2−y′‖2/t(1 + Õ(t1/2))).

Set B := πx(B(x) ∩ Ω2) as the image of B(x) ∩ Ω2 in the tangent space Tx0,Ω2 . Let T+
x0,Ω2

denote the half-space of the tangent space Tx0,Ω2 that contains R. Combing the bounds in Eqn (2)
and (3), for the first integral in Eqn (24), we have

1

t
(f1(x)− f1(x0))

∫
B(x)∩Ω2

Kt(x, y)p(y)dy =
1

t
(f1(x)− f1(x0))

∫
B
Kt(x, y)p(y)Jπ−1

x |y′dy′

=
1

t
d
2

+1
(f1(x)− f1(x0))e−r

2 sin2 θ

∫
B
e−‖x2−y′‖2/t(1 + Õ(t1/2))(p(x0) + Õ(t1/2))dy′

=
1

t
d
2

+1
(f1(x)− f1(x0))e−r

2 sin2 θ(1 + Õ(t1/2))(p(x0) + Õ(t1/2))

(∫
T+
x0,Ω2

e−‖x2−y′‖2/tdy′ +O(e−t
−ε

)

)

=C(r, θ)
1√
t
p2(x0)re−r

2 sin2 θ〈∇f1(x0),n1〉+ o

(
1√
t

)
, (25)
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where C(r, θ) =
∫
T+
x0,Ω2

e−‖x2−y′‖2/tdy′ =
∫
Rd,yd>−r cos(θ) e

−‖y‖2dy = πd/2Φ(
√

2r cos θ), and yd
is the d-th entry of coordinate of y in the d-dimensional tangent space. The last step above also
involves applying the following formula:

f1(x)− f1(x0) = 〈∇f1(x0), x1 − x0〉+ Õ(‖x− x0‖2) = r
√
t〈∇f1(x0),n1〉+ Õ(t).

Now for the second integral in Eqn (24), we have:
1

t

∫
B(x)∩Ω2

Kt(x, y)(f2(x0)− f2(y))p(y)dy

=
1

t

∫
B(x)∩Ω2

Kt(x, y)〈∇f2

∣∣
x0
, x0 − y〉p(y)dy

=
1

t

∫
B(x)∩Ω2

Kt(x, y)〈∇f2

∣∣
x0
, x0 − x2〉p(y)dy +

1

t

∫
B(x)∩Ω2

Kt(x, y)〈∇f2

∣∣
x0
, x2 − y〉p(y)dy

(26)

The second term from the above equation is exactly the same as if we were considering a point x2

nears the boundary of Ω2. Hence using the results from Appendix A.1, we have that
1

t

∫
B(x)∩Ω2

Kt(x, y)〈∇f2

∣∣
x0
, x2 − y〉p(y)dy

=
1

t
d
2

+1
e−r

2 sin2 θ

∫
B
e−‖x2−y′‖2/t〈∇f2

∣∣
x0
, x2 − y〉(p(x0) + Õ(t1/2))dy

=
1

t
d
2

+1
e−r

2 sin2 θ(p(x0) + Õ(t1/2))〈∇f2

∣∣
x0
,

∫
B
e−‖x2−y′‖2/t(x2 − y)dy〉

=
1

t
d
2

+1
e−r

2 sin2 θ(p(x0) + Õ(t1/2))〈∇f2

∣∣
x0
,

∫
T+
x0,Ω2

e−‖x2−y′‖2/t(x2 − y)dy〉

=
1

t
d
2

+1
e−r

2 sin2 θ(p(x0) + Õ(t1/2))(− t
d/2

2
π
d−1

2 e−r
2 cos2 θ∂n2f2)

=− 1√
t
· 1

2
π
d−1

2 e−r
2
∂n2f2(x0) + o(

1√
t
). (27)

For the first term from Eqn (26), we have:
1

t

∫
B(x)∩Ω2

Kt(x, y)〈∇f2

∣∣
x0
, x0 − x2〉p(y)dy

=
1

t
d
2

+1
e−r

2 sin2 θ

∫
B
e−‖x2−y′‖2/t(1 + Õ(t1/2))〈∇f2(x0), x0 − x2〉(p(x0) + Õ(t1/2))dy′

=
1

t
d
2

+1
e−r

2 sin2 θ(1 + Õ(t1/2))(p(x0) + Õ(
√
t))

∫
B
e−‖x2−y′‖2/t〈∇f2(x0), x0 − x2〉dy′

=
1

t
d
2

+1
e−r

2 sin2 θp(x0)〈∇f2(x0), x0 − x2〉
∫
R
e−‖x2−y′‖2/tdy′

=
1

t
d
2

+1
e−r

2 sin2 θp(x0)〈∇f2, x0 − x2〉

(∫
T+
x0,Ω2

e−‖x2−y′‖2/tdy′ +O(e−t
−ε

)

)

=
1√
t
p(x0)C(r, θ) · r cos θe−r

2 sin2 θ〈∇f2(x0),n2〉+ o

(
1√
t

)
, (28)
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where C(r, θ) is defined earlier. Let x′ be the projection of x1 on the tangent space Tx0,Ω2 . The last
step in Eqn (28) uses the fact that ‖x0 − x2‖ = r

√
t · | cos θ| + O(t). Combining all the results in

(23), (25), (26), (27), and (28), we prove Theorem 3.

Appendix B. Proof for Convergence Rate

Lemma 6 Let X1, · · · , Xn, Z be i.i.d. random variables of RN from density p(x) ∈ C∞(Ω),
0 < a ≤ p(x) ≤ b <∞, Kt(x, y) be a Gaussian weight function and |f | < M , then for any x ∈ Ω

P

(∣∣∣∣∣ 1n
n∑
i=1

Kt(x,Xi)f(Xi)− EZ [Kt(x, Z)f(Z)]

∣∣∣∣∣ > ε

)
≤ 2 exp

(
− ntd/2ε2

2Cv + 2Cmε/3

)
(29)

where Cv and Cm only depend on d and K(·, ·), f(·), p(·).

Proof LetWi(x) = Kt(x,Xi)f(Xi), and Yi(x) = Wi(x)−EXi [Wi(x)]. We have EXi [Yi(x)] = 0,
and

|Yi(x)| ≤ |Wi(x)|+ |EXi [Wi(x)]|
= |Kt(x,Xi)f(Xi)|+ |

∫
ΩKt(x, y)f(y)p(y)dy|

≤ 1
td/2

M +Mb
∫

ΩKt(x, y)dy

≤ M
td/2

+MbCg = (Cm +MbCgt
d/2)/td/2

(30)

where Cg =
∫

ΩKt(x, y)dy <∞, and Cm = M . For Var[Yi(x)],

Var[Yi(x)] = EXi [W 2
i (x)]− {EXi [Wi(x)]}2

≤
∫

ΩK
2
t (x, y)f2(y)p(y)dy + [

∫
ΩKt(x, y)f(y)p(y)dy]2

≤ 1
td/2

M2b
∫

ΩKt(x, y)dy +M2b2C2
g

≤ 1
td/2

M2bCg +M2b2C2
g = (Cv +M2b2C2

g t
d/2)/td/2

(31)

where Cv = M2bCg. By the Bernstein’s inequality

P

(∣∣∣∣∣ 1n
n∑
i=1

Yi(x)

∣∣∣∣∣ > ε

)
≤ 2 exp

(
− ntd/2ε2/2

(Cv +M2b2C2
g t
d/2) + (Cm +MbCgtd/2)ε/3

)
(32)

Proof of theorem 5: For x ∈ Ω, we put f(x)− f(Xi) into Lemma 6, obtaining:

P (|Ln,tf(x)− Ltf(x)]| > ε)

=P

(∣∣∣∣∣ 1n
n∑
i=1

Kt(x,Xi)(f(x)− f(Xi))− EZ [Kt(x, Z)(f(x)− f(Z))]

∣∣∣∣∣ > tε

)

≤2 exp

(
− nt(d+4)/2ε2

2Cv + 2Cmtε/3

)

The proof of theorem 5 is done.
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Appendix C. Experimental results

Below we provide some numerical results validating theoretical analysis, some experiments with
real datasets and several numerical experiments in support of our conjectures on the eigenfunction
behavior.

C.1. A numerical example

In this section, we illustrate the behavior of graph Laplacian on or near the singularity points
through a simple numerical example. In order to explore different cases, we consider the union
of 1-dimensional manifolds Ω as shown in Figure 3 (a), which is a combination of three linear in-
tervals, Ω1, Ω2, and Ω3 in R2. We take 2500 point uniformly spaced over the singular manifold and
choose f(x1, x2) = (x1 + 0.2)2 + x2

2 (restricted to the manifold).
Shape and Scaling Behavior: The value of Ln,tf(x) over all points in Ω1 is shown in Figure 3

(b). We can see that Ln,tf(x) near the boundary is approximately half a Gaussian function, while
the function near the intersection is similar to a function of the form ϕ(x) = axe−bx

2
, as predicted

by Theorem 2. The shape of Ln,tf(x) near the corner is also what we expect from Theorem 3.
To explore the scaling effects, in Figure 3 (c) we plot values of log |Ln,tf(x)| against log(t) for

different values of t. Each graph corresponds to a fixed point x chosen near a boundary, intersection
or edge singularity. Our theoretical results predict a linear curve with slope −1

2 in log-log coordi-
nates (corresponding to 1/

√
t, which is consistent with our experimental results as shown in (c).

(a) Sample data from Ω (b) Ln,tf(x) over Ω1 (c) log(|Ln,tf(x)|) vs log(t)

Figure 3: Ln,tf(x) with f(x1, x2) = (x1 + 0.2)2 +x2
2 over Ω. In (c), x axis is log(|Ln,tf(x)|) and

y axis is log t. The three curves are for three points near each type of singularity.

C.2. Singularity Detection and Estimation
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(a) Data set (b) Values of Ln,tf
on Bunny when f(x, y, z) = y.

Bunny Model: In the following
example, we use the union of the
Stanford bunny dataset (in blue)
and a plane y = 0 (in red), which
intersects the bunny in the mid-
dle as shown in panel (a). We
have take 10000 points for both
the bunny and the plane in the point
cloud, and choose the function f =
y. The values of Ln,tf on the bunny are shown in panel (b). We can see that the values of Ln,tf
at the intersection are 0 and values near the intersection go up (in yellow) and down (in blue) as
expected from the theoretical analysis of the intersection singularity.

MNIST Data: From the scaling behavior of the graph Laplacian near singularities, it is poten-
tially possible to detect certain such singularities on real world data sets. We use the example of the
MNIST digit images. The image of each digit can be thought of as a sample from a low-dimensional
manifold embedded in the high-dimensional pixel space. We choose function f(x) to be the sum-
mation of the pixel intensity of each image. We take the images corresponding to the top 2% of
the highest value of Ln, tf(x) as the “near singularity/boundary” images, which are compared to
the “average” images of each digit. The results are shown in Figure (7). We see that the images
on the right are significantly larger (and systematically different) from average, suggesting that they
may belong to the part of the boundary, which can be detected through the sum-of-pixel-intensity
function.

C.3. Laplacian Eigenfunctions on Singular Manifolds

In this section, we will provide two numerical examples to validate our to conjectures about the
Laplacian eigenfunctions on the singular manifolds.

Folded Rectangle: In this example, we consider two manifolds: (1) the rectangular region Ω1,
(−0.3, 0.3)× (−0.5, 0.5)×{0}, in R3 and (2) the ”folded” rectangle Ω2, obtained by transforming
the positive y part of Ω1, i.e. {(x, y, z) ∈ Ω1 : y > 0}, by applying the linear transformation given
by the matrix 1 0 0

0 cos(π/4) − sin(π/4)
0 sin(π/4) cos(π/4)


and keeping the rest of Ω1 fixed as showing in Fig. 4. We see Ω1 and Ω2 are intrinsically isometric,
yet Ω2 has an edge singularity.

We choose 6000 uniformly-spaced points in both Ω1 and Ω2.
With this two data sets, we construct their graph Laplace matrices respectively, and calculate

their eigenvalues and eigenvectors using the Gaussian kernel with t = 10−4. Figure 5 shows the
first 16 nontrivial eigenvectors of two graph Laplace matrices. We can see that the corresponding
eigenvectors match nearly perfectly. It can be easily verify that they also match eigenfunctions of
the rectangle with Neumann boundary conditions.

To give some precise numerical results we measure the relative difference between the sets of
eigenvalues. Let λ1

k and λ2
k be the two vectors of first k eigenvalues for Ω1 and Ω2 respectively. We
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(a) Ω1 (b) Ω2

Figure 4: Rectangle and folded rectangle Ω1 and Ω2.

define the (relative) difference as

diffk =
‖λ1

k − λ2
k‖

‖λ1
k‖

The table below shows the difference for various values of k. We observe that the approximation
appears quite precise with difference of the order of 0.1%, thus providing further evidence in support
of our conjecture on the behavior of eigenfunctions.

k 10 50 100
diffk 0.0014 0.0012 0.0011

Sliced and flipped sphere: To give a more interesting non-flat example, we consider two spaces
shown in Fig. 6: the standard unit sphere in R3 and the ”sliced and flipped” sphere, where the top
of the sphere is sliced off and glued in the opposite direction. More precisely, (1) S1 = {(x, y, z) ∈
R3 : x2 + y2 + z2 = 1.}; (2) S2 is the set of points in S1 except that the points above the plane
z = 0.75 are moved to their mirror reflection on the other side of the plane z = 0.75. We see that
S1 and S2 are intrinsically isometric. To construct the Laplacian we sample 10000 points from each
space and choose t = 5× 10−4. In this example, it is not easy to visualize the eigenvectors due the
multiplicity of eigenvalues. However, from the table below we observe that the spectra of the graph
Laplacian on those manifolds are very similar.

k 10 50 100
diffk 0.0099 0.0182 0.0148
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(a) Ω1 (b) Ω2

Figure 5: 2nd-17th eigenvectors of the graph Laplace matrices of the two manifolds Ω1 and Ω2.

(a) S1 (b) S2

Figure 6: Unit sphere S1 (left), and unit sphere with the top “sliced and flipped” S2 (right).
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(a) (b)

(c) (d)

Figure 7: An averaged image of digits ”1” and ”8” (left panels) vs an averaged image with a large
value of graph Laplacian constructed from the data set of images, applied to a function
defined by the sum of pixel intensities.
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