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Abstract

We show that the existence of a computationally efficient calibration algorithm, with a low weak
calibration rate, would imply the existence of an efficient algorithm for computing approximate
Nash equilibria — thus implying the unlikely conclusion that every problem in PP AD is solvable
in polynomial time.

1. Introduction

Consider a weather forecaster that predicts the probability of rain. The forecaster is said to be
calibrated if every time she predicts a certain probability of rain, the empirical average of rainy vs.
non-rainy days approaches this forecasted probability.

This very natural property of forecasting was introduced by Dawid (1982) and has found nu-
merous applications since Foster and Vohra (1998); Foster (1999); Fudenberg and Levine (1999);
Mannor et al. (2007); Perchet (2009); Mannor and Stoltz (2010); Rakhlin et al. (2011). See Cesa-
Bianchi and Lugosi (2006) for a more detailed bibliographic survey.

Foster and Vohra (1998) provided the first randomized calibration algorithms. Subsequently, nu-
merous other algorithms have been developed based on various different techniques have followed:
Blackwell approachability Foster (1999), internal-regret minimization Foster and Vohra (1998) and
online convex optimization Abernethy et al. (2011), to name a few.

While existence results for calibration are well established, our understanding of the statistical
and computational complexity is more murky. The statistical complexity can be thought of as the
number of rounds it takes achieve some natural notion of a low calibration; the computational
complexity can be thought of as the net computation time to achieve this. This work provides a
lower bound for the latter. When characterizing the efficiency of algorithms, the critical issue is the
relationship between the relevant parameters and the desired notion of calibration. The notion of the
(total) calibration rate (at precision ¢) is essentially that defined by Foster and Vohra (1998). The
relevant parameters are the number of forecasting iterations (henceforth denoted 7T'), the precision
of calibration €, and number of possible outcomes in the forecasting game, d. A variant of this
question was posed as an open problem in Abernethy and Mannor (2011). !

In this work, we give a negative result showing that calibration (in the worst case) is hard,
under a widely-believed computational complexity assumption. In particular, we utilize a natural

1. Abernethy and Mannor (2011) did not explicitly pose this question in terms of net computation time.
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(smooth) notion of calibration at scale €, namely weak calibration (as in Kakade and Foster (2008)).
Precisely, the complexity implication of our main result, Theorem 3, is as follows:

Corollary 1 Suppose there exists a constant ¢ > 0 and a weak calibration algorithm which, for
every precision € > 0, attains a calibration rate of ¢ in a total computational running time (in the
RAM model) that is polynomial in both d and %, then PPAD C RP.

Here, the weak calibration rate is a cumulative notion of error, precisely defined in in Section 2;
R P stands for the complexity class of randomized polynomial time; PP AD is the class of problems
that are polynomial time reducible to the problem of computing Nash equilibrium in a two player
game (See Papadimitriou (1994); Daskalakis (2009)). It is widely believed that PPAD is not
contained in RP. Note that we are considering the fofal computation time over all 7" rounds (so
there is no explicit 7' dependence).

2. Calibration

Calibration inherently concerns distributions, and when comparing distributions it makes sense to
talk about total variation distance or its closely related cousin the £; norm, rather than the Euclidean
norm. Therefore throughout we use || - || to denote the ¢; norm and || - ||, to denote the ¢,, norm.

We let {0,1,2,...,d} be an outcome space, and X1, Xo,... X7 be a sequence of outcomes,
denoted as X; € {0, 1}¢, such that X;(4) is one if and only if the outcome in iteration ¢ is i € [d].
Hence % >+ Xy is the empirical frequency of outcomes.

A randomized forecaster .A produces a sequence of probability distributions Dy, ..., Dr over the
set Ay = {p € R% p; >0, >;pi = 1}. Every iteration a point in the interior of the simplex is
chosen: p; ~ Dy, which constitutes the forecast of A.

Strong Calibration: For a finite set of points V' C Ay, define the following “test” functions (where
the arg min breaks ties arbitrarily):

1 p=argmin,cy|p’ —ql

Hp(‘]) =
0 otherwise

We say this set of test function is at precision € if V is such that every g € A is at least e-close (in
¢1) to some pointin V', i.e. forall ¢ € Ay, we have min,cy ||p—q|| < € (i.e. the set V' is an e-cover
for Ay).

Definition 1 Ler the strong-calibration rate of a (possibly randomized) forecaster A, with respect
to indicator test functions F* = {14(-)} at precision €, be

T

Zﬂp(pt)(pt - X)

t=1

1
CT(Xl:TvAa ‘FE) = E T Z

D,...,D
1y 2T peV

This definition is closely related to that used in Blattenberger and Lad (1985); Foster and Vohra
(1998); the latter definition is motivated by a bias-variance decomposition of the Brier score. The
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distinctions being that Foster and Vohra (1998) use the squared ¢o error (while we use the ¢; pri-
marily for convenience) and Foster and Vohra (1998) restrict .4 to make predictions which lie in V'
(a minor distinction).

Much of the literature is concerned with the asymptotic behavior, without explicitly characteriz-
ing the finite time rate. It is standard to say that a forecaster A is (strongly) asymptotically calibrated
if for all X;.7, we can drive Cr (A, F°) to 0, as T' — oo. If A is restricted to make predictions in
the set V/, then this notion seeks to drive Cr(A, F¢) < ¢ in the limit. In this work, the rate of this
function is critical.

The definition of asymptotic calibration considers the “total error” over an e-grid, and it adjusts
the normalization for each term to % Note that our indicator functions satisfy for all ¢ € Ay:

> g =1 1)

peV

Since every ¢ is covered by only one indicator function. This implies that:

1 T
T Z Zﬂp(pt) =1

peV t=1
which implies that Cp(X7.7, A, F*) is bounded by 2.

Weak Calibration: We now turn to the notion of weak calibration, which covers A, in a more
continuous manner. The weak calibration rate is more naturally defined by a triangulation of the
simplex, A4. By this, we mean that A, is partitioned into a set of simplices such that any two
simplices intersect in either a common face, common vertex, or not at all. Let V' be the vertex set
of this triangulation. Note that any point ¢ lies in some simplex in this triangulation, and, slightly
abusing notation, let V' (g) be the set of corners for this simplex. Note that the function V' (-) specifies
the triangulation.

Instead of indicator functions I,(-), we associate a test function w,(-) with each p € V as
follows. Each ¢ € A, can be uniquely written as a weighted average of its neighboring vertices,
V(q). For p € V(q), let us define the test functions wy(g) to be these linear weights, so they are
uniquely defined by the linear equation:

g= > wlghp

peV(q)

For p ¢ V(q), we let wy,(q) = 0. We refer to this set of functions as the triangulated test functions
with regards to V'(-) and say that this is at precision ¢ if the diameter of the set of points V'(q) is less
than ¢ for all q.

A useful property is that for all ¢ € Ay,

D wp(g) =1 2)

peV

since g lies in the convex hull of V' (g). In comparison to Equation (1), these test functions cover A
in a more smooth manner: they again sum to 1, and each w,(q) is a continuous function (as opposed
to the discontinuous indicator functions).

We now define deterministic calibration algorithms, so called “weak calibration” with regards
to these Lipchitz test functions.
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Definition 2 Ler W* = {w,} be a set of triangulated test functions at precision €. The weak-
calibration rate for a (deterministic) forecaster A with respect to YW¢

T
pr(pt)(Pt - Xi)

t=1

1
CT(XI:T7Aa Wg) = f Z

peV

Kakade and Foster (2008) showed that there exist deterministic calibration algorithms (also see
Mannor et al. (2007)).
Again, note the normalization property:

1 T
T Zzwp(pt) =1

peV t=1

which implies that Cp(X7.7, A, W¥) is bounded by 2.

3. Main Result

Our main result is based on using a calibration algorithm to compute a Nash equilibrium of a two
player game. Before we state our main result, let us review the definition of an approximate Nash
equilibrium, along with the attendant computational complexity results.

3.1. Nash equilibria in games

A (square) two-player bi-matrix game is defined by two payoff matrices Uy, Uy € R4*?, such that
if the row and column players choose pure strategies i, j € [d], respectively, the payoff to the row
and column players are Uy (7, j) and Us(4, j), respectively.

A mixed strategy for a player is a distribution over pure strategies (i.e. rows/columns), and for
brevity we may refer to it simply as a strategy. An e-approximate Nash equilibrium is a pair of
mixed strategies (p, ¢) such that

Vield, p'Uiq>e/Uig—ce,
Vi € [d], pTqu > pTUgej —c.
Here and throughout, e; is the i-th standard basis vector, i.e. 1 in ¢-th coordinate, and 0 in all other
coordinates. If € = 0, the strategy pair is called a Nash equilibrium (NE).
For notational convenience, we slightly abuse notation by denoting the payoffs of mixed strate-

gies as:
Ui(p,q) =p Uiq, Ua(p,q) = p'Usg

The definition immediately implies that the pair (z,y) is an e-equilibrium if and only if for all
mixed strategies , ¥,

Ul(xay) > Ul('i‘vy) -
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Algorithm 1 Approximate NE computation via calibration algorithm .4

Input: calibration algorithm A along with WW¢ on the outcome space {0,1}% x {0,1}%; two
player game Uy, Uz over Ay x Ag.
Initialize Set § = /3 and p; to be A(0)
fort=1,2,...,T do
Let [p¢]1 and [p;]2 denote the marginal distributions of p; with respect to the first and second
coordinates (respectively).
Sample the outcome X; € {0,1}% x {0, 1}¢ according to the product distribution:

Xt ~ BR s5([pt]2) x BRas([pt]1)

where BR; 5 is a smooth best-response function, defined in Section 4.1.
Update pry1 «+ A(X1, ..., Xy)

end for

Sample ¢ uniformly from {1,...7}

Sample p € V(p;) under the law Pr(p|p:) = wp(pt).

return BR;(p) = (BR1,5([p]2), BR25([p]1))

As we are concerned with an additive notion of approximation, we assume that the entries of the
matrices are in the range [0, 1]. In particular this implies that the functions Uy, U, are 1-Lipschitz
w.r.t the £1 norm, since for all p1, ps, q € Ag:

Ui(p1,q) — Ui(p2,q) = (p1 — p2) "Uiq < |Ip1 — p2ll1Uidllso < lIp1 — p2l| (3)

Where we used Holder’s inequality and the fact that U; (3, j) € [0, 1].
The following theorem was provided by Chen et al. (2009):

Theorem 2 Chen et al. (2009) If there exists a randomized algorithm that computes a -NE in a
two player game in time poly(d, %) then PPAD C RP.

3.2. Nash equilibria computation with a calibration algorithm

We now present the reduction from weak calibration to computing equilibria in games, thereby
obtaining the hardness result stated in Corollary 1. Algorithm 1 utilizes a calibration algorithm in
a specially tailored game theoretic protocol. Observe this protocol is run with an outcome space
of size d2. This protocol is based on the ideas in Kakade and Foster (2008), which utilized a weak
calibration algorithm to obtain asymptotic convergence to the convex hull of Nash equilibria (also
see Mannor et al. (2007)). Here, our algorithm outputs a particular approximate Nash equilibrium
in finite time, which allows us to provide a computational complexity lower bound.

Theorem 3 Suppose a weak calibration algorithm A satisfies the following uniform bound on the

calibration rate: Cp(X1.7, A, W?) < F(d,W*,T) (where F does not depend on X1.7). Let d > 2
and ¢ < d%' Then with probability greater than 1/2, Algorithm 1 (using § = e1/3) returns a

(4F(d?, W2, T) + 22de"/?)-Nash equilibrium.

This directly implies Corollary 1 as follows:
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Proof [Corollary 1] Let A be a weak calibration algorithm that attains a calibration rate of ¢
at precision €. Then for some 7' (where 1" is polynomial in %, d by assumption) we have that
Cr(X1.7, A, W) < F(d?,W?,T) < £°. Theorem 3 implies that Algorithm 1 returns a O (g€ +
de/ 3)-NE after T iterations with probability greater than % This constitutes a randomized polyno-
mial time algorithm for e-NE, which by Theorem 2 implies PPAD C RP. |

4. Analysis

Our analysis is arranged into three parts. First, we define a smooth best response function BR
along with some technical lemmas. Then we show how fixed points of this BR;s function are
approximate Nash equilbria. With these lemmas (whose proofs appear in Hazan and Kakade (2012).
), we complete the proof.

4.1. Smooth Best Response Functions

Our algorithm utilizes smooth best response functions. For a mixed strategy ¢ € Ay, define the best
response functions as:

BR;(q) € argmax,ca, {Ui(p, @)}
In case the RHS contains more than one distribution, define BR; to be an arbitrary member of the
set.

We say that a function g : Ay — Ay is an e-best response with respect to U; if the following
holds:

Vg, Ui(9(q),q) > U;(BRi(q),q) — ¢

It is be convenient to extend the best response function beyond the simplex. Define for any point
in Euclidean space:

vp € R?. BR;(p) = BRy(] [(0))
Ag

where [[,-(p) denotes the projection operation onto a convex set /C defined as:

€ 1 —
1;[(1?) arg min |[p — qll2

Using the generalized definition of BR;, define the §-smooth best response function BR; s : Ag —
Ay as:
BR;(¢):= E [BRi({)] )

llg’—qllec <6

where the expectation is with respect to the random ¢’ sampled uniformly on the set {¢| ||¢' —¢|loo <
0} (which could extend beyond Ay).

Lemma 4 The function BR; 5 is a (2dd)-best response with respect to Us.

Proof Let ¢, ¢’ be such that || — ¢'||oc < 0. Hence, ||¢’ — ¢|| < dd and since Uj is 1-Lipschitz with
respect to the ¢1 norm (see equation (3)):

Vp  |Ui(p, ') — Ui(p,q)| < |ld — q|| < dé
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Let ¢’ = argmingen, |7—qfo.<sUi(BRi(3), q). Using the definitions above, we have

Ui(BR;s(q),q) = U; ( E [BRi((j)]vQ>

llg'—qlloo <6
> Ui(BRi(q'), q)
> Ui(BRi(q), ¢') — dd since |¢" — glloc <0
> U;(BR;(q),q') — dé definition of BR;
> Ui(BRi(q), q) — 2d5 since [lg" — glloc <6
which completes the proof. |

Lemma 5 For2 <d < %, the function BR;; s is %-Lipschitz.

Proof Consider any two distributions p, g. We consider two cases:

case 1: ||p — q|lc > 62 . In this case we have

IBR. 5(p) — BRy5(0) < [BRy5(p)] + [BRis(q)] triangle inequality
<2 the range of BR; 5 is Ay
2 .
<llp—dllee - 55 by condition on [|p — ¢l
2
<llp—all- 5

case 2: ||p — ¢llco < 0% . Denote the d-dimensional cube with radius § centered at p by

Ci(p) = Cs(p) = {g € R?, ||lg — plloc < 0}

We have
IBRis(p) —BRis(q)| =1 E [BR;@)—- E [BRi(d)]
llp’ —plloo <6 llg'—alloc <o
=] E [BRip)]— E [BRi(q)]l
p'€Cs(p) q'€Cs5(q)

vol(Cs(p) \ Cs(q) U Cs(q) \ Cs(p))
B vol(Cs(p) U Cs(q))
vol{Cs(p) \ Cs(q))
vol(Cs(q))

The volume of Cs(z) for any 2 € R? is given by 6%. To bound the volume of Cs(p) \ Cs(¢) notice
that at least one coordinate of any point in this set is within distance § of p but not of q. Hence,
the range of possible values for this coordinate is bounded by ||p — ¢/ This is possible for all d
coordinates, and we obtain:

vol{Cs(p) \ C5(q)) < Ilp — dlloc - d - vol(CL (p)) < dlp — qf|ocd? ™
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We conclude that:

vol{Cs(p) \ Cs(q))
IBRs(p) — BRis(q)|| <2 vol(Cs(q))

. d—1
< 2llp = allcdd

2d 2
<5 1P — qlloc < gllp —qlloo

which completes the proof. |

4.2. Approximate Nash equilibria and fixed points

Lemma 6 (Approximate NE are Approximate Fixed Points) Let p be a (possibly joint) distribution
on the space of outcomes {0,1}¢ x {0,1}%; let [p]y and [p)s denote the marginal distributions of
p with respect to the first and second coordinates (respectively); let BRs(p) denote the product
distribution BR 5([p]2) x BRg 5([p]1). Suppose

lp — BRs(p)|| <~

Then BRs(p) is a (27 + 2d0)-NE.

Proof By construction, BR(p) is a product distribution. Hence, it suffices to show that BR 5([p]2)
is an (27 + 2dd)-best response to BRy 5([p]1) (and vice versa). First, observe that:

d d d
g = Pl =D 1D (aG,5) = pli, i< > Mg g) —pl ) =lla =l G)
i=1 j=1 tj=1
Similarly, [|[g]2 — [p]2|| < [l¢ — pl| Hence,

Ipli = BRis(p)[| < llp — BRs(p)| <~

By Lemma 4, BR 5([p]2) is a 2dd-best response to [p]2. Since ||[p]o — BRa2 5([p]1)| < v, we have
that for all ¢ € Ay,

|U1(q, [p)2) — Ur(q, BRas([p]1))| < v
Hence, for all ¢ € Ay,

Ur(BR15([pl2), BRas([pl1)) > Ur(BRs([pl2), [pl2) —~
> Ui(q, [pl2) — v —2dd
> Ui(q, BRos([p]1)) — 27 — 2d0

which proves the claim. |
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5. Proof (of Theorem 3))

Three observations are helpful for intuition in the proof:

e By construction in Algorithm 1, in expectation, the outcomes X; are just BRs(p;). Precisely,
E[Xt|X1, e thl] = BR(;(pt)

e Suppose wy(p;) is nonzero (so ||p — p¢|| < € ). Then, by Lemma 5, the larger ¢ is the closer
BR;(p:) and BR;(p) will be to each other.

e The smaller § is, the more accurate an approximate NE we have for an approximate fixed
point of BR s (by Lemma 6).

The proof of Theorem 3 is a consequence from the following lemma.

Lemma 7 Let p and X,.7 be the random variables defined in Algorithm 1. For 2 < d < %, we

have that: 4
€
Ellp = BRs(p)| < E[CT(X1r, AW)] +e+ o
For proof of Lemma 7 see Hazan and Kakade (2012). The proof of our Main result now follows:
Proof [Theorem 3] By Markov’s inequality, we have that with probability greater than 1/2

8e

lp = BRs(p)|| < 2E[C(X1r, A, W) + 26 + =5

< 2F(d?, We,T) + 10e'/3

using the definition of F' (on a d? sized outcome space) and § = ¢!/3. By applying Lemma 6, we
have a (4F(d?, W®,T) + 20e'/3 + 2de'/3)-NE, which completes the proof. [ |

6. Discussion and Open Problems

This work provides a computational lower bound for weak calibration, suggesting that the hardness
of the problem may be fundamentally related to the problem of finding a fixed point. The following
questions remain open:

e Is it possible to obtain an efficient algorithm for strong calibration? (One which gives a low
calibration error in time polynomial in the relevant parameters.)

e What is the statistical complexity of (weak or strong) calibration? Here, the statistical com-
plexity is the number of rounds required to calibrate at some desired level of accuracy, without
computational considerations.
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