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Abstract
In several online prediction problems of recent interest the comparison class is composed of ma-
trices with bounded entries. For example, in the online max-cut problem, the comparison class
is matrices which represent cuts of a given graph and in online gambling the comparison class is
matrices which represent permutations over n teams. Another important example is online col-
laborative filtering in which a widely used comparison class is the set of matrices with a small
trace norm. In this paper we isolate a property of matrices, which we call (β, τ)-decomposability,
and derive an efficient online learning algorithm, that enjoys a regret bound of Õ(

√
β τ T ) for all

problems in which the comparison class is composed of (β, τ)-decomposable matrices. By ana-
lyzing the decomposability of cut matrices, low trace-norm matrices and triangular matrices, we
derive near optimal regret bounds for online max-cut, online collaborative filtering and online gam-
bling. In particular, this resolves (in the affirmative) an open problem posed by Abernethy (2010);
Kleinberg et al. (2010). Finally, we derive lower bounds for the three problems and show that our
upper bounds are optimal up to logarithmic factors. In particular, our lower bound for the online
collaborative filtering problem resolves another open problem posed by Shamir and Srebro (2011).
1

1. Introduction

We consider online learning problems in which on each round the learner receives (it, jt) ∈ [m]×[n]
and should return a prediction in [−1, 1]. For example, in the online collaborative filtering problem,
m is the number of users, n is the number of items (e.g., movies), and on each online round the
learner should predict a number in [−1, 1] indicating how much user it ∈ [m] likes item jt ∈ [n].
Once the learner makes the prediction, the environment responds with a loss function, `t : [−1, 1]→
R, that assesses the correctness of the learner’s prediction.

A natural approach for the learner is to maintain a matrix Wt ∈ [−1, 1]m×n, and to predict the
corresponding entry, Wt(it, jt). The matrix is updated based on the loss function and the process
continues.

Without further structure, the above setting is equivalent tomn independent prediction problems
- one per user-item pair. However, it is usually assumed that there is a relationship between the

1. This is an extended abstract, several key proofs are missing due to space limitations. A preprint with detailed proofs
appears in Hazan et al. (2012).
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different matrix entries - e.g. similar users prefer similar movies. This can be modeled in the online
learning setting by assuming that there is some fixed matrix W, in a restricted class of matrices
W ⊆ [−1, 1]m×n, such that the strategy which always predicts W (it, jt) has a small cumulative
loss. A common choice forW in the collaborative filtering application is to be the set of matrices
with a trace norm of at most τ (which intuitively requires the prediction matrix to be of low rank).
As usual, rather than assuming that some W ∈ W has a small cumulative loss, we require that the
regret of the online learner with respect toW will be small. Formally, after T rounds, the regret of
the learner is

Regret :=
T∑
t=1

`t(Wt(it, jt))− min
W∈W

T∑
t=1

`t(W (it, jt)),

and we would like the regret to be as small as possible.
A natural question is what properties ofW enables us to derive an efficient online learning algo-

rithm that enjoys low regret, and how does the regret depend on the properties ofW . In this paper
we define a property of matrices, called (β, τ)-decomposability, and derive an efficient online learn-
ing algorithm that enjoys a regret bound of Õ(

√
β τ T ) for any problem in whichW ⊂ [−1, 1]m×n

and every matrix W ∈ W is (β, τ)-decomposable. Roughly speaking, W is (β, τ)-decomposable
if a symmetrization of it can be written as P −N where both P and N are positive semidefinite,
have sum of traces bounded by τ , and have diagonal elements bounded by β.

We apply this technique to three online learning problems.

1. Online max-cut: On each round, the learner receives a pair of graph nodes (i, j) ∈ [n]× [n],
and should decide whether there is an edge connecting i and j. Then, the learner receives
a binary feedback. The comparison class is the set of all cuts of the graph, which can be
encoded as the set of matrices {WA : A ⊂ [n]}, where WA(i, j) indicates if (i, j) crosses
the cut defined by A or not. It is possible to achieve a regret of O(

√
nT ) for this problem by

a inefficient algorithm (simply refer to each A as an expert and apply a prediction with expert
advice algorithm). Our algorithm yields a nearly optimal regret bound of O(

√
n log(n)T )

for this problem. This is the first efficient algorithm that achieves near optimal regret.

2. Online Collaborative Filtering: We already mentioned this problem previously. We con-
sider the comparison classW = {W ∈ [−1, 1]m×n : ‖W‖? ≤ τ}, where ‖ · ‖? is the trace
norm (i.e. the sum of singular values of W). Without loss of generality assume m ≤ n.
Our algorithm yields a nearly optimal regret bound of O(

√
τ
√
n log(n)T ). Since for this

problem one typically has τ = Θ(n), we can rewrite the regret bound as O(
√
n3/2 log(n)T ).

In contrast, a direct application of the online mirror descent framework to this problem yields
a regret of O(

√
τ2T ) = O(

√
n2T ). The latter is a trivial bound since the bound becomes

meaningful only after T ≥ n2 rounds (which means that we saw the entire matrix).

Recently, Cesa-Bianchi and Shamir (2011) proposed a rather different algorithm with regret
bounded by O(τ

√
n) for any T ≤ n2. However, their setting is different since they assume

that each entry (i, j) is seen only once. In addition, while both the runtimes of our method and
their method are polynomial, the runtime of our method is significantly smaller: for m ≈ n,
each iteration of our method can be implemented in Õ(n3) time, whereas each iteration in
their algorithm requires O(n2) SVD computations, thus requiring O(n5) time.

3. Online Gambling: On each round, the learner receives a pair of teams (i, j) ∈ [n]× [n], and
should predict whether i is going to beat j in an upcoming matchup or vice versa. The compar-
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ison class is the set of permutations over the teams, where a permutation will predict that i is
going to beat j if i appears before j in the permutation. Permutations can be encoded naturally
as matrices, where W (i, j) is either 1 (if i appears before j in the permutation) or 0. Again,
it is possible to achieve a regret of O(

√
n log(n)T ) by a inefficient algorithm (that simply

treats each permutation as an expert). Our algorithm yields a nearly optimal regret bound

of O(
√
n log3(n)T ). This resolves an open problem posed in Abernethy (2010); Kleinberg

et al. (2010). Achieving this kind of regret bound was widely considered intractable, since
computing the best permutation in hindsight is exactly the NP-hard minimum feedback arc
set problem. In fact, Kanade and Steinke (2012) tried to show computational hardness for
this problem by reducing the problem of online agnostic learning of halfspaces in a restricted
setting to it. This paper shows that the problem is in fact tractable.

Finally, we derive (nearly) matching lower bounds for the three problems. In particular, our
lower bound for the online collaborative filtering problem implies that the sample complexity of
learning matrices with bounded entries and trace norm of Θ(n) is Ω(n3/2). This matches an upper
bound on the sample complexity derived by Shamir and Shalev-Shwartz (2011) and solves an open
problem posed by Shamir and Srebro (2011).

2. Problem statements and main results

We start with the definition of (β, τ)-decomposability. For this, we first define a symmetrization
operator.

Definition 1 (Symmetrization) Given an m × n non-symmetric matrix W its symmetrization is
the (m+ n)× (m+ n) matrix:

sym(W) :=

[
0 W

W> 0

]
.

If m = n and W is symmetric, then sym(W) := W.

The main property of matrices we rely on is (β, τ)-decomposability, which we define below.

Definition 2 ((β, τ)-decomposability) An m × n matrix W is (β, τ)-decomposable if there exist
symmetric, positive semidefinite matrices P,N ∈ Rp×p, where p is the order of sym(W), such that
the following conditions hold:

sym(W) = P−N,

Tr(P) + Tr(N) ≤ τ,

∀i ∈ [p] : P (i, i), N(i, i) ≤ β.

We say that a set of matricesW is (β, τ)-decomposable if every matrix inW is (β, τ)-decomposable.

In the above, the parameter β stands for a bound on the diagonal elements of P and N, while the
parameter τ stands for the trace of P and N. It is easy to verify that ifW is (β, τ)-decomposable
then so is its convex hull, conv(W). Throughout this paper, we assume for technical convenience
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that β ≥ 1.2 In the full version of this paper (Hazan et al., 2012) we give a connection between a
(β, τ)-decomposition for a rectangular matrix W and its max-norm and trace norm.

Our first contribution is a generic low regret algorithm for online matrix prediction with a (β, τ)-
decomposable comparison class. We also assume that all the matrices in the comparison class have
bounded entries. Formally, we consider the following problem.

Online Matrix Prediction

parameters: β ≥ 1, τ ≥ 0, G ≥ 0
input: A set of matrices,W ⊂ [−1, 1]m×n, which is (β, τ)-decomposable
for t = 1, 2, . . . , T

adversary supplies a pair of indices (it, jt) ∈ [m]× [n]
learner picks Wt ∈ conv(W) and outputs the prediction Wt(it, jt)
adversary supplies a convex, G-Lipschitz, loss function `t : [−1, 1]→ R
learner pays `t(Wt(it, jt))

Theorem 1 Let p be the order (i.e. the number of rows or columns) of sym(W) for any matrix
W ∈ W . There exists an efficient algorithm for Online Matrix Prediction with the regret bound

Regret ≤ 2G
√
τβ log(2p)T .

The Online Matrix Prediction problem captures several specific problems considered in the
literature, given in the next few subsections.

2.1. Online Max-Cut

Recall that on each round of online max-cut, the learner should decide whether two vertices of a
graph, (it, jt) are joined by an edge or not. The learner outputs a number ŷt ∈ [−1, 1] which is to be
interpreted as a randomized prediction in {−1, 1}: predict 1 with probability 1+ŷt

2 and −1 with the
remaining probability. The adversary then supplies the true outcome, yt ∈ {−1, 1}, where yt = 1
indicates the outcome “(it, jt) are joined by an edge”, and yt = −1 the opposite outcome. The loss
suffered by the learner is the absolute loss,

`t(ŷt) =
1

2
|ŷt − yt|,

which can be also interpreted as the probability that a randomized prediction according to ŷt will
not equal the true outcome yt.

The comparison class isW = {WA|A ⊆ [n]}, where

WA(i, j) =

{
1 if ((i ∈ A) and (j /∈ A)) or ((j ∈ A) and (i /∈ A))

−1 otherwise.

That is,WA(i, j) indicates if (i, j) crosses the cut defined byA or not. The following lemma (proved
in Hazan et al. (2012)) formalizes the relationship of this online problem to the max-cut problem:

2. The condition β ≥ 1 is not a serious restriction since for any (β, τ)-decomposition of W, viz. sym(W) = P−N,
we have β ≥ |P (i, j)|, |N(i, j)| for all (i, j) since P,N � 0; and so 2β ≥ |P (i, j)−N(i, j)| = |W (i, j)|. Thus,
if we make the reasonable assumption that there is some W ∈ W with |W (i, j)| = 1 for some (i, j), then β ≥ 1

2
is

necessary.
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Lemma 1 Consider an online sequence of loss functions {`t} as above. Let

W∗ = arg min
W∈W

∑
t

`t(W (it, jt)) .

Then W∗ = WA for the set A that determines the max cut in the weighted graph over [n] nodes
whose weights are given by wij =

∑
t:(it,jt)=(i,j) yt for every (i, j).

A regret bound of O(
√
nT ) is attainable for this problem as follows via an exponential time

algorithm: consider the set of all 2n cuts in the graph. For each cut defined by A, consider a
decision rule or “expert” that predicts according to the matrix WA. Standard bounds for the experts
algorithm imply the O(

√
nT ) regret bound.

A simple way to get an efficient algorithm is to replace W with the class of all matrices in
{−1, 1}n×n. This leads to n2 different prediction tasks, each of which corresponds to the decision
if there is an edge between two nodes, which is efficiently solvable. However, the regret with respect
to this larger comparison class scales like O(

√
n2T ).

Another popular approach for circumventing the hardness is to replaceW with the set of matri-
ces whose trace-norm is bounded by τ = n. However, applying the online mirror descent algorith-
mic framework with an appropriate squared-Schatten norm regularization, as described in (Kakade
et al., 2012), leads to a regret bound that again scales like O(

√
n2T ).

In contrast, our Online Matrix Prediction algorithm yields an efficient solution for this problem,
with a regret that scales like

√
n log(n)T . The regret bound of the algorithm follows from the

following lemma (proved in Section 4):

Lemma 2 W is (1, n)-decomposable.

Combining the above with Theorem 1 yields:

Corollary 2 There is an efficient algorithm for the online max-cut problem with regret bounded by
2
√
n log(n)T .

We prove (in (Hazan et al., 2012)) that the upper bound is near-optimal:

Theorem 3 For any algorithm for the online max-cut problem, there is a sequence of entries (it, jt)
and loss functions `t for t = 1, 2, . . . , T such that the regret of the algorithm is at least

√
nT/16.

2.2. Collaborative Filtering with Bounded Trace Norm

In this problem, the comparison set W is the following set of m × n matrices with trace norm
bounded by some parameter τ :

W := {W ∈ [−1, 1]m×n : ‖W‖? ≤ τ}. (1)

Without loss of generality we assume that m ≤ n.
As before, applying the technique of Kakade et al. (2012) gives a regret bound of O(

√
τ2T ),

which leads to trivial results in the most relevant case where τ = Θ(
√
mn). We can obtain a much

better result based on the following lemma (proved in Section 4):

Lemma 3 The classW given in Eq. (1) is (
√
m+ n, 2τ)-decomposable.

38.5



HAZAN KALE SHALEV-SHWARTZ

Combining the above with Theorem 1 yields:

Corollary 4 There is an efficient algorithm for the online collaborative filtering problem with re-
gret bounded by 2G

√
2τ
√
n+m log(2(m+ n))T ), assuming that for all t the loss function is

G-Lipschitz.

This upper bound is near-optimal, as we can also show (in (Hazan et al., 2012)) the following
lower bound on the regret:

Theorem 5 For any algorithm for online collaborative filtering problem with trace norm bounded
by τ , there is a sequence of entries (it, jt) and G-Lipschitz loss functions `t for t = 1, 2, . . . , T such

that the regret of the algorithm is at least G
√

1
2τ
√
nT .

In fact, the technique used to prove the above lower bound also implies a lower bound on the
sample complexity of collaborative filtering in the batch setting.

Theorem 6 The sample complexity of learningW in the batch setting, is Ω(τ
√
n/ε2). In particular,

when τ = Θ(n), the sample complexity is Ω(n1.5/ε2).

This matches an upper bound given by Shamir and Shalev-Shwartz (2011). The question of de-
termining the sample complexity ofW in the batch setting has been posed as an open problem by
Shamir (who conjectured that it scales like n1.5) and Srebro (who conjectured that it scales like
n4/3).

2.3. Online gambling

In the gambling problem, we define the comparison setW as the following set of n × n matrices.
First, for every permutation π : [n]→ [n], define the matrix Wπ as:

Wπ(i, j) =

{
1 if π(i) ≤ π(j)

0 otherwise.

Then the setW is defined as

W := {Wπ : π is a permutation of [n]}. (2)

On round t, the adversary supplies a pair (it, jt) with it 6= jt, and the learner outputs as a prediction
ŷt = Wt(it, jt) ∈ [0, 1], where we interpret ŷt as the probability that it will beat jt. The adversary
then supplies the true outcome, ŷt ∈ {0, 1}, where ŷt = 1 indicates the outcome “it beats jt”, and
ŷt = 0 the opposite outcome. The loss suffered by the learner is the absolute loss,

`t(yt) = |yt − ŷt|,

which can be also interpreted as the probability that a randomized prediction according to ŷt will
not equal to the true outcome yt.

As before, we tackle the problem by analyzing the decomposability of W , via the following
lemma (see (Hazan et al., 2012) for proof):

Lemma 4 The classW given in Eq. (2) is (O(log(n)), O(n log(n)))-decomposable.
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Combining the above with Theorem 1 yields:

Corollary 7 There is an efficient algorithm for the online gambling problem with regret bounded

by O(
√
n log3(n)T ).

This upper bound is near-optimal, as Kleinberg et al. (2010) essentially prove the following
lower bound on the regret:

Theorem 8 For any algorithm for the online gambling problem, there is a sequence of entries
(it, jt) and labels yt, for t = 1, 2, . . . , T , such that the regret of the algorithm is at least Ω(

√
n log(n)T ).

3. The Algorithm for Online Matrix Prediction

In this section we prove Theorem 1 by constructing an efficient algorithm for Online Matrix Pre-
diction and analyze its regret. We start by describing an algorithm for Online Linear Optimization
(OLO) over a certain set of matrices and with a certain set of linear loss functions. We show later that
the Online Matrix Prediction problem can be reduced to this online convex optimization problem.

3.1. The (β, τ, γ)-OLO problem

In this section, all matrices are in the space of real symmetric matrices of size N × N , which we
denote by SN×N .

On each round of online linear optimization, the learner chooses an element from a convex set
K and the adversary responds with a linear loss function. In our case, the convex set K is a subset
of the set of matrices with bounded trace and diagonal values:

K ⊆ {X ∈ SN×N : X � 0, ∀i ∈ [N ] : Xii ≤ β, Tr(X) ≤ τ}.

We assume for convenience that τ
N I ∈ K. The loss function on round t is the function X 7→

X • Lt
def
=
∑

i,j X(i, j)Lt(i, j), where Lt is a matrix from the following set of matrices:

L = {L ∈ SN×N : L2 def
= LL is a diagonal matrix s.t. Tr(L2) ≤ γ}.

The requirement for L2 to be diagonal is purely for technical reasons. We call the above setting a
(β, τ, γ)-OLO problem.

As usual, we analyze the regret of the algorithm

Regret :=

T∑
t=1

Xt • Lt − min
X∈K

T∑
t=1

X • Lt ,

where X1, . . . ,XT are the predictions of the learner.
Below we describe and analyze an algorithm for the (β, γ, τ)-OLO problem. The algorithm,

forms of which independently appeared in the work of Tsuda et al. (2006) and Arora and Kale
(2007), performs exponentiated gradient steps followed by Bregman projections onto K. The pro-
jection operation is defined with respect to the quantum relative entropy divergence:

∆(X,A) = Tr(X log(X)−X log(A)−X + A).
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Algorithm 1 Matrix Multiplicative Weights with Quantum Relative Entropy Projections
1: Input: η
2: Initialize X1 = τ

N I.
3: for t = 1, 2, . . . , T : do
4: Play the matrix Xt.
5: Obtain loss matrix Lt.
6: Update Xt+1 = arg minX∈K∆(X, exp(log(Xt)− ηLt)).
7: end for

Algorithm 1 has the following regret bound (essentially following Tsuda et al. (2006); Arora
and Kale (2007)):

Theorem 9 Suppose η is chosen so that η‖Lt‖ ≤ 1 for all t (where ‖Lt‖ is the spectral norm of
Lt). Then

Regret ≤ η
T∑
t=1

Xt • L2
t +

τ log(N)

η
.

Equipped with the above we are ready to prove a regret bound for (β, τ, γ)-OLO.

Theorem 10 Assume T ≥ τ log(N)
β . Then, applying Algorithm 1 with η =

√
τ log(N)
βγT on a (β, τ, γ)-

OLO problem, yields an efficient algorithm whose regret is at most 2
√
βγτ log(N)T .

Proof Clearly, Algorithm (1) can be implemented in polynomial time. To analyze the regret of the
algorithm we rely on Theorem 9. By the definition of K and L, we get that Xt • L2

t ≤ βγ. Hence,
the regret bound becomes

Regret ≤ ηβγT +
τ log(N)

η
.

Substituting the value of η, we get the stated regret bound. One technical condition is that the above
regret bound holds as long as η is chosen small enough so that for all t, we have η‖Lt‖ ≤ 1. Now
‖Lt‖ ≤ ‖Lt‖F =

√
Tr(L2

t ) ≤
√
γ. Thus, for T ≥ τ log(N)

β , the technical condition is satisfied for

η =
√

τ log(N)
βγT .

3.2. An Algorithm for the Online Matrix Prediction Problem

In this section we describe a reduction from the Online Matrix Prediction problem (with a (β, τ)-
decomposable comparison class) to a (β, τ, 4G2)-OLO problem with N = 2p. The regret bound of
the derived algorithm will follow directly from Theorem 10.

We now describe the reduction. To simplify our notation, let q be m if W contains non-
symmetric matrices and q = 0 otherwise. Note that the definition of sym(W) implies that for a
pair of indices (i, j) ∈ [m]× [n], their corresponding indices in sym(W) are (i, j + q).

Given any matrix W ∈ W we embed its symmetrization sym(W) (which has size p×p) into the
set of 2p × 2p positive semidefinite matrices as follows. Since W admits a (β, τ)-decomposition,
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there exist P,N � 0 such that sym(W) = P − N, Tr(P) + Tr(N) ≤ τ , and for all i ∈ [p],
P (i, i), N(i, i) ≤ β. The embedding of W in S2p×2p, denoted φ(W), is defined to be the matrix3

φ(W) =

[
P 0
0 N

]
.

It is easy to verify that φ(W) belongs to the convex set K defined below:

K :=

{
X ∈ S2p×2p s.t.

X � 0 (3)

∀i ∈ [2p] : X(i, i) ≤ β

Tr(X) ≤ τ

∀(i, j) ∈ [m]× [n] : (X(i, j + q)−X(p+ i, p+ j + q)) ∈ [−1, 1]

}

We shall run the OLO algorithm with the set K. On round t, if the adversary gives the pair
(it, jt), then we predict

ŷt = Xt(it, jt + q)−Xt(p+ it, p+ jt + q) .

The last constraint defining K simply ensures that ŷt ∈ [−1, 1]. While this constraint makes the
quantum relative entropy projection onto K more complex, in (Hazan et al., 2012) we show how we
can leverage the knowledge of (it, jt) to get a very fast implementation.

Next we describe how to choose the loss matrices Lt using the subderivative of `t. Given the
loss function `t, let g be a subderivative of `t at ŷt. Since `t is convex and G-Lipschitz, we have that
|g| ≤ G. Define Lt ∈ S2p×2p as follows:

Lt(i, j) =


g if (i, j) = (it, jt + q) or (i, j) = (jt + q, it)

−g if (i, j) = (p+ it, p+ jt + q) or (i, j) = (p+ jt + q, p+ it)

0 otherwise.

(4)

Note that L2
t is a diagonal matrix, whose only non-zero diagonal entries are (it, it), (jt + q, jt + q),

(p+ it, p+ it), and (p+ jt + q, p+ jt + q), all equalling g2. Hence, Tr(L2
t ) = 4g2 ≤ 4G2.

To summarize, the Online Matrix Prediction algorithm will be as follows:

3. Note that this mapping depends on the choice of P and N for each matrix W ∈ W . We make an arbitrary choice
for each W.
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Algorithm 2 Matrix Multiplicative Weights for Online Matrix Prediction
1: Input: β, τ,G,m, n, p, q (see text for definitions)

2: Set: γ = 4G2, N = 2p, η =
√

τ log(N)
βγT

3: Let K be as defined in Eq. (3)
4: Initialize X1 = τ

N I.
5: for t = 1, 2, . . . , T : do
6: Adversary supplies a pair of indices (it, jt) ∈ [m]× [n].
7: Predict ŷt = Xt(it, jt + q)−Xt(p+ it, p+ jt + q).
8: Obtain loss function `t : [−1, 1]→ R and pay `t(ŷt).
9: Let g be a sub-derivative of `t at ŷt

10: Let Lt be as defined in Eq. (4)
11: Update Xt+1 = arg minX∈K∆(X, exp(log(Xt)− ηLt)).
12: end for

To analyze the algorithm, note that for any W ∈ W ,

φ(W) • Lt = 2g(P (it, jt)−N(it, jt)) = 2gW (it, jt),

and
Xt • Lt = 2g(Xt(it, jt + q)−Xt(p+ it, p+ jt + q)) = 2gŷt.

So for any W ∈ W , we have

Xt • Lt − φ(W) • Lt = 2g(ŷt −W (it, jt)) ≥ 2(`t(ŷt)− `t(W (it, jt))),

by the convexity of `t(·). This implies that for any W ∈ W ,

T∑
t=1

`t(ŷt)− `t(W (it, jt)) ≤
1

2

[
T∑
t=1

Xt • Lt − φ(W) • Lt

]
≤ 1

2
· RegretOLO.

Thus, the regret of the Online Matrix Prediction problem is at most half the regret in the (β, τ, 4G2)-
OLO problem.

3.2.1. PROOF OF THEOREM 1

Following our reduction, we can now appeal to Theorem 10. For T ≥ τ log(2p)
β , the bound of The-

orem 10 applies and gives a regret bound of 2G
√
τβ log(2p)T . For T < τ log(2p)

β , note that in any
round, the regret can be at most 2G, since the subderivatives of the loss functions are bounded in ab-
solute value by G and the domain is [−1, 1], so the regret is bounded by 2GT < 2G

√
τβ log(2p)T

since β ≥ 1. Thus, we have proved the regret bound stated in Theorem 1.

4. Decomposability Proofs

In this section we prove the decomposability results for the comparison classes corresponds to max-
cut and collaborative filtering. The decomposability result for gambling is deferred to (Hazan et al.,
2012). All the three decompositions we give are optimal up to constant factors.
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4.1. Proof of Lemma 2 (max-cut)

We need to show that every matrix WA ∈ W admits a (1, n)-decomposition. We can rewrite
WA = −wAw

>
A where wA ∈ Rn is the vector such that

wA(i) =

{
1 if i ∈ A
−1 otherwise.

Since WA is already symmetric, sym(WA) = WA = −wAw
>
A . Thus we can choose P = 0 and

N = wAw
>
A . These are positive semidefinite matrices with diagonals bounded by 1 and sum of

traces equals to n, which concludes the proof. Since Tr(wAw
>
A) = n, this (1, n)-decomposition is

optimal.

4.2. Proof of Lemma 3 (collaborative filtering)

Recall that ‖W‖? is the trace norm of W, i.e. the sum of its singular values. We need to show that
every matrix W ∈ W , i.e. an m× n matrix over [−1, 1] with ‖W‖? ≤ τ , admits a (

√
m+ n, 2τ)-

decomposition. The (
√
m+ n, 2τ)-decomposition of W is a direct consequence of the following

theorem, setting Y = sym(W), with p = m + n, and the fact that ‖sym(W)‖? = 2‖W‖? (see
Hazan et al. (2012)).

Theorem 11 Let Y be a p× p symmetric matrix with entries in [−1, 1]. Then Y can be written as
Y = P−N where P and N are both positive semidefinite matrices with diagonal entries bounded
by
√
p, and Tr(P) + Tr(N) = ‖Y‖?.

Proof Let
Y =

∑
i

λiviv
>
i

be the eigenvalue decomposition of Y. We now show that

P =
∑

i: λi≥0
λiviv

>
i and N =

∑
i: λi<0

−λiviv>i

satisfy the required conditions. Clearly Tr(P) + Tr(N) =
∑

i |λi| = ‖Y‖?. Define abs(Y) =
P + N =

∑
i |λi|viv>i . Note that

abs(Y)2 =
∑
i

λ2iviv
>
i = Y2.

We now show that all entries (and in particular, the diagonal entries) of abs(Y) are bounded in
magnitude by

√
p. Since P and N are both positive semidefinite, their diagonal elements must be

non-negative, so we conclude that the diagonal entries of P and N are bounded by
√
p as well.

Since all the entries of Y are bounded in magnitude by 1, it follows that all entries of Y2 are
bounded in magnitude by p. In particular, the diagonal entries of Y2 are bounded by p. Since these
diagonal entries are equal to the squared lengths of the rows of abs(Y), it follows that each entry of
abs(Y) is bounded in magnitude by

√
p.
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This decomposition is optimal up to constant factors. Consider the matrix W formed by taking
m = τ√

n
rows of an n × n Hadamard matrix. In (Hazan et al., 2012) we prove that any (β, τ̃)-

decomposition of sym(W) must have βτ̃ ≥ 1
4τ
√
n. Since the regret bound depends on the product

βτ̃ , we conclude that the decomposition obtained from Theorem 11 is optimal up to a constant
factor.

5. Conclusions

In recent years the FTRL (Follow The Regularized Leader) paradigm has become the method of
choice for proving regret bounds for online learning problems. In several online learning problems
a direct application of this paradigm has failed to give tight regret bounds due to suboptimal “con-
vexification” of the problem. This unsatisfying situation occurred in mainstream applications, such
as online collaborative filtering, but also in basic prediction settings such as the online max cut or
online gambling settings.

In this paper we single out a common property of these unresolved problems: they involve
structured matrix prediction, in the sense that the matrices involved have certain nice decomposi-
tions. We give a unified formulation for three of these structured matrix prediction problems which
leads to near-optimal convexification. Applying the standard FTRL algorithm, Matrix Multiplica-
tive Weights, now gives efficient and near optimal regret algorithms for these problems. In the
process we resolve two COLT open problems. The main conclusion of this paper is that spec-
tral analysis in matrix predictions tasks can be surprisingly powerful, even when the connection
between the spectrum and the problem may not be obvious on first sight (such as in the online
gambling problem).

We leave open the question of bridging the logarithmic gap between known upper and lower
bounds for regret in these structured prediction problems. Note that since all the three decom-
positions in this paper are optimal up to constant factors, one cannot close the gap by improving
the decomposition; some fundamentally different algorithm seems necessary. It would also be in-
teresting to see more applications of the (β, τ)-decomposition for other online matrix prediction
problems.
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