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Abstract
We study online learning under logarithmic loss with regular parametric models. We show that
a Bayesian strategy predicts optimally only if it uses Jeffreys prior. This result was known for
canonical exponential families; we extend it to parametric models for which the maximum likeli-
hood estimator is asymptotically normal. The optimal prediction strategy, normalized maximum
likelihood, depends on the number n of rounds of the game, in general. However, when a Bayesian
strategy is optimal, normalized maximum likelihood becomes independent of n. Our proof uses
this to exploit the asymptotics of normalized maximum likelihood. The asymptotic normality of
the maximum likelihood estimator is responsible for the necessity of Jeffreys prior.
Keywords: Online Learning, Logarithmic Loss, Bayesian Strategy, Jeffreys Prior, Asymptotic
Normality of Maximum Likelihood Estimator

1. Introduction

In the online learning setup, the goal is to predict a sequence of outcomes, revealed one at a time,
almost as well as a set of experts. We consider online density estimators with log loss, where
the forecaster’s prediction at each round takes the form of a probability distribution over the next
outcome, and the loss suffered is the negative logarithm of the forecaster’s probability of the out-
come. The aim is to minimize the regret, which is the difference between the cumulative loss of
the forecaster (that is, the sum of these negative logarithms) and that of the best expert in hindsight.
The optimal strategy for sequentially assigning probability to outcomes is known to be normalized
maximum likelihood (NML) (see, for e.g., Cesa-Bianchi and Lugosi, 2006; Grunwald, 2007, and
see Definition 4 below). NML suffers from two major drawbacks: the horizon n of the problem
needs to be known in advance, and the strategy can be computationally expensive since it involves
marginalizing over subsequences. In this paper, we investigate the optimality of two alternative
strategies, namely the Bayesian strategy and the sequential normalized maximum likelihood strat-
egy; see Definitions 5 and 6 below. Bayesian prediction under Jeffreys prior has been shown to be
asymptotically optimal (see, for e.g., Grunwald, 2007, chaps 7,8). Moreover the regret of SNML is
within a constant of the minimax optimal (Kotlowski and Grunwald, 2011). We show that for a very
general class of parametric models (Definition 1), optimality of a Bayesian strategy means that the
strategy uses Jeffreys prior. Furthermore we show that optimality of the Bayesian strategy is equiva-
lent to optimality of sequential normalized maximum likelihood. The major regularity condition for

c© 2012 F. Hedayati & P.L. Bartlett.



HEDAYATI BARTLETT

these parametric families is that the maximum likelihood estimate is asymptotically normal. This
classical condition holds for a broad class of parametric models.

2. Definitions and Notation

We work in the same setup of (Hedayati and Bartlett, 2012) and use their definitions and notation.
The goal is to predict a sequence of outcomes xt ∈ X , almost as well as a set of experts. We use xt to
denote (x1, x2, · · · , xt), x0 to denote the empty sequence, and xnm to denote (xm, xm+1, · · · , xn).
At round t, the forecaster’s prediction is a conditional probability density qt(·|xt−1), where the
density is with respect to a fixed measure λ on X . For example, if X is discrete, λ could be
the counting measure; for X = Rd, λ could be Lebesgue measure. The loss that the forecaster
suffers at that round is − log qt(xt | xt−1), where xt is the outcome revealed after the forecaster’s
prediction. The difference between the cumulative loss of the prediction strategy and the best expert
in a reference set is called the regret. The goal is to minimize the regret in the worst case over all
possible data sequences. In this paper, we consider i.i.d. parametric constant experts parametrized
by θ ∈ Θ.

Definition 1 (Parametric Constant Model) A constant expert is an iid stochastic process, that is,
a joint probability distribution p on sequences of elements of X such that for all t > 0 and for all x
in X , p

(
xt
∣∣xt−1

)
= p (xt). A parametric constant model (Θ, (X ,Σ), λ, pθ) is a parameter set Θ,

a measurable space (X ,Σ), a measure λ on X , and a parameterized function pθ : X → [0,∞) for
which, for all θ ∈ Θ, pθ is a probability density on X with respect to λ. It defines a set of constant
experts via pθ

(
xt
∣∣xt−1

)
= pθ (xt).

For convenience, we will often refer to a parametric constant model as just pθ.
A strategy q is any sequential probability assignment qt(· | xt−1) that, given a history xt−1,

defines the conditional density of xt ∈ X with respect to the measure λ. It defines a joint distribution
q on sequences of elements of X in the obvious way,

q(xn) =

n∏
t=1

q(xt|xt−1).

In general, a strategy depends on the sequence length n. We denote such strategies by q(n).

Definition 2 (Regret) The regret of a strategy q(n) on sequences of length n with respect to a para-
metric constant model pθ is

R(xn, q(n)) =

n∑
t=1

− log q
(n)
t (xt|xt−1)− inf

θ∈Θ

n∑
t=1

− log pθ(xt|xt−1) = sup
θ∈Θ

log
pθ(x

n)

q(n)(xn)

We consider a generalization of the regret of Definition 2. This is because some strategies are
only defined conditioned on a fixed initial sequence of observations xm−1. For such cases, we
define the conditional regret of xn, given a fixed initial sequence xm−1, in the following way (see
Grunwald, 2007, chap. 11).
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Definition 3 (Conditional Regret)

RΘ(xnm, q
(n)|xm−1) =

n∑
t=m

− log qt(xt|xt−1)− inf
θ∈Θ

n∑
t=1

− log pθ(xt|xt−1)

= sup
θ∈Θ

log
pθ(x

n)

q(n)(xnm | xm−1)
.

Notice that the strategy q(n) defines only the conditional distribution q(n)(xnm | xm−1). We call such
a strategy a conditional strategy. In what follows, where we consider a conditional strategy, we
assume that xm−1 is such that these conditional distributions are always well defined.

Definition 4 (NML) Given a fixed horizon n, the normalized maximum likelihood (NML) strategy
is defined via the joint probability distribution

p
(n)
nml(x

n) =
supθ∈Θ pθ(x

n)∫
Xn supθ∈Θ pθ(y

n) dλn(yn)
,

provided that the integral in the denominator exists. For t ≤ n, the conditional probability distribu-
tion is

p
(n)
nml(xt | x

t−1) =
p

(n)
nml(x

t)

p
(n)
nml(x

t−1)
,

where p(n)
nml(x

t) and p(n)
nml(x

t−1) are marginalized joint probability distributions of p(n)
nml(x

n):

p
(n)
nml(x

t) =

∫
Xn−t

p
(n)
nml(x

n) dλn−t(xnt+1).

The regret of the NML strategy achieves the minimax bound, that is, q(n) = p
(n)
nml minimizes

maxxn R(xn, q(n)) (see, for e.g., Grunwald, 2007, chap. 6). Note that p(n)
nml might not be defined if

the normalization is infinite. In many cases, for a sequence xm−1 and for all n ≥ m, we can define
the conditional probabilities

p
(n)
nml(x

n
m|xm−1) =

supθ∈Θ pθ(x
n)∫

Xn−m+1 supθ∈Θ pθ(x
n) dλn−m+1(xnm)

.

For these cases the conditional NML again attains the minimax bound, that is, q(n) = p
(n)
nml mini-

mizes maxxnm R(xnm, q
(n) | xm−1) (see Grunwald, 2007, chap. 11). In both cases, the nml strategy

is an equalizer, meaning that the regrets of all sequences of length n are equal.

Definition 5 (SNML) The sequential normalized maximum likelihood (SNML) strategy has

psnml(xt | xt−1) =
supθ∈Θ pθ(x

t)∫
X supθ∈Θ pθ(x

t) dλ(xt)
.

Notice that this update does not depend on the horizon. Under mild conditions, the regret of SNML
is no more than a constant (independent of n) larger than the minimax regret (Kotlowski and Grun-
wald, 2011). Once again, psnml is not defined if the integral in the denominator is infinite. In many
cases, for a sequence xm−1 and for all n ≥ m, the appropriate conditional probabilities are properly
defined. We restrict our attention to these cases.
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Definition 6 (Bayesian) For a prior distribution π on Θ, the Bayesian strategy with π is defined as

pπ(xt) =

∫
θ∈Θ

pθ(x
t) dπ(θ).

The conditional probability distribution is defined in the obvious way,

pπ(xt | xt−1) =
pπ(xt)

pπ(xt−1)
.

We denote the conditional Bayesian strategy for a fixed xm−1 as pπ(xnm | xm−1).

Jeffreys prior (Jeffreys, 1946) has the appealing property that it is invariant under reparameteri-
zation.

Definition 7 (Jeffreys prior) For a parametric model pθ, Jeffreys prior is the distribution over the
parameter space Θ that is proportional to

√
|I(θ)|, where I is the Fisher information at θ (that is,

the variance of the score, ∂/∂θ ln pθ(X), where X has density pθ).

Our main theorem uses the notion of exchangeability of stochastic processes.

Definition 8 (Exchangeable) A stochastic process is called exchangeable if the joint probability
does not depend on the order of observations, that is, for any n > 0, any xn ∈ X n, and any
permutation σ on {1, . . . , n}, the probability of xn is the same as the probability of xn permuted by
σ.

When we consider the conditional distribution p(xnm | xm−1) defined by a conditional strategy,
we are interested in exchangeability of the conditional stochastic process, that is, invariance under
any permutation that leaves xm−1 unchanged.

The asymptotic normality of the maximum likelihood estimator is the major regularity condition
of the parametric models that is required for our main result to hold.

Definition 9 (Asymptotic Normality of MLE) Consider a parametric constant model pθ. We say
that the parametric model has an asymptotically normal MLE if, for all θ0 ∈ Θ,

√
n
(
θ̂(xn) − θ0

)
d→ N

(
0, I-1 (θ0)

)
,

where I(θ) is the Fisher information at θ, xn is a sample path of pθ0 , and θ̂(xn) is the maximum
likelihood estimate of θ given xn, that is, θ̂(xn) maximizes pθ(xn).

Asymptotic normality holds for regular parametric models; for typical regularity conditions, see
for example, Theorem 3.3 in (Newey and McFadden, 1994).

For parametric models whose maximum likelihood estimates take values in a countable set, we
need the notion of a lattice MLE.

Definition 10 (Lattice MLE) Consider a parametric model pθ with θ ∈ Θ ⊆ Rd. The parametric
model is said to have a lattice MLE with diminishing step-size hn, if for any θ, the possible maximum
likelihood estimates of n i.i.d random variables generated by pθ are points in Θ that are of the form
(b+ k1hn, b+ k2hn, · · · , b+ kdhn), for some integers k1, k2, · · · , kd and some real numbers b and
hn. Additionally hn is positive and diminishes to zero as n goes to infinity.

We are now ready to state and prove our main result.
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3. Main Result

We show that in parametric models with an asymptotically normal MLE, the optimality of a Bayesian
strategy implies that the strategy uses Jeffreys prior. Furthermore we show that the optimality of
a Bayesian strategy is equivalent to the optimality of sequential normalized maximum likelihood.
This extends the result for canonical minimal exponential family distributions from (Hedayati and
Bartlett, 2012) to regular parametric models. Note that NML is the unique optimal strategy, so
when we say that some other strategy is equivalent to NML, that is the same as saying that strategy
predicts optimally.

Theorem 11 Suppose we have a parametric model pθ with an asymptotically normal MLE. As-
sume that the MLE has a density with respect to Lebesgue measure or that the model has a lattice
MLE with diminishing step-size hn. Also assume that I(θ), the Fisher information at θ is contin-
uous in θ, and that, for all x, pθ(x) is continuous in θ. Also fix m > 0 and xm−1, and assume
that p(n)

nml(x
n
m|xm−1) and pπ(xnm|xm−1) are well defined, where π is the Jeffreys prior. Then the

following are equivalent.

(a) NML = Bayesian:
There is a prior π on Θ such that for all n and all xnm,

p
(n)
nml(x

n
m|xm−1) = pπ(xnm|xm−1).

(b) NML = SNML:
For all n and all xnm,

p
(n)
nml(x

n
m|xm−1) = psnml(x

n
m|xm−1).

(c) NML = Bayesian with Jeffreys prior:
If π denotes Jeffreys prior on Θ, for all n and all xnm,

p
(n)
nml(x

n
m|xm−1) = pπ(xnm|xm−1).

(d) psnml(·|xm−1) is exchangeable.

(e) SNML = Bayesian:
There is a prior π on Θ such that for all n and all xnm,

psnml(x
n
m|xm−1) = pπ(xnm|xm−1).

(f) SNML = Bayesian with Jeffreys prior:
If π denotes Jeffreys prior on Θ, for all n and all xnm,

psnml(x
n
m|xm−1) = pπ(xnm|xm−1).

The proof is in the appendix.
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4. Examples

Example 1 This example is taken from (Hedayati and Bartlett, 2012). In this setting, the experts
are Bernoulli distributions,

pµ(xn) = µ(
∑n
i=1 xi)(1− µ)(n−

∑n
i=1 xi),

with parameter space (0, 1). Note that this model has a lattice MLE with diminishing step-size 1/n.
Because for a fixed n the possible maximum likelihood estimates are

1

n
,

2

n
,

3

n
, . . . ,

n− 1

n
.

The SNML is not defined for n = 1. However if xm−1 contains at least one 0 and one 1, the con-
ditional SNML strategy is defined. Fix x2 = 10. Consider x5 = (10011) and y5 = (10110). Then
x5 is a permutation of y5 with the initial x2 fixed. However psnml(x5

3 | x2) = psnml(011 | 10) =
0.0930 6= psnml(110 | 10) = psnml(y

5
3 | y2) = 0.0932. This means that psnml( . | x2) is not ex-

changeable, hence based on our main theorem SNML and NML cannot be equivalent and neither is
equivalent to a Bayesian strategy.

Example 2 In this example the parametric family is the class of one-dimensional Gaussian distri-
butions with unknown mean and variance µ and σ2, i.e.

pµ,σ2(x) =
1√
2π

exp

{
− 1

2σ2
x2 +

µ

σ2
x− µ2

2σ2
+ log σ

}
.

The MLE is

µ̂n =
1

n

n∑
i=1

xi and σ̂2
n =

1

n

n∑
i=1

(xi − µ̂n)2 .

The conditional SNML satisfies

psnml(xn|xn−1) ∝
(
2πσ̂2

n

)−n
2 exp

{
−
∑n

i=1 (xi − µ̂n)2

2σ̂2
n

}

=
e−

n
2 n

n
2

(2π (n− 1))
n
2

1(
σ̂2
n−1 + 1

n (xn − µ̂n−1)2
)n

2

.

Normalizing we get:

psnml(xn|xn−1) =
Γ
(
n
2

)
Γ
(

1
2

)
Γ
(
n−1

2

) (nσ̂n−1)−
1
2

(
1 +

(xn − µ̂n−1)2

nσ̂2
n−1

)−n
2

.

It can be shown (Kotlowski and Grunwald, 2011) that for n > 1

R(xn2 , psnml | x1)−R(xn−1
2 , psnml | x1)

=
n+ 1

2
log n− n

2
log(n− 1)− 1

2
log 2e+

Γ
(
n−1

2

)
Γ
(
n
2

) .
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This shows that the conditional SNML is an equalizer and hence equivalent to the conditional NML.
Moreover, asymptotic normality holds for any µ ∈ R and any σ ∈ R+ and pµ,σ2(x) is continuous
in µ and σ2, hence Theorem 11 can be applied. This shows that conditional SNML and NML are
equivalent to a conditional Bayesian strategy under Jeffreys prior. A direct computation of the
Bayesian strategy with Jeffreys prior verifies this. Note that since this example is not a canonical
exponential family, the results of (Hedayati and Bartlett, 2012) cannot be applied here.

Example 3 In this example, the parametric family is the class of one-dimensional asymmetric
student-t distributions as defined in (Zhu and Galbraith, 2009) with unknown skewness parame-
ter α ∈ (0 , 1) and fixed left and right tail parameters v1 = v2 = 1, i.e.

pα(x) =


1
π

(
1 +

(
x

2α

)2)−1
for x ≤ 0 ,

1
π

(
1 +

(
x

2(1−α)

)2
)−1

for x > 0 .

(Zhu and Galbraith, 2009) established asymptotic normality of maximum likelihood estimators
in asymmetric student-t distributions. Note that additionally for any x, pα(x) is continuous in
α, hence Theorem 11 is applicable to this example. Proposition 2 in (Zhu and Galbraith, 2009)
shows that the Fisher information of pα is proportional to 1

α(1−α) . This means that Jeffreys prior

is proportional to 1√
α(1−α)

. After normalization we get 1

π
√
α(1−α)

. Calculating the regret of the

Bayesian strategy under Jeffreys prior shows that for a fixed n > 0, the regret changes for different
sequences of observations. For example, for n = 3, and sequence of observations (1, 1,−1) the
maximum likelihood estimate of α is 0.4136 and the regret of the Bayesian strategy under Jeffreys
prior is 1.1472. On the other hand if we observe (2, 2,−2), the maximum likelihood estimate is
0.3777 with 1.1851 for regret. This means that the Bayesian strategy under Jeffreys prior is not
optimal because otherwise it should have resulted in equal regrets for sequences of equal length.
Furthermore Theorem 11 shows that no prior distribution on (0 , 1) can make the Bayesian strategy
optimal and SNML can not be optimal either.

5. Acknowledgments
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Appendix: Proof of Theorem 11

Fix xm−1 so that all of the relevant conditional distributions are defined. We prove that (a), (b), and
(c) are equivalent, and that (d), (e), and (f) are equivalent. The equivalence of (b) and (d) is Theorem
1 in (Hedayati and Bartlett, 2012).
(a)⇒ (b): NML being equivalent to a Bayesian strategy means that NML is horizon-independent.
Hence for any m− 1 < t ≤ n,

p
(n)
nml(xt|x

t−1) = pπ(xt|xt−1) = p
(t)
nml(xt|x

t−1) = psnml(xt|xt−1),

which means that NML is equivalent to SNML.
(b)⇒ (c): We use the asymptotic normality property to prove this below.
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(c)⇒ (a): This is immediate.
(d)⇒ (e): We know that (d) and (b) are equivalent, and that (b) implies (a), but (b) and (a) together
imply (e).
(e)⇒ (d): Since SNML is Bayesian, psnml(xn) =

∫ ∏n
i=1 pθ (xi) d π(θ) for some prior distribution

π on Θ. As
∏n
i=1 pθ (xi) does not depend on the order of observations, SNML is exchangeable.

(e)⇒ (f): (e) implies (d), which implies both (b) and (c), and together these imply (f).
(f)⇒ (e): This is immediate.
The heart of the proof is verifying that
(b)⇒ (c): NML being equivalent to SNML means that, for all m− 1 ≤ t ≤ n,

psnml(x
t | xm−1) = p

(n)
nml(x

t | xm−1) (1)

=

∫
supθ pθ(x

t, yn−t)d λn−t(yn−t)∫
supθ pθ(x

m−1, yn−m+1)d λn−m+1 (yn−m+1)

=

∫
pθ̂(xt,yn−t)

(xt, yn−t)d λn−t
(
yn−t

)∫
pθ̂(xm−1,yn−m+1)

(xm−1, yn−m+1)d λn−m+1 (yn−m+1)
,

where θ̂(xt,yn−t) is the maximum likelihood estimate upon observing xt, yn−t. As n goes to infinity,
θ̂(xt,yn−t) converges to θ̂yn−t . This is because as n goes to infinity, 1

n

[∑t
i=1 log pθ(xi)

]
in the

following equation goes to zero :

θ̂(xt,yn−t) = arg max
θ∈Θ

1

n

 t∑
i=1

log pθ(xi) +
n−t∑
j=1

log pθ(yj)

 .
Now we rewrite Equation (1) in a different form. Let Cθ0∆θ be a hypercube centered at θ0 with all
sides having length h, where ∆θ = hd, is the volume of the hypercube. Define

Snxt(θ0) =
{
zn−t

∣∣∣θ̂(xt,zn−t) ∈ Cθ0∆θ/
√
nd

}
,

where Cθ0
∆θ/
√
nd

is a hypercube that has volume ∆θ/
√
nd with all sides having length equal to

h/
√
n. Let PΘ

∆θ/
√
nd

be the largest collection of disjoint hypercubes Cθ0
∆θ/
√
nd

that fit in Θ. Note

that as ∆θ goes to zero PΘ
∆θ/
√
nd

covers the whole Θ. Define

gn(xt, xm−1,∆θ) =

∑
C
θ0

∆θ/
√
nd

∫
Sn
xt

(θ0) pθ0(xt)pθ0(yn−t)d λn−t
(
yn−t

)
∑

C
θ0

∆θ/
√
nd

∫
Sn
xm−1 (θ0) pθ0(xm−1)pθ0(yn−m+1)d λn−m+1 (yn−m+1)

.

First of all we show that

lim
n→∞

lim
∆θ→0

| gn(xt, xm−1,∆θ)− p(n)
nml(x

t | xm−1) | = 0.

Since for all n, we have psnml(xt | xm−1) = p
(n)
nml(x

t | xm−1) this implies that gn(xt, xm−1,∆θ)
converges to psnml(xt | xm−1). Then we show that the limit of gn(xt, xm−1,∆θ) as n goes to
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infinity and ∆θ goes to zero is a Bayesian conditional under Jeffreys prior. Now, it is easy to see
the following:

p
(n)
nml(x

t | xm−1)

=

∑
C
θ0

∆θ/
√
nd

∫
Sn
xt

(θ0) pθ̂(xt,yn−t)
(xt)pθ̂(xt,yn−t)

(yn−t)d λn−t
(
yn−t

)
∑

C
θ0

∆θ/
√
nd

∫
Sn
xm−1 (θ0) pθ̂(xm−1,yn−m+1)

(xm−1)pθ̂(xm−1,yn−m+1)
(yn−m+1)d λn−m+1 (yn−m+1)

.

The only difference between this and gn(xt, xm−1,∆θ) is that instead of θ0 we have the parameter
θ̂(xm−1,yn−m+1) for each hypercube. The distance between two points in each hypercube is at most
h
√
d/n, hence ∣∣∣θ0 − θ̂(xt,yn−t)

∣∣∣ ≤ h√d

n
.

As ∆θ and consequently h go to zero, θ0 converges to θ̂(xt,yn−t) for the expressions in the numerator
and to θ̂(xm−1,yn−m+1) for those in the denominator. Due to the continuity of the likelihood for each
hypercube in the numerator, we have

lim
∆θ→0

pθ0
(
xt, yn−t

)
= pθ̂(xt,yn−t)

(
xt, yn−t

)
.

Similarly, for each hypercube in the denominator we have

lim
∆θ→0

pθ0
(
xm−1, yn−m+1

)
= pθ̂(xm−1,yn−m+1)

(
xm−1, yn−m+1

)
.

Hence gn(xt, xm−1,∆θ) converges to p(n)
nml(x

t | xm−1). Furthermore as n goes to infinity the NML
probability does not change, because it is equivalent to SNML and thus is horizon-independent.
This means limn→∞ lim∆θ→0 g

n(xt, xm−1,∆θ) = psnml(x
t | xm−1).

Next we show that the limit of gn(xt, xm−1,∆θ) as n goes to infinity and ∆θ goes to zero is a
Bayesian conditional under Jeffreys prior, which completes the proof. The following is easy to see:

pθ0

(
θ̂(xt,Y n−t) ∈ Cθ0

∆θ/
√
nd

)
=

∫
Sn
xt

(θ0)
pθ0(yn−t)d λn−t

(
yn−t

)
.

Moreover, we have

pθ0

(
θ̂(xt,Y n−t) ∈ Cθ0

∆θ/
√
nd

)
= pθ0

(
θ̂(xt,Y n−t) − θ0 ∈ C0

∆θ/
√
nd

)
(2)

= pθ0

(√
n(θ̂(xt,Y n−t) − θ0) ∈

√
nC0

∆θ/
√
nd

)
(3)

= pθ0

(√
n(θ̂(xt,Y n−t) − θ0) ∈ C0

∆θ

)
. (4)

Hence ∫
Sn
xt

(θ0)
pθ0(yn−t)d λn−t

(
yn−t

)
= pθ0

(√
n(θ̂(xt,Y n−t) − θ0) ∈ C0

∆θ

)
.
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Also,

gn(xt, xm−1,∆θ) =

∑
C
θ0

∆θ/
√
nd

pθ0(xt)pθ0

(√
n(θ̂(xt,Y n−t) − θ0) ∈ C0

∆θ

)
∑

C
θ0

∆θ/
√
nd

pθ0(xm−1)pθ0

(√
n(θ̂(xm−1,Y n−m+1) − θ0) ∈ C0

∆θ

) .
Let Fnxt,θ0(.) be the cumulative distribution function of the random variable

√
n(θ̂(xt,Y n−t) − θ0)

when the data is i.i.d. and generated by pθ0(·). Define Fnxm−1,θ0
(·) similarly. With these definitions,

gn(xt, xm−1,∆θ) =

∑
C
θ0

∆θ/
√
nd

pθ0(xt)Fnxt,θ0

(
C0

∆θ

)
∑

C
θ0

∆θ/
√
nd

pθ0(xm−1)Fn
xm−1,θ0

(
C0

∆θ

) .
Now we find the limit as ∆θ goes to zero. There are two possibilities: either the MLE has a density
with respect to Lebesgue measure or the model has a lattice MLE with diminishing step-size hn.
In the latter case, upon constructing PΘ

∆θ/
√
nd

, we choose the hypercubes so that all points of the

form (b + k1hn, b + k2hn, · · · , b + kdhn) in Θ are centers of some hypercubes. Furthermore we
make sure that each of these hypercubes contains at most one point of the form (b + k1hn, b +
k2hn, · · · , b+ kdhn), namely the center. Let ∆θn be small enough to make this phenomenon hold.
This construction makes many hypercubes Cθ0

∆θn/
√
nd

void of maximum likelihood points. Let us

abbreviate pθ0
(
θ̂(xt,Y n−t) ∈ Cθ0

∆θ/
√
nd

)
in Equation (2) byGnxt,θ0

(
Cθ0

∆θ/
√
nd

)
. Equation (2) shows

that Gnxt,θ0

(
Cθ0

∆θ/
√
nd

)
= Fnxt,θ0

(
C0

∆θn

)
. Many of Gnxt,θ0

(
Cθ0

∆θ/
√
nd

)
are zero, namely those with

θ0 that do not correspond to a θ̂(xt,yn−t), hence:∑
C
θ0
∆θn√
nd

pθ0(xt)Fnxt,θ0
(
C0

∆θn

)
=
∑
C
θ0
∆θn√
nd

pθ0(xt)Gnxt,θ0

(
Cθ0

∆θ/
√
nd

)

=
∑

θ0∈Θ̂n
xt

pθ0(xt)Gnxt,θ0

(
Cθ0

∆θ/
√
nd

)
,

where Θ̂n
xt =

{
θ ∈ Θ | ∃ yn−t s.t. θ̂(xt,yn−t) = θ

}
. Furthermore we have the following.

gn(xt, xm−1,∆θn) =

∑
θ0∈Θ̂n

xt
pθ0(xt)Gnxt,θ0

(
Cθ0

∆θ/
√
nd

)
∑

θ0∈Θ̂n
xm−1

pθ0(xm−1)Gn
xm−1,θ0

(
Cθ0

∆θ/
√
nd

) .
Note that Gnxt,θ0

(
Cθ0

∆θ/
√
nd

)
is the probability that θ̂(xt,Y n−t) equals θ0 where Y n−t are n − t

random variables generated by pθ0 in an i.i.d fashion.
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As n goes to infinity, the distribution of θ̂(xt,Y n−t) becomes independent of xt. This is be-
cause 1

n

∑t
i=1 log pθ(xi) converges to zero for all θ, and θ̂(xt,Y n−t) converges in probablity to θ0.

This along with the asymptotic normality of MLE implies that for all θ0 ∈ Θ̂xt,n, Gnxt,θ0 (·) con-
verges to the density of a multivariate normal distribution with mean θ0 and covariance matrix
I−1(θ0). A simple computation shows that the limit of Gnxt,θ0

(
Cθ0

∆θ/
√
nd

)
as n goes to infinity is√

nd |I(θ0)| /(2π)d. Now we construct hypercubes of sides of length hn and centers from Θ̂n
xt for

the numerator and from Θ̂n
xm−1 for the denominator. Let δn be the volume of each of these hyper-

cubes. It is obvious that δn diminishes to zero as n goes to infinity. Using Riemann integral and the
continuity of Fisher information and likelihood we get:

lim
n→∞

gn(xt, xm−1,∆θn) = lim
n→∞

∑
θ0∈Θ̂n

xt
pθ0(xt)Gnxt,θ0

(
Cθ0

∆θ/
√
nd

)
δn∑

θ0∈Θ̂n
xm−1

pθ0(xm−1)Gn
xm−1,θ0

(
Cθ0

∆θ/
√
nd

)
δn

=

∫
Θ pθ(x

t)
√
|I(θ)| dθ∫

Θ pθ(x
m−1)

√
|I(θ)| dθ

which shows that the strategy is Bayesian with Jeffreys prior. On the other hand if MLE has a
density with respect to Lebesgue measure then we get the following:

lim
∆θ→0

1√
nd

∑
C
θ0
∆θ√
nd

pθ0(xt)Fnxt,θ0
(
C0

∆θ

)
= lim

∆θ→0

1√
nd

∑
C
θ0

∆θ/
√
nd

pθ0(xt)

(
Fnxt,θ0

(
C0

∆θ

)
∆θ/
√
nd

)
∆θ√
nd

= lim
∆θ→0

∑
C
θ0

∆θ/
√
nd

pθ0(xt)

(
Fnxt,θ0

(
C0

∆θ

)
∆θ

)
∆θ√
nd

=

∫
Θ
pθ0(xt)fnxt,θ0(0)d θ0,

where fnxt,θ0(·) is the density of Fnxt,θ0 . This means that

gn(xt, xm−1) ≡ lim
∆θ→0

gn(xt, xm−1,∆θ) =

∫
Θ pθ0(xt)fnxt,θ0(0)d θ0∫

Θ pθ0(xm−1)fn
xm−1,θ0

(0)d θ0
. (5)

As n goes to infinity, the distribution of θ̂(xt,Y n−t) becomes independent of xt. This is because
1
n

∑t
i=1 log pθ(xi) converges to zero for all θ, and θ̂(xt,Y n−t) converges in probablity to θ0. This

along with the asymptotic normality of MLE shows that as n goes to infinity we get the following
convergence

√
n
(
θ̂(xt,Y n−t) − θ0

)
d→ N

(
0, I−1 (θ0)

)
.

Let Fθ0(·) be the cumulative distribution function of the multivariate normal distribution with mean
0 and covariance matrix I−1(θ0). Asymptotic normality implies that

Fnxt,θ0
(
C0

∆θ

)
→ Fθ0(C0

∆θ).
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This means that fnxt,θ0(θ0) converges to the density of a multivariate normal distribution with mean

0 and covariance matrix I−1(θ0). A simple computation shows that this value is
√
|I(θ0)| /(2π)d.

Now the only concern is whether we can take the limit of n→∞ inside the integral in Equation (5).

We let knxt(θ) =

√
(2π)dfnxt,θ(0), hence Equation (5) becomes:

gn(xt, xm−1) =

∫
Θ pθ(x

t)knxt(θ)dθ∫
Θ pθ(x

m−1)kn
xm−1(θ)dθ

.

As fnxt,θ(θ) converges to
√
I(θ0)/(2π)d when n goes to infinity, knxm−1(θ) and knxt(θ) converge to√

| I(θ) | as n goes to infinity. Now we use Lebesgue’s dominated convergence theorem (Weisstein,
2012b) and Fatou’s lemma (Weisstein, 2012a) to show that limit and integral are interchangeable.
Fatou’s lemma shows that :∫

Θ
pθ(x

m−1)
√
| I(θ) |dθ ≤ lim

n→∞

∫
Θ
pθ(x

m−1)knxm−1(θ)dθ.

Let

hnxt(θ) =
pθ(x

t)knxt(θ)

lims→∞
∫

Θ pθ(x
m−1)ks

xm−1(θ)dθ
.

As n goes to infinity, knxt(θ) approaches
√
| I(θ) | . Hence for ε =

√
| I(θ) | there exists an nθ such

that | knxt(θ)−
√
| I(θ) | | ≤ ε for n > nθ.

Therefore for n > nθ we have knxt(θ) ≤ 2
√
| I(θ) | , and

hnxt(θ) ≤
2pθ(x

t)
√
| I(θ) |∫

Θ pθ(x
m−1)

√
| I(θ) |dθ

.

Now let h̄nxt(θ) = hnxt(θ) for n > nθ and zero otherwise. For all n and θ ∈ Θ we have :

h̄nxt(θ) ≤
2pθ(x

t)
√
| I(θ) |∫

Θ pθ(x
m−1)

√
| I(θ) |dθ

.

It is obvious that the limits of both are equal as n goes to infinity. Furthermore, note that h̄nxt(θ) is
upper bounded by an integrable function, namely twice the conditional Bayesian density of xt under
Jeffreys prior given xm−1. We know that the conditional Bayesian density of xt under Jeffreys prior
given xm−1 is integrable from the assumption of the theorem. Consequently Lebesgue’s dominated
convergence theorem is applicable here:

lim
n→∞

gn(xt, xm−1) = lim
n→∞

∫
Θ
hnxt(θ)d θ

= lim
n→∞

∫
Θ
h̄nxt(θ)d θ

=

∫
Θ

lim
n→∞

h̄nxt(θ)d θ

=

∫
Θ pθ(x

t)
√
| I(θ) |

limn→∞
∫

Θ pθ(x
m−1)kn

xm−1(θ)dθ
.
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Also, we have

lim
n→∞

∫
Θ
pθ(x

m−1)knxm−1(θ)dθ =

∫
Θ

lim
n→∞

pθ(x
m−1)knxm−1(θ)dθ

=

∫
Θ
pθ(x

m−1)
√
| I(θ) |dθ,

because otherwise psnml(xt | xm−1) = limn→∞ g
n(xt, xm−1) = limn→∞

∫
Θ h̄

n
xt(θ)d θ would not

be a distribution. Hence we get:

lim
n→∞

lim
∆θ→0

gn(xt, xm−1,∆θ) =

∫
Θ pθ(x

t)
√
I(θ)dθ∫

Θ pθ(x
m−1)

√
I(θ)dθ

.

Notice that the proof does not use any properties of the Fisher information matrix. Thus, if the
MLE is asymptotically normal with covariance V (θ), then an optimal Bayesian strategy has prior
proportional to

√
|V (θ)|.
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