
JMLR: Workshop and Conference Proceedings vol 23 (2012) 31.1–31.18 25th Annual Conference on Learning Theory

Tight Bounds on Proper Equivalence Query Learning of DNF

Lisa Hellerstein HSTEIN@POLY.EDU
Devorah Kletenik DKLETENIK@CIS.POLY.EDU
Linda Sellie SELLIE@MAC.COM
Polytechnic Institute of NYU

Rocco Servedio ROCCO@CS.COLUMBIA.EDU

Columbia University

Editor: Shie Mannor, Nathan Srebro, Robert C. Williamson

Abstract
We prove a new structural lemma for partial Boolean functions f , which we call the seed lemma for
DNF. Using the lemma, we give the first subexponential algorithm for proper learning of poly(n)-
term DNF in Angluin’s Equivalence Query (EQ) model. The algorithm has time and query com-
plexity 2(Õ

√
n), which is optimal. We also give a new result on certificates for DNF-size, a simple

algorithm for properly PAC-learning DNF, and new results on EQ-learning log n-term DNF and
decision trees.
Keywords: query learning, exact learning, proper learning, DNF, certificates

1. Introduction

Over twenty years ago, Angluin (1988, 1990) began study of the equivalence query (EQ) learn-
ing model. Valiant (1984) had asked whether n-variable DNF formulas with poly(n) terms were
poly(n)-time learnable in the PAC model; this question is still open. Angluin asked the same ques-
tion in the EQ model. She introduced the method of “approximate fingerprints” and used it to prove
that any proper algorithm for EQ-learning poly(n)-term DNF formulas requires super-polynomial
query complexity, and hence super-polynomial time. (In a proper DNF learning algorithm, all hy-
potheses are DNF formulas.)

Angluin’s work left open the problem of determining the exact complexity of EQ-learning
poly(n)-term DNF, both properly and improperly. Tarui and Tsukiji (1999) noted that Angluin’s
proof can be modified to show that a proper EQ algorithm must have query complexity at least
2Õ(
√
n). (They did not give details, but we shall prove this explicitly as a consequence of a more

general result.) The fastest improper algorithm for EQ-learning DNF is due to Klivans and Servedio
(2004, Corollary 12), and runs in time 2Õ(n1/3).

Our positive results. In this paper, we give the first subexponential-time algorithm for proper
learning of poly(n)-term DNF in the EQ model. Our algorithm has time and query complexity that,
like the lower bound, is 2Õ(

√
n).

Our EQ algorithm implies a new result on certificates for DNF size. Hellerstein et al. (1996)
asked whether DNF has “poly-size certificates,” that is, whether there are polynomials q and r such
that for all s, n > 0, n-variable functions requiring DNF formulas of size greater than q(s, n) have
certificates of size r(s, n) certifiying that they do not have DNF formulas of size at most s. (By the

c© 2012 L. Hellerstein, D. Kletenik, L. Sellie & R. Servedio.

HELLERSTEIN KLETENIK SELLIE SERVEDIO

results of Hellerstein et al. (1996), this is equivalent to asking whether DNF can be properly learned
using polynomially many membership and equivalence queries, with hypotheses of polynomial
size.) Our result does not resolve this question, but it shows that there are analogous subexponential
certificates. More specifically, it shows that there exists a function r(s, n) = 2O(

√
n log s logn) such

that for all s, n > 0, n-variable functions requiring DNF formulas of size greater than r(s, n) have
certificates of size at most r(s, n) certifying that they do not have DNF formulas of size at most s.

Our EQ algorithm is based on a new structural lemma for partial Boolean functions, which we
call the seed lemma for DNF. It states that if a partial Boolean function f has at least one positive
example and is consistent with a DNF of size s, then f has a projection fp, induced by fixing the
values of O(

√
n log s) variables, such that fp has at least one positive example, and is consistent

with a conjunction of literals.
We also use the seed lemma for DNF to obtain a new subexponential proper algorithm for PAC-

learning DNFs which is simpler than the previous algorithm of Alekhnovich et al. (2009), with the
same bounds. The earlier algorithm runs multiple recursive calls in round robin fashion until one
succeeds; in contrast, our algorithm is iterative with a simple analysis.

Decision-trees can be PAC and EQ-learned in time nO(log s), where s is the size of the tree (Ehren-
feucht and Haussler, 1989; Simon, 1995). We prove a seed lemma for decision trees as well, and use
it to obtain an algorithm that learns decision trees using DNF hypotheses in time nO(log s1), where
s1 is the number of 1-leaves in the tree. (For any “minimal” tree, the number of 0-leaves is at most
ns1; this bound is tight for the optimal tree computing a conjunction of n literals.)

Our negative results. We prove a lower bound result that quantifies the tradeoff between the
number of queries needed to properly EQ-learn DNF formulas, and the size of such queries. One
consequence is a lower bound of 2Ω(

√
n logn) on the query complexity necessary for an EQ algorithm

to learn DNF formulas of size poly(n), using DNF hypotheses. This matches the lower bound of
2(Õ
√
n) mentioned by Tarui and Tsukuji. The bound for our EQ algorithm, applied to DNF formulas

of size poly(n), differs from this lower bound by only a factor of log n in the exponent.
We also prove a negative result on learning log n-term DNF using DNF hypotheses. Several

poly(n)-time algorithms are known for this problem in the membership and equivlence query
(MEQ) model (Bshouty, 1997; Blum and Rudich, 1995; Bshouty et al., 1996b; Hellerstein and
Raghavan, 2005). We prove that the membership queries are essential, by showing that there is no
poly(n)-time algorithm that learns O(log n)-term DNF using DNF hypotheses with equivalence
queries alone. In contrast, Angluin and Kharitonov (1995) showed that, under cryptographic as-
sumptions, membership queries do not help in PAC-learning unrestricted DNF formulas. Blum and
Singh (1990) gave an algorithm that PAC-learns log n-term DNF using DNF hypotheses of size
nO(logn) in time nO(logn); our results imply that significantly better bounds than these cannot be
achieved in the equivalence query model.

2. Preliminaries

A literal is a variable or its negation. A term, also called a monomial, is a possibly empty conjunc-
tion (∧) of literals. If the term is empty, all assignments satisfy it. The size of a term is the number
of literals in it. We say that term t covers assignment x if t(x) = 1. It is an implicant of Boolean
function f(x1, . . . , xn) if t(x) = 1 implies f(x) = 1. A DNF (disjunctive normal form) formula is
either the constant 0, the constant 1, or a formula of the form t1 ∨ · · · ∨ tk, where k ≥ 1 and each
ti is a term. A k-term DNF is a DNF formula consisting of at most k terms. A k-DNF is a DNF

31.2

TIGHT BOUNDS ON PROPER EQUIVALENCE QUERY LEARNING OF DNF

formula where each term has size at most k. The size of a DNF formula is the number of its terms;
if it is the constant 0 or 1, its size is 1.

A partial Boolean function f maps {0, 1}n to {0, 1, ∗}, where ∗ means undefined. A Boolean
formula φ is consistent with a partial function f (and vice versa) if φ(x) = f(x) for all x ∈ {0, 1}n
where f(x) 6= ∗. If f is a partial function, then dnf -size(f) is the size of the smallest DNF formula
consistent with f . Assignment x ∈ {0, 1}n is a positive example of (partial or total) Boolean
function f(x1, . . . , xn) if f(x) = 1, and a negative example if f(x) = 0. A sample of f is a set of
pairs (x, f(x)), where x ∈ {0, 1}n.

LetXn = {x1, . . . , xn}. A projection of a (partial) function f(x1, . . . , xn) is a function induced
from f by fixing k variables of f to constants in {0, 1}, where 0 ≤ k ≤ n. We consider the domain
of the projection to be the set of assignments to the remaining n − k variables. If T is a subset
of literals over Xn, or a term over Xn, then fT denotes the projection of f induced by setting the
literals in T to 1.

A certificate that a property P holds for a Boolean function f(x1, . . . , xn) is a set A ⊆ {0, 1}n
such that for all Boolean functions g(x1, . . . , xn), if g does not have property P , then f(a) 6= g(a)
for some a ∈ A. The size of certificate A is |A|.

For x ∈ {0, 1}n we write |x| to denote
∑

i xi and Maj(x1, . . . , xn) to denote the majority
function whose value is 1 if

∑n
i=1 xi ≥ n/2 and 0 otherwise. We write “log” to denote log base

2, and Õ(·) to indicate that we are supressing factors that are logarithmic in the arguments to Õ().
Finally, we use standard models and definitions from computational learning theory. We omit these
here; more information can be found in Appendix A.

3. Seeds

Definition 1 A seed of a partial Boolean function f(x1, . . . , xn) is a (possibly empty) monomial T
that covers at least one positive example of f , such that fT is consistent with a monomial.

Lemma 2 below is our main new structural lemma. At a high level its proof is similar to proofs of
earlier results in proof complexity (see e.g. Ben-Sasson and Wigderson (2001)) and DNF-learning
(Bshouty, 1996; Alekhnovich et al., 2004) but there are some significant differences. In these earlier
results the goal was to construct a projection of a given DNF causing all the terms of the reduced
DNF to be short, or forcing the DNF to be identically 0 or identically 1. Here we construct a
projection that reduces the DNF to a single monomial, and the reduced DNF cannot be identically
0. In addition, our lemma applies to partial functions and not just to total functions.

Lemma 2 (Seed lemma for DNF) Let f be a partial Boolean function such that f(a) = 1 for some
a ∈ {0, 1}n. Let s = dnf -size(f). Then f has a seed of size at most 3

√
n ln s.

Proof Let φ be a DNF formula of size s = dnf -size(f) that is consistent with f . If s = 1, then
the empty monomial ∅ is a seed. Suppose s > 1. Then φ must have at least two terms. Since φ has
size s = dnf -size(f), it is of minimum size, so each term of φ covers at least one positive example
of f . We construct a seed T from φ by iteratively selecting a literal in φ, and either replacing
all occurences of that literal by 0 or by 1. (We also replace any occurences of the negation of that
literal by the complementary constant.) These replacements correspond to a projection of the partial
function f . When we select a literal of φ to set to 0, we do so in order to remove the terms containing
the literal from φ. We store such selected literals in a set Z. When we select a literal to set to 1, we

31.3

HELLERSTEIN KLETENIK SELLIE SERVEDIO

do so because it appears in all remaining terms of φ, and setting it to 1 reduces the length of all of
those terms. We store these literals in a set R. During the process, we also remove terms from φ
if they no longer cover any positive examples of the current projection of partial function f (i.e. if
they only cover ∗’s).

More specifically, we initalize the two sets Z and R to be empty, and then repeat the following
steps until a seed is output:

1. If there is a term P of φ of size at most
√
n ln s, output the conjunction of the literals in

Z
⋃
P ′ as a seed, where P ′ is the set of literals in P . (Note that P could be the empty

monomial, which is satisfied by all assignments.)

2. If all terms of φ have size greater than
√
n ln s, check whether there is a literal l whose value

is not fixed by the projection fZ⋃
R, such that l is satisfied by all positive examples of fZ⋃

R

and:

(a) If so, add l to R. Set l to 1 in φ by removing all occurrences of l in the terms of φ.
(There are no occurrences of l̄ in φ.)

(b) If not, let l be the literal appearing in the largest number of terms of φ. Add l̄ to Z. Set
l to 0 in φ by removing from φ all terms containing l, and removing all occurrences of l̄
in the remaining terms. Then remove any terms which do not cover a positive example
of fZ∪R.

We now prove that the above procedure outputs a seed with the desired properties. Initially, φ
is a DNF of minimum size, so each term of φ covers at least one positive example of f . During
execution of Step 2a, no terms are deleted. If Step 2b is executed instead of 2a, there is a term t of
φ that does not contain the l chosen in 2b, and hence t is not deleted in that step. Literals are only
added to R in Step 2a, when there is a literal l satisfied by all positive examples of fZ⋃

R.
Using the above observations, it is easy to show that the following four invariants are maintained

by the procedure: (1) φ is consistent with fZ⋃
R, (2) φ contains at least one (possibly empty) term,

(3) each term of φ covers at least one positive example of fZ⋃
R (which is why, in Step 2a, no term

contains l̄), and (4) for any positive example a of f , if a satisfies all literals in Z, then a satisfies all
literals in R.

We now show that the output set, Z
⋃
P ′, is a seed. By the invariants, φ is consistent with

fZ
⋃
R, and term P of φ is satisfied by at least one positive example of fZ⋃

R. Thus fZ⋃
P ′ has at

least one positive example. Further, since P is a term of φ, and φ is consistent with fZ⋃
R, if an

assignment a satisfies Z
⋃
P ′
⋃
R then f(a) = 1 or f(a) = ∗. Thus fZ⋃

P ′ is consistent with the
monomial

∧
l∈R l, and Z

⋃
P ′ is a seed.

It remains to show that the output seed has size at most 3
√
n ln s. By construction, P has at

most
√
n ln s literals. To bound the size of Z we use a standard technique (cf. Angluin (1990)).

Each time a literal is added to Z, all terms of φ have size at least
√
n ln s, thus of the 2n possi-

ble literals, the one occuring most frequently appears in at least a fraction α of the terms, where
α = 1

2

√
(ln s)/n. So each time a literal is added to Z, the fraction of terms removed from φ is

at least α. When Z contains r literals, φ contains at most (1− α)rs terms. For r ≥ 2
√
n ln s,

(1− α)rs < e−αrs ≤ 1. Since φ always contains at least one term, Z contains at most 2
√
n ln s

literals. Thus T has size at most 3
√
n ln s.

31.4

TIGHT BOUNDS ON PROPER EQUIVALENCE QUERY LEARNING OF DNF

The bound of Lemma 2 on seed size is nearly tight for a monotone DNF formula on n variables
having

√
n disjoint terms, each of size

√
n. The smallest seed for the function it represents has size√

n− 1.

4. PAC-learning DNF (and decision trees) using seeds

We begin by presenting our algorithm for PAC-learning DNFs. It is simpler than our EQ algorithm,
and the ideas used here are helpful in understanding that algorithm. We present only the portion of
the PAC algorithm that constructs the hypothesis from an input sample S, and we assume that the
size s of the target DNF formula is known. The rest of the algorithm and analysis is routine (see
e.g. (Alekhnovich et al., 2009)).

Our algorithm takes as input a sample S of a Boolean function f : {0, 1}n → {0, 1}. It outputs
a DNF formula φ consistent with f on S (i.e. such that φ(x) = f(x) for all (x, f(x)) ∈ S). We
describe the algorithm here and give the pseudocode in Appendix B.

The algorithm begins with a hypothesis DNF h that is initialized to 0. It finds terms one by one
and adds them to h. Each additional term covers at least one uncovered positive example in S, and
terms are added to h until all positive examples in S are covered.

We now describe the procedure for finding a term. We write fS to denote the partial Boolean
function defined on {0, 1}n such that fS(x) = f(x) if x is such that (x, f(x)) ∈ S, and fS(x) = ∗
otherwise.

First, the algorithm tests each conjunction T of size at most 3
√
n ln s to determine whether

it is a seed of fS . To perform this test, the algorithm first explicitly checks whether T covers at
least one positive example in S; if not, T is not a seed. If so, the algorithm checks whether fST is
consistent with a monomial as follows. Let ST denote the set of positive examples in S that satisfy
T . The algorithm computes term T ′, which is the conjunction of the literals that are satisfied by all
assignments in ST (so T ⊆ T ′). One can show that fST is consistent with a monomial iff all negative
examples in S falsify T ′. So, the algorithm checks whether all negative examples in S falsify T ′.
(In effect, the algorithm runs the standard PAC algorithm for learning monomials on the sample
consisting of ST and all negative examples in S, yielding term T ′, and then it checks whether T ′ is
really consistent with that sample.)

By the seed lemma for DNF, at least one seed T will be found. For each seed T found, the
associated term T ′ is added to h, and the positive examples satisfying T ′ are removed from S. If S
still contains a positive example, the procedure is repeated with the new S. Note that a conjunction
T that is not a seed of fS at the start of the algorithm may become a seed later, after positive
examples have been removed from S.

The correctness of the algorithm follows immediately from the above discussion. Once a seed T
is found, all positive examples in S that satisfy T are removed from S, and thus the same seed will
never be found twice. Thus the algorithm runs in time 2O(

√
n log s logn) and outputs a DNF formula

of that size.

Connection to prior work. Let us say that an algorithm uses the seed covering method if it builds
a hypothesis DNF from an input sample S by repeatedly executing the following steps, until no
positive examples remain in the sample: (1) find a seed T of partial function fS , (2) form a term T ′

from the positive examples in S that satisfy T , by taking the conjunction of the literals satisfied by

31.5

HELLERSTEIN KLETENIK SELLIE SERVEDIO

all those examples, (3) add term T ′ to the hypothesis DNF and remove from S all positive examples
covered by T ′.

With this perspective, the algorithm of Blum and Singh (1990), which PAC-learns k-term DNF,
implicitly uses the seed covering method. It first finds seeds of size k−1, then size k−2, and so on.
It differs from our DNF-learning algorithm in that it only searches for a restricted type of seed. Our
seeds are constructed from two types of literals, those (in Z) that eliminate terms from the target,
and those (in P) that satisfy a term. Their algorithm only searches for seeds containing the first type
of literal. Their algorithm works by identifying subsets of examples satisfying the same subset of
terms of the target, while ours works by identifying subsets of examples satisfying a common term
of the target.

Learning decision trees. We conclude this section by observing that the seed method can also be
used to learn decision trees in time nO(log s1), where s1 is the number of 1-leaves in the decision
tree. This follows easily from the following lemma.

Lemma 3 (Seed lemma for decision trees) Let f be a partial Boolean function, such that f has at
least one positive example, and f is consistent with a decision tree having s1 leaves that are labeled
1. Then f has a seed of size at most log s1.

Proof Let J be a decision tree consistent with f that has s1 leaves labeled 1. Without loss of
generality, assume that each 1-leaf of J is reached by at least one positive example of f . Define an
internal node of J to be a key node if neither of its children is a leaf labeled 0. Define the key-depth
of a leaf to be the number of key nodes on the path from the root down to it. It is not hard to show
that since J has s1 leaves labeled 1, it must have a 1-leaf with key-depth at most log s1. Let p be
the path from the root to this 1-leaf. Let L be the set of literals that are satisfied along path p. Let
Q be the conjunction of literals in L that come from key nodes, and let R be the conjunction of the
remaining literals. Consider an example x that satisfies Q. Consider its path in J . If x also satisfies
R, it will end in the 1-leaf at the end of p, else it will diverge from p at a non-key node, ending at the
0-child of that node. Thus fQ is consistent with monomial R, Q is a seed of f , and |Q| ≤ log s1.

5. EQ-learning DNF using seeds

We now describe our algorithm for EQ-learning DNF. It can be viewed as learning a decision list
with monomials of bounded size in the nodes, and (implicant) monomials of unbounded size in the
leaves (and 0 as the default output bit); we use a variant of the (Helmbold et al., 1990; Simon, 1995)
approach to EQ-learn decision lists with bounded-size monomials in the nodes and constant output
bits at the leaves. Like our PAC algorithm, our EQ algorithm could be generalized to learn other
classes with seeds.

Intuition and a warm-up. We first describe the intuition behind the algorithm and analyze a special
case. In what follows let q = 3

√
n ln s; we say that a seed is “well-sized” if it has size at most q.

Recall that each seed T of a partial function f covers a non-empty subset of the positive examples
of f . We define the monomial associated with seed T of f to be the conjunction of the literals l that
are satisfied by all examples in that subset.

31.6

TIGHT BOUNDS ON PROPER EQUIVALENCE QUERY LEARNING OF DNF

Let φ be a DNF of size s that represents the target function f. As a warm-up, let us first consider
the simple case where each positive example of φ is covered by some well-sized seed T of f .1 Note
that the seed lemma does not guarantee that f has this property in general. Below we describe
an equivalence query algorithm for this case. (This algorithm is equivalent to the online mistake-
bound algorithm of Valiant (1999) for learning “projective functions” when the algorithm is applied
to projections of at most q variables, taking projections to be monomials.)

We can divide the problem of learning φ into two tasks: determining which conjunctions T of
at most q literals are seeds of f , and for each of those, learning the monomial T ′ associated with
seed T of f . Having performed those two tasks, we can output the hypothesis that is the disjunction
of all such terms T ′, since this disjunction is equivalent to φ.

The algorithm works by keeping a set of candidate seeds. Initially, this set consists of all
conjunctions of literals of size at most q. The algorithm executes the following simple loop. Let S
denote the set of counterexamples obtained so far (initially empty), and let fS be the partial function
defined by S (as in our description of the PAC algorithm). For each candidate seed T , the algorithm
finds the subset S′ of examples in S that satisfy T . It runs the standard PAC-learning algorithm for
monomials on the sample S′, which outputs a monomial T ′. If S′ has at least one positive example,
then T ′ is the conjunction of the literals satisfied in all positive examples of S′; otherwise T ′ is the
conjunction of all 2n literals (which is identically 0).2

The algorithm then checks whether T ′ is satisfied by any negative example in S. If so, then T
is neither a seed of fS nor a seed of f , and so it is removed from the set of candidate seeds. (If T ′

is the conjunction of all 2n literals, then T is not a seed of fS , but it may be a seed of f , so we
keep it as a candidate seed.) The algorithm then asks an equivalence query with the hypothesis h
that consists of the disjunction of all T ′ associated with candidate seeds T of fS . If it receives a
counterexample, the algorithm runs the loop again.

The proof that this procedure eventually asks an equivalence query h equivalent to φ is based
on the following observations. At each stage in the algorithm, the set of candidate seeds is always
a superset of the set of actual seeds of f . Because of this, each hypothesis h is consistent with the
current set S of counterexamples from which it was built. Thus each new counterexample must lead
to a new hypothesis h. More particularly, each new positive counterexample must cause at least
one literal to be removed from the constructed monomial T ′ for candidate seed T (which may or
may not be a seed). Each new negative counterexample must disqualify at least one candidate seed
that is not really a seed. For each actual seed T , the constructed monomial T ′ always contains a
superset of the literals that it should contain (beginning with all 2n literals). Thus the algorithm
makes progress with each counterexample, eventually ending up with only valid seeds T , correct
monomials T ′, and a correct hypothesis h. This concludes our analysis of the “warm-up” case.

The general case. The algorithm for the general case is more complicated. Detailed pseudocode
for the algorithm is given in Appendix C; in the rest of this section we provide a verbal description
of the algorithm and analyze it.

1. The class of DNFs whose positive examples can all be covered by seeds of size at most k was studied by Sloan et al.
(2008); such formulas are known as k-projective DNF. They gave a certificate result for this class, and noted that it
implies a proper membership and equivalence query algorithm for learning the class (which is not computationally
efficient).

2. We note that it is not actually necessary to run the PAC learning algorithm “from scratch” for each candidate T in
each loop iteration; instead, whenever a new positive counterexample x is added to S′ for some T , the algorithm can
update T ′ by removing any literals not satisfied by x.

31.7

HELLERSTEIN KLETENIK SELLIE SERVEDIO

To motivate the algorithm, consider the following: Let Q be the set of all conjunctions of at
most q literals. Suppose that we found all conjunctions of literals T of size at most q that were seeds
of f from set Q. We could then create a new partial function f ′ from f , by changing the value of
f to be undefined on all positive examples covered by the monomials T ′ associated with seeds T
of f . Repeating this procedure until f ′ had no positive examples would yield a sequence of partial
functions. Once a conjunction T was found to be a seed of one partial function in this sequence,
it could never be a seed of a subsequent partial function in the sequence. Thus the length of the
sequence is at most |Q|. Formally, we define a sequence of |Q| partial functions (where the partial
functions at the end of the sequence may have no positive examples) as follows: f (1) = f , and for
1 < i ≤ |Q|, f (i) is defined recursively as follows: for all x ∈ {0, 1}n, f (i)(x) = ∗ if x is a positive
example of f and is covered by a well-sized seed T of f (i−1), and f (i)(x) = f (i−1)(x) otherwise.
(The simple case we analyzed above is the case where only f (1) has positive examples.)

At a high level, our algorithm works by keeping a set of candidate seeds for each f (i) in the
sequence. For each candidate seed T of f (i), our algorithm also computes a monomial T ′. The
goal of the algorithm is to get to the point where, for each f (i), the set of candidate seeds consists
precisely of all well-sized seeds T of f (i), and the computed T ′ for each such T is the monomial
associated with seed T of f (i). At this point every positive example of f is covered by one of these
T ′, and the hypothesis h that is the disjunction of the T ′ for all f (i) is equivalent to φ.

In more detail, for 1 ≤ i ≤ |Q| the set of candidate seeds for each f (i) is initialized to consist of
all sets of at most q literals. The algorithm always maintains the invariant that the set of candidate
seeds for each f (i) contains all actual seeds of f (i). The algorithm works by executing the following
loop. Let S denote the set of counterexamples seen so far (initially empty). For each candidate seed
T of f (i), let Si denote the subset containing all negative examples in S, and all positive examples
in S that do not satisfy any candidate seed of an f (j) where j < i. Note that an example x is a
positive example of f (i) iff it does not satisfy a well-sized seed of f (j), for any j < i. Since the
set of candidate seeds for each f (i) includes all well-sized seeds of f (i), let Si denote the subset
containing all positive examples in S that do not satisfy any candidate seed of an f (j) where j < i,
and all negative examples in S. Thus Si is a sample of f (i).

For each i, and for each candidate seed T of f (i), the algorithm computes the subset S′ of
examples in Si that satisfy T . It then runs the standard PAC-learning algorithm for monomials on
the sample S′, which outputs a monomial T ′. Next, it checks whether T ′ is satisfied by any negative
example in Si. If not, it eliminates T from the set of candidate seeds of f (i) (because T cannot be a
seed of f (i)).

The algorithm then sets hypothesis h to be the disjunction of the T ′ computed for candidate
seeds T for all f (i). It asks an equivalence query with hypothesis h. If it receives a counterexample,
it runs the loop again.

Correctness and running time of the algorithm. To see that this algorithm eventually constructs a
correct hypothesis, observe first that in each loop iteration, the constructed hypothesis h is consistent
with the counterexample set S. If a counterexample is received, it must either lead to a removal of a
candidate seed of some f (i), or it must cause the removal of at least one literal in the T ′ constructed
for a candidate seed T of some f (i). Further, if candidate seed T is actually a seed of f (i), the
fact that Si is a sample of f (i) guarantees that the removed literal does not belong in T ′. Thus the
algorithm makes progress toward its goal in each loop iteration.

Since each negative counterexample eliminates a candidate seed of some f (i), the number of
negative counterexamples is |Q| = 2O(

√
n log s logn). Since each positive counterexample eliminates

31.8

TIGHT BOUNDS ON PROPER EQUIVALENCE QUERY LEARNING OF DNF

at least one literal from a term T ′ associated with a candidate seed of some f (i), the number of
positive counterexamples is n × |Q| = 2O(

√
n log s logn). Thus the algorithm will output a correct

hypothesis in time 2O(
√
n log s logn).

We have proved the following theorem.

Theorem 4 The above algorithm properly EQ-learns DNF in time 2O(
√
n log s logn).

Our algorithm can be viewed as an MEQ algorithm that does not make membership queries, as
can the (computationally inefficient) EQ algorithm presented in Section 6. Combining either one of
these algorithms with the results of Hellerstein and Raghavan (2005) relating certificates and query
complexity gives the following corollary. (We also give a direct proof, based on the seed lemma for
DNF, in Appendix D.)

Corollary 5 There exists a function r(s, n) = 2O(
√
n log s logn) such that for all s, n > 0, for all

Boolean functions f(x1, . . . , xn), if dnf -size(f) > r(s, n), then f has a certificate of size at most
r(s, n) certifying that ds(f) > s.

6. A tradeoff between number of queries and size of queries

In this section we give a careful quantitative sharpening of the “approximate fingerprint” proof of
Angluin (1990), which showed that poly(n)-term DNF cannot be properly EQ-learned with polyno-
mial query complexity. We thereby prove a tradeoff between the number of queries and the size of
queries that a proper EQ algorithm must use. Given any proper EQ algorithm A for learning DNF,
we show that if A does not use hypotheses with many terms, then A must make many queries. Our
result is the following (no effort has been made to optimize constants):

Theorem 6 Let 17 ≤ k ≤
√
n/(2 log n). Let A be any EQ algorithm which learns the class of all

poly(n)-size DNF formulas using queries which are DNF formulas with at most 2n/k terms. Then
A must make at least nk queries in the worst case.

Taking k = Θ(
√
n/ log n) in Theorem 6, we see that any algorithm that learns poly(n)-term

DNF using 2
√
n logn-term DNF hypotheses must make at least 2Ω(

√
n logn) queries.

We use the following lemma, which is a quantitative sharpening of Lemma 5 of (Angluin, 1990).
The proof is in Appendix E.1.

Lemma 7 Let f be any T -term DNF formula over n variables where T ≥ 1. For any r ≥ 1, either
there is a positive assignment y ∈ {0, 1}n (i.e. f(y) = 1) such that |y| ≤ r

√
n, or there is a

negative assignment z ∈ {0, 1}n (i.e. f(z) = 0) such that n > |z| > n− (
√
n lnT)/r − 1.

Proof of Theorem 6: As in (Angluin, 1990) we define M(n, t, s) to be the class of all monotone
DNF formulas over x1, . . . , xn with exactly t distinct terms, each containing exactly s distinct
variables. Let M denote

((ns)
t

)
, the number of formulas in M(n, t, s).

For the rest of the proof we fix t = n17 and s = 2k log n. We will show that for these settings
of s and t the following holds: given any DNF formula f with at most 2n/k terms, there is some
assignment af ∈ {0, 1}n such that at most M/nk of the M DNFs in M(n, t, s) agree with f on
af . This implies that any EQ algorithm using hypotheses that are DNF formulas with at most 2n/k

31.9

HELLERSTEIN KLETENIK SELLIE SERVEDIO

terms must have query complexity at least nk in the worst case. (By answering each equivalence
query f with the counterexample af , an adversary can cause each such query to eliminate at most
M/nk of theM target functions inM(n, s, t). Thus after nk−1 queries at leastM/nk > 1 possible
target functions in M(n, t, s) must still be consistent with all queries and responses so far, so the
algorithm cannot be done.)

Recall that 17 ≤ k ≤
√
n/(2 log n). Let f be any DNF with at most 2n/k terms. Applying

Lemma 7 with r =
√
n/2, we get that either there is a positive assignment y for f with |y| ≤

r
√
n = n/2, or there is a negative assignment z with n > |z| ≥ n − (

√
n ln(2n/k))/r − 1 =

n − (2 ln 2)n
k − 1 ≥ n − 3n

k . Let φ be a DNF formula randomly and uniformly selected from
M(n, t, s). All probabilities below refer to this draw of φ from M(n, t, s).

We first suppose that there is a positive assignment y for f with |y| ≤ n/2. In this case the
probability (over the random choice of φ) that any fixed term of φ (an AND of s randomly chosen

variables) is satisfied by y is exactly (ys)
(ns)
≤ (n/2

s)
(ns)
≤ 1

2s . A union bound gives that Prφ[φ(y) = 1] ≤
t/2s. Thus in this case, at most a t/2s fraction of formulas inM(n, t, s) agree with f on y. Recalling
that t = n17, s = 2k log n and k ≥ 17, we get that t/2s ≤ 1/nk as was to be shown.

Next we suppose that there is a negative assignment z for f such that n > |z| ≥ n(1 − 3
k). At

this point we recall the following fact from (Angluin, 1990):

Fact 8 (Lemma 4 of (Angluin, 1990)) Let φ be a DNF formula chosen uniformly at random from
M(n, t, s). Let z be an assignment which is such that t ≤

(
n
s

)
−
(|z|
s

)
.3 Then Prφ[φ(z) = 0] ≤

(1− ((|z| − s)/n)s)t.

Since t = n17, |z| ≤ n − 1, and s = O(
√
n log n), we indeed have that t ≤

(
n
s

)
−
(|z|
s

)
as

required by the above fact. We thus have

Pr
φ

[φ(z) = 0] ≤

(
1−

(
n(1− 3

k)− s
n

)s)t
=

(
1−

(
1− 3

k
− s

n

)s)t
.

Recalling that k ≤
√
n/(2 log n) we have that s/n = 2k log n/n ≤ 1/k, and thus

Pr
φ

[φ(z) = 0] ≤
(

1−
(

1− 4

k

)s)t
=

(
1−

(
1− 4

k

)2k logn
)n17

.

Using the simple bound (1 − 1
x)x ≥ 1/4 for x ≥ 2, we get that

(
1− 4

k

)2k logn ≥ 1/n16. Thus we

have Prφ[φ(z) = 0] ≤
(
1− 1

n16

)n17

≤ e−n � 1
nk as was to be shown.

7. Achieving the tradeoff between number of queries and query size

In this section we prove a theorem showing that the tradeoff between number of queries and query
size established in the previous section is essentially tight. Note that the algorithm A described in
the proof of the theorem is not computationally efficient.

3. The statement of Lemma 4 of Angluin (1990) stipulates that t ≤ n but it is easy to verify from the proof that
t ≤

(
n
s

)
−

(|z|
s

)
is all that is required.

31.10

TIGHT BOUNDS ON PROPER EQUIVALENCE QUERY LEARNING OF DNF

Theorem 9 Let 1 ≤ k ≤ 3n
logn and fix any constant d > 0. There is an algorithmA which learns the

class of all nd-term DNF formulas using at most O(nk+d+1) DNF hypothesis equivalence queries,
each of which is an 2O(n/k)-term DNF.

Following Bshouty et al. (1996a), the idea of the proof is to have each equivalence query be
designed so as to eliminate at least a δ fraction of the remaining concepts in the class. It is easy
to see that O(log(|C|) · δ−1) such equivalence queries suffice to learn a concept class C of size
|C|. Thus the main challenge is to show that there is always a DNF hypothesis having “not too
many” terms which is guaranteed to eliminate many of the remaining concepts. This is done by
taking a majority vote over randomly chosen DNF hypotheses in the class, and then showing that
this majority vote of DNFs can itself be expressed as a DNF with “not too many” terms.

Proof of Theorem 9: At any point in the execution of the algorithm, let CON denote the set of
all nd-term DNF formulas that are consistent with all counterexamples that have been received thus
far (so CON is the “version space” of nd-term DNF formulas that could still be the target concept
given what the algorithm has seen so far).

A simple counting argument gives that there are at most 3n
d+1

DNF formulas of length at most
nd. We describe an algorithm A which makes only equivalence queries which are DNF formulas
with at most nk terms and, with each equivalence query, multiplies the size of CON by a factor
which is at most

(
1− 1

nk

)
. After O(nk+d+1) such queries the algorithm will have caused CON to

be of size at most 1, which means that it has succeeded in exactly learning the target concept.
We first set the stage before describing the algorithm. Fix any point in the algorithm’s execution

and let CON = {f1, . . . , fN} be the set of all consistent nd-term DNF as described above. Given
an assignment a ∈ {0, 1}n and a label b ∈ {0, 1}, let Na,b denote the number of functions fi
in CON such that f(a) = b (so for any a we have Na,0 + Na,1 = N), and let Na,min denote
min{Na,0, Na,1}.

Let Z denote the set of those assignments a ∈ {0, 1}n such that Na,min <
1
nk ·N , so an assign-

ment is in Z if the overwhelming majority of functions in CON (at least a 1− 1
nk fraction) all give

the same output on the assignment. We use the following claim, whose proof is in Appendix E.2.

Claim 10 There is a list of t = 3n
k logn functions fi1 , . . . , fit ∈ CON which is such that the function

Maj(fi1 , . . . , fit) agrees with Maj(f1, . . . , fN) on all assignments a ∈ Z.

By Claim 10 there must exist some function hCON = Maj(fi1 , . . . , fit), where each fij is
an nd-term DNF, which agrees with Maj(f1, . . . , fN) on all assignments a ∈ Z. The function
Maj(v1, . . . , vt) over Boolean variables v1, . . . , vt can be represented as a monotone t-DNF with at
most 2t terms. If we substitute the nd-term DNF fij for variable vj , the result is a depth-4 formula
with an OR gate at the top of fanin at most 2t, AND gates at the next level each of fanin at most
t, OR gates at the third level each of fanin at most nd, and AND gates at the bottom level. By
distributing to “swap” the second and third levels of the formula from AND-of-OR to OR-of-AND
and then collapsing the top two levels of adjacent OR gates and the bottom two levels of adjacent
AND gates, we get that hCON is expressible as a DNF with 2t · ndt = 2O(n/k) terms.

Now we can describe the algorithm A in a very simple way: at each point in its execution, when
CON is the set of all nd-term DNF consistent with all examples received so far as described above,
the algorithm A uses the hypothesis hCON described above as its equivalence query. To analyze the

31.11

HELLERSTEIN KLETENIK SELLIE SERVEDIO

algorithm we consider two mutually exclusive possibilities for the counterexample a which is given
in response to hCON :

Case 1: a ∈ Z. In this case, since h(a) agrees with the majority of the values f1(a), . . . , fN (a),
such a counterexample causes the size of CON to be multiplied by at most 1/2.

Case 2: a /∈ Z. In this case we have Na,0, Na,1 ≥ 1
nk so the counterexample a must cause the

size of CON to be multiplied by at most
(
1− 1

nk

)
. This proves Theorem 9.

8. Membership queries provably help for learning log n-term DNF

The following is a sharpening of the arguments from Section 6 to apply to log(n)-term DNF.

Theorem 11 Let A be any algorithm which learns the class of all log n-term DNF formulas using
only equivalence queries which are DNF formulas with at most nlogn terms. Then A must make at
least n(logn)/3 equivalence queries in the worst case.

Sketch of Proof of Theorem 11: As in the proof of Theorem 6 we consider M(n, t, s), the class of
all monotone DNF over n variables with exactly t distinct terms each of length exactly s. For this
proof we fix s and t both to be log n. We will show that given any DNF formula with at most nlogn

terms, there is an assignment such that at most a 1/n(logn)/3 fraction of the DNFs in M(n, t, s)
agree with f on that assignment; this implies the theorem by the arguments of Theorem 6. Details
are in Appendix E.3.

Acknowledgments

Lisa Hellerstein was supported by NSF Grant CCF-0917153. Devorah Kletenik was supported by
the US Department of Education GAANN grant P200A090157. Linda Sellie was supported by NSF
grant 0937060 to the CRA for the CIFellows Project. Rocco A. Servedio was supported by NSF
grants CNS-0716245, CCF-0915929, and CCF-1115703.

References

M. Alekhnovich, M. Braverman, V. Feldman, A. Klivans, and T. Pitassi. Learnability and autom-
atizability. In Proceedings of the 45th IEEE Symposium on Foundations of Computer Science,
pages 621–630, 2004.

Michael Alekhnovich, Mark Braverman, Vitaly Feldman, Adam Klivans, and Toniann Pitassi. The
complexity of properly learning simple concept classes. Journal of Computer & System Sciences,
74(1):16–34, 2009.

Dana Angluin. Queries and concept learning. Machine Learning, 2:319–342, 1988.

Dana Angluin. Negative results for equivalence queries. Machine Learning, 5:121–150, 1990.

Dana Angluin. Computational Learning Theory: Survey and Selected Bibliography. In Proceedings
of the 24rd ACM Symposium on Theory of Computation, pages 351–369, 1992.

31.12

TIGHT BOUNDS ON PROPER EQUIVALENCE QUERY LEARNING OF DNF

Dana Angluin and Michael Kharitonov. When won’t membership queries help? Journal of Com-
puter and System Sciences, 50(2):336–355, 1995.

Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow - resolution made simple. J. ACM, 48
(2):149–169, 2001.

Avrim Blum and Steven Rudich. Fast learning of k-term DNF formulas with queries. Journal of
Computer and System Sciences, 51(3):367–373, 1995.

Avrim Blum and Mona Singh. Learning functions of k terms. In Proceedings of the 3rd Annual
Workshop on Computational Learning Theory (COLT), pages 144–153, 1990.

Nader H. Bshouty. A Subexponential Exact Learning Algorithm for DNF Using Equivalence
Queries. Information Processing Letters, 59(1):37–39, 1996.

Nader H. Bshouty. Simple learning algorithms using divide and conquer. Computational Complex-
ity, 6:174–194, 1997.

Nader H. Bshouty, Richard Cleve, Richard Gavaldà, Sampath Kannan, and Christino Tamon. Ora-
cles and queries that are sufficient for exact learning. Journal of Computer and System Sciences,
52(3):421–433, 1996a.

Nader H. Bshouty, Sally A. Goldman, Thomas R. Hancock, and Sleiman Matar. Asking questions
to minimize errors. J. Comput. Syst. Sci., 52(2):268–286, 1996b.

Andrzej Ehrenfeucht and David Haussler. Learning decision trees from random examples. Infor-
mation and Computation, 82(3):231–246, 1989.

Oya Ekin, Peter L. Hammer, and Uri N. Peled. Horn functions and submodular boolean functions.
Theoretical Computer Science, 175(2):257 – 270, 1997.

Lisa Hellerstein and Vijay Raghavan. Exact learning of DNF formulas using DNF hypotheses.
Journal of Computer & System Sciences, 70(4):435–470, 2005.

Lisa Hellerstein, Krishnan Pillaipakkamnatt, Vijay Raghavan, and Dawn Wilkins. How many
queries are needed to learn? Journal of the ACM, 43(5):840–862, 1996.

David P. Helmbold, Robert H. Sloan, and Manfred K. Warmuth. Learning nested differences of
intersection-closed concept classes. Machine Learning, 5:165–196, 1990.

Adam Klivans and Rocco Servedio. Learning DNF in time 2Õ(n1/3). Journal of Computer & System
Sciences, 68(2):303–318, 2004.

Hans-Ulrich Simon. Learning decision lists and trees with equivalence-queries. In Proceedings of
the Second European Conference on Computational Learning Theory, pages 322–336, London,
UK, 1995. Springer-Verlag. ISBN 3-540-59119-2. URL http://dl.acm.org/citation.
cfm?id=646943.712223.

Robert H. Sloan, Balázs Szörényi, and György Turán. Projective dnf formulae and their revision.
Discrete Applied Mathematics, 156(4):530–544, 2008.

31.13

http://dl.acm.org/citation.cfm?id=646943.712223
http://dl.acm.org/citation.cfm?id=646943.712223

HELLERSTEIN KLETENIK SELLIE SERVEDIO

Jun Tarui and Tatsuie Tsukiji. Learning DNF by approximating inclusion-exclusion formulae. In
Proceedings of the Fourteenth Conference on Computational Complexity, pages 215–220, 1999.

L. Valiant. Projection learning. Machine Learning, 37(2):115–130, 1999.

Lelsie Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142, 1984.

Appendix A. Learning models

In this appendix, we define the learning models used in this paper. We present the models here only
as they apply to learning DNF formulas. See e.g. (Angluin, 1992) for additional information and
more general definitions of the models.

In the PAC learning model of Valiant (1984), a DNF learning algorithm is given as input param-
eters ε and δ. It is also given access to an oracle EX(c,D), for a target DNF formula c defined on
Xn and a probability distributionD over {0, 1}n. On request, the oracle produces a labeled example
(x, c(x)), where x is randomly drawn from distribution D. An algorithm A PAC-learns DNF if for
any DNF formula c on Xn, any distribution D on {0, 1}n, and any 0 < ε, δ < 1, the following
holds: Given ε and δ, and access to oracle EX(c,D), with probability at least 1 − δ, A outputs a
hypothesis h such that Prx∈D[h(x) 6= c(x)] ≤ ε. Algorithm A is a proper DNF-learning algorithm
if h is a DNF formula.

In the EQ model of Angluin (1988), a DNF learning algorithm is given access to an oracle that
answers equivalence queries for a target DNF formula c defined on Xn. An equivalence query asks
“Is h equivalent to target c?”, where h is a hypothesis. If h represents the same function as c, the
answer is “yes,” otherwise, the answer is a counterexample x ∈ {0, 1}n such that h(x) 6= c(x).
If c(x) = 1, x is a positive counterexample, otherwise it is a negative counterexample. Algorithm
A EQ-learns DNF if, for n > 0 and any DNF formula c defined on Xn, the following holds: if
A is given access to an oracle answering equivalence queries for c, then A outputs a hypothesis h
representing exactly the same function as c. Algorithm A EQ-learns DNF properly if all hypotheses
used are DNF formulas.

A PAC or EQ learning algorithm learns k-term DNF if it satisfies the relevant requirements
above when the target is restricted to be a k-term DNF formula.

In the membership query variants of the PAC and EQ models, the learning algorithm can also
ask membership queries. In such a query the learning algorithm provides an assignment x ∈ {0, 1}n
and receives the value c(x) of the target concept on x.

A PAC algorithm for learning DNF is said to run in time t = t(n, s, ε, δ) if it takes at most t time
steps, and its output hypothesis can be evaluated on on any point in its domain in time t, when the
target is over {0, 1}n and has size s. The time complexity for EQ algorithms is defined analogously
for t = t(n, s).

The query complexity of an EQ learning algorithm is defined to be the sum of the sizes of all
hypotheses used.

Appendix B. Pseudocode for PAC algorithm of Section 4

We present the pseudocode for our PAC algorithm below, in Algorithm 1. In the pseudocode, we
use S+ (analogously, S−) to denote the set of positive (negative) examples in S.

31.14

TIGHT BOUNDS ON PROPER EQUIVALENCE QUERY LEARNING OF DNF

Algorithm 1: PAC algorithm
X = {x1, . . . , xn}, X̄ = {x̄1, . . . , x̄n}
Q = {t ⊂ X ∪ X̄ | |t| ≤ 3

√
n ln s} { set of potential seeds}

h = 0
while Q 6= ∅ AND S+ 6= ∅ do

for all t ∈ Q do
T =

∧
l∈t l

if T covers at least one e ∈ S+ then {test T to see if it is a seed of fS}
ST = {e | e ∈ S+ AND T covers e }
T ′ =

∧
l∈B l where B = {l ∈ X ∪ X̄ | x is satisified by all e ∈ ST }.

if {e | e ∈ S− AND e satisfies T ′} = ∅ then
S+ = S+ \ ST
h = h ∨ T ′
Remove t from Q

end if
end if

end for
end while
if S+ 6= ∅ then

return fail
else

return h
end if

Appendix C. Pseudocode for EQ algorithm of Section 5

We present the pseudocode for our EQ algorithm below, in Algorithm 2. In the pseudocode, the set
Hj contains each candidate seed T for f (j), with its current associated monomial T ′. The condition
T ′ 6≡ 0 means that T ′ does not contain a variable and its negation. As in the previous section, let Q
be the set of all terms of size at most 3

√
n ln s (all potential seeds).

Appendix D. Subexponential certificates for functions of more than subexponential
DNF size

We present a direct proof of Corollary 5, based on the seed lemma for DNF.

Proof Let s, n > 0. Let q(s, n) = 3
√
n log s. Let f be a function on n variables such that

dnf -size(f) > (2n)q(s,n). We first claim that there exists a partial function f ′, created by removing
a subset of the positive examples from f and setting them to be undefined, that does not have a
seed of size at most q(s, n). Suppose for contradiction that all such partial functions f ′ have such
a seed. Let S be the sample consisting of all 2n labeled examples (x, f(x)) of f . We can apply
the seed covering method of Section 4 to produce a DNF consistent with f , using a seed of size at
most q(s, n) at every stage. Since no seed will be used more than once, the output DNF is bounded
by the number of terms of size at most q(s, n), which is less than (2n)q(s,n). This contradicts that
dnf -size(f) > (2n)q(s,n). Thus the claim holds, and f ′ exists.

31.15

HELLERSTEIN KLETENIK SELLIE SERVEDIO

Algorithm 2: EQ Algorithm
Initialize h = 0. Ask an equivalence query with h. If answer is yes return h, else let e be the
counterexample received.
for all 1 ≤ j ≤ |Q|, Hj = {(T, T ′) | T ∈ Q,T ′ =

∧
l∈X∪X̄ l}

while True do
if e does not satisfy h then {e is a positive counterexample}

for j = 1, . . . , |Q| do
if e satisfies T for some (T, T ′) ∈ Hj then

for all T such that (T, T ′) ∈ Hj and e satisfies T do
remove from T ′ all literals falsified by e

end for
break out of for j = 1, . . . , |Q| loop

end if
end for

else {e is a negative counterexample}
for j = 1, . . . , |Q| do

Remove from Hj all (T, T ′) such that T ′ is satisfied by e
end for

end if
H∗ = {T ′ : for some j, (T, T ′) ∈ Hj and T ′ 6≡ 0 }
h =

∨
T ′∈H∗ T

′

Ask an equivalence query with hypothesis h. If answer is yes, return h, else let e be the
counterexample received.

end while

Since f ′ does not have a seed of size at most q(s, n), each term T of size at most q(s, n) either
does not cover any positive examples of f ′, or the projection f ′T is not consistent with a monomial.
Every function (or partial function) that is not consistent with a monomial has a certificate of size
3 certifying that it has that property, consisting of two positive examples of the function, and a
negative example that is between them (cf. Ekin et al. (1997)). For assignments r, x, y ∈ {0, 1}n,
we say that r is between x and y if ∀i, pi = ri or qi = ri. It follows that if f ′T is not consistent
with a monomial, then f ′ has a certificate c(T) of size 3 proving that fact, consisting of two positive
examples of f ′ that satisfy T , and one negative example of f ′ satisfying T that is between them.

Let T = {T | term T is such that |T | ≤ q(s, n) and f ′T is not consistent with a monomial}. Let
A =

⋃
T∈T c(T). Clearly |A| < 3(2n)q(s,n). We claim that A is a certificate that dnf -size(f) > s.

Suppose not. Then there exists a function g that is consistent with f on the assignments in A, such
that dnf -size(g) ≤ s. Consider the partial function h which is defined only on the assignments
in A, and is consistent with g (and f) on those assignments. The partial function h does not have
a seed of size at most q(s, n), because for all terms T of size at most q(s, n), either T does not
cover a positive assignment of h, or A contains a certificate that hT is not consistent with a mono-
mial. Since dnf -size(g) ≤ s, and every DNF that is consistent with g is also consistent with h,
dnf -size(h) ≤ s also. Thus by the seed lemma for DNF, h has a seed of size at most q(s, n). This
contradiction concludes the proof.

31.16

TIGHT BOUNDS ON PROPER EQUIVALENCE QUERY LEARNING OF DNF

Appendix E. Proofs

E.1. Proof of Lemma 7

Proof of Lemma 7: The proof uses the following claim, which is established by a simple greedy
argument:

Claim 12 (Lemma 6 of Angluin (1990)) Let φ be a DNF formula with T ≥ 1 terms such that each
term contains at least αn distinct unnegated variables, where 0 < α < 1. Then there is a nonempty4

set V of at most 1 + blogb T c variables such that each term of φ contains a positive occurrence of
some variable in V , where b = 1/(1− α).

Let f be a T -term DNF formula. Since by assumption we have T ≥ 1, there is at least one
term in f and hence at least one positive assignment y for f . If r ≥

√
n then clearly this positive

assignment y has |y| ≤ r
√
n, so the lemma holds for r ≥

√
n. Thus we may henceforth assume

that r <
√
n.

Let α = r√
n

(note that 0 < α < 1 as required by Claim 12). If there is some term of f with
fewer than αn = r

√
n distinct unnegated variables, then we can obtain a positive assignment y for f

with |y| < r
√
n by setting exactly those variables to 1 which are unnegated in this term and setting

all other variables to 0. So we may suppose that every term of f has at least αn distinct unnegated
variables. Claim 12 now implies that there is a nonempty set V of at most

1 + blog1/(1−r/
√
n) T c ≤ 1 +

√
n

r
lnT

variables V such that each term of f contains a positive occurrence of some variable in V . The
assignment z which sets all and only the variables in V to 0 is a negative assignment with n > |z| ≥
n− (

√
n lnT)/r − 1 (note that n > |z| because V is nonempty), and Lemma 7 is proved.

E.2. Proof of Claim 10

Proof Let functions fi1 , . . . , fit be drawn independently and uniformly from CON . (Note that
t ≥ 1 by the bound k ≤ 3n

logn .) We show that with nonzero probability the resulting list of functions
has the claimed property.

Fix any a ∈ Z. The probability that Maj(fi1 , . . . , fit) disagrees with Maj(f1, . . . , fN) on a is
easily seen to be at most (

t

t/2

)(
1

nk

)t/2
<

2t

nkt/2
.

Recalling that t = 3n
k logn , this is less than 1/2n for all 1 ≤ k ≤ n. Since there are at most 2n assign-

ments a in Z, a union bound over all a ∈ Z gives that with nonzero probability (over the random
draw of fi1 , . . . , fit) the function Maj(fi1 , . . . , fit) agrees with Maj(f1, . . . , fN) on all assignments
in Z as claimed.

4. We stress that V is nonempty because this will be useful for us later.

31.17

HELLERSTEIN KLETENIK SELLIE SERVEDIO

E.3. Proof of Theorem 11

Proof of Theorem 11: Let M(n, t, s) be the class of all monotone DNF over n variables with
exactly t distinct terms each of length exactly s. Fix s and t both to be log n.We will show that given
any DNF formula with at most nlogn terms, there is an assignment such that at most a 1/n(logn)/3

fraction of the DNFs in M(n, t, s) agree with f on that assignment; this implies the theorem by the
arguments of Theorem 6.

Let f be any DNF formula with at most T = nlogn terms. Applying Lemma 7 to f with r = 1,
we may conclude that either there is an assignment y with |y| ≤

√
n and f(y) = 1, or there is an

assignment z with n > |z| ≥ n−
√
n(log n)2 and f(z) = 0.

Let φ be a DNF formula randomly and uniformly selected from M(n, t, s). All probabilities
below refer to this draw of φ from M(n, t, s).

We first suppose that there is an assignment y with f(y) = 1 and |y| ≤
√
n. The probability

that any fixed term of φ (an AND of s randomly chosen variables) is satisfied by y is exactly(|y|
s

)(
n
s

) ≤ (√ns)(
n
s

) <

(
1√
n

)s
=

1

n(logn)/2
.

A union bound gives that Prφ[φ(y) = 1] ≤ t· 1
n(logn)/2 <

1
n(logn)/3 . So in this case y is an assignment

such that at most a 1
n(logn)/3 fraction of formulas in M(n, t, s) agree with φ on y.

Next we suppose that there is an assignment z with f(z) = 0 and and n > |z| > n−
√
n(log n)2.

Since s = t = log n and and |z| ≤ n−1, we have that t ≤
(
n
s

)
−
(|z|
s

)
as required by Fact 8. Applying

Fact 8, we get that

Pr
φ

[φ(z) = 0] ≤

(
1−

(
n−
√
n(log n)2 − log n

n

)logn
)logn

<

(
1−

(
n− 2

√
n(log n)2

n

)logn
)logn

=

(
1−

(
1− 2(log n)2

√
n

)logn
)logn

≤
(

1−
(

1− 2(log n)3

√
n

))logn

=

(
2(log n)3

√
n

)logn

<

(
1

n1/3

)logn

=
1

n(logn)/3
.

So in this case z is an assignment such that at most a 1/n(logn)/3 fraction of formulas in M(n, t, s)
agree with φ on z. This concludes the proof of Theorem 11.

31.18

	Introduction
	Preliminaries
	Seeds
	PAC-learning DNF (and decision trees) using seeds
	EQ-learning DNF using seeds
	A tradeoff between number of queries and size of queries
	Achieving the tradeoff between number of queries and query size
	Membership queries provably help for learning log n-term DNF
	Learning models
	Pseudocode for PAC algorithm of Section 4
	Pseudocode for EQ algorithm of Section 5
	Subexponential certificates for functions of more than subexponential DNF size
	Proofs
	Proof of Lemma 7
	Proof of Claim 10
	Proof of Theorem 11

