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Abstract
In binary classification problems, mainly two approaches have been proposed; one is loss function
approach and the other is minimum distance approach. The loss function approach is applied to
major learning algorithms such as support vector machine (SVM) and boosting methods. The loss
function represents the penalty of the decision function on the training samples. In the learning
algorithm, the empirical mean of the loss function is minimized to obtain the classifier. Against a
backdrop of the development of mathematical programming, nowadays learning algorithms based
on loss functions are widely applied to real-world data analysis. In addition, statistical properties
of such learning algorithms are well-understood based on a lots of theoretical works. On the other
hand, some learning methods such as ν-SVM, mini-max probability machine (MPM) can be for-
mulated as minimum distance problems. In the minimum distance approach, firstly, the so-called
uncertainty set is defined for each binary label based on the training samples. Then, the best sep-
arating hyperplane between the two uncertainty sets is employed as the decision function. This is
regarded as an extension of the maximum-margin approach. The minimum distance approach is
considered to be useful to construct the statistical models with an intuitive geometric interpreta-
tion, and the interpretation is helpful to develop the learning algorithms. However, the statistical
properties of the minimum distance approach have not been intensively studied. In this paper, we
consider the relation between the above two approaches. We point out that the uncertainty set in the
minimum distance approach is described by using the level set of the conjugate of the loss function.
Based on such relation, we study statistical properties of the minimum distance approach.
Keywords: loss function; minimum distance problem; uncertainty set; Legendre transformation;
consistency.

1. Introduction

We study binary classification problems. We define X as the input space and {+1,−1} as the set of
the output binary labels. Suppose that the training samples (x1, y1), . . . , (xm, ym) ∈ X ×{+1,−1}
are drawn i.i.d. according to a probability distribution P on X × {+1,−1}. The goal is to estimate
a decision function f : X → R, such that the sign of f(x) provides an accurate prediction of the
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unknown label associated with the input x under the probability distribution P . The composite
function of the sign function and the decision function, sign(f(x)), is referred to as classifier.

In binary classification problems, the prediction accuracy of the decision function f is measured
by the 0-1 loss [[ yf(x) ≤ 0 ]], where [[A ]] is the indicator function i.e., [[A ]] equals 1 if A holds and
0 otherwise. The average prediction performance of the decision function f is evaluated by the
expected 0-1 loss, E(f) = E[ [[ yf(x) ≤ 0 ]] ]. The Bayes risk E∗ is defined as the minimum value
of the expected 0-1 loss over all the measurable functions on X , i.e., E∗ = inf{E(f) : f ∈ L0},
where L0 is the set of all measurable functions on X . The Bayes risk is the lowest achievable error
rate under the probability P .

Many learning algorithms have been proposed to attack binary classification problems. Here,
we introduce ν-support vector machine (SVM) (Schölkopf et al., 2000) as a popular method for
classification problems. Based on ν-SVM, we explain the two aspects in the statistical learning, i.e.,
the loss function approach and the minimum distance approach. Suppose that the input space X is
a subset of the Euclidean space Rd. We consider the linear decision function, f(x) = wTx + b,
where the normal vector w ∈ Rd and the bias term b ∈ R are to be estimated from the training
samples. In ν-SVM, the estimator is given by the optimal solution of the optimization problem,

min
w,b,ρ

1

2
‖w‖2 − νρ+

1

m

m∑
i=1

max{ρ− yi(wTxi + b), 0}, w ∈ Rd, b ∈ R, ρ ∈ R, (1)

where ‖w‖ denotes the Euclidean norm of w. In the above, the parameter ν ∈ (0, 1) is a prespeci-
fied constant which has the role of the regularization parameter. As Schölkopf et al. (2000) pointed
out, the parameter ν controls the number of margin errors and the number of support vectors. In
ν-SVM, a variant of the hinge loss, max{ρ−yi(wTxi+ b), 0}, is used. In the original formulation
of ν-SVM, the non-negativity constraint, ρ ≥ 0, is introduced for the parameter ρ. We can confirm
that for ν > 0, the optimal value of ρ in (1) is non-negative, even when the non-negativity constraint
is dropped (Crisp and Burges, 2000).

As pointed out by Crisp and Burges (2000) and Bennett and Bredensteiner (2000), the dual
problem of (1) is given as

inf
zp,zn

‖zp − zn‖ subject to zp ∈ U+, zn ∈ U−, (2)

where U+ and U− are the reduced convex hulls of the input vectors, i.e., U± = {
∑

i∈M± αixi :∑
i∈M± αi = 1, 0 ≤ αi ≤ 2

mν , i ∈ M±} and M+(resp.M−) = {i : yi = +1(resp. − 1), i =
1, . . . ,m}. Given the optimal solutions ẑp, ẑn for the dual problem (2), the optimal solution ofw in
(1) is proportional to ẑp− ẑn with a positive proportional constant. The problem (2) is referred to as
the minimum distance problem. Instead of the reduced convex hulls, the ellipsoidal sets are also used
as U± (Lanckriet et al., 2003; Nath and Bhattacharyya, 2007). In this paper, the subset U± is called
uncertainty set. The minimum distance approach using the uncertainty set is considered to be useful
to construct the statistical models with an intuitive geometric interpretation. The interpretation is
helpful to develop the learning algorithms (Mavroforakis and Theodoridis, 2006).

The main purpose of this paper is to study the relation between the loss function approach and
the minimum distance approach. Up to our knowledge, statistical properties of the minimum dis-
tance approach have not been intensively studied. The study of the relation between two approaches
enables us to understand learning algorithms using uncertainty sets. We point out that in general
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the minimum distance problem with a fixed uncertainty set does not provide an accurate decision
function. We need to introduce an uncertainty set having a one-dimensional parameter which spec-
ifies the size of the uncertainty set. In this paper, we present some examples of the parametrized
uncertainty sets. For a wide class of learning algorithms using uncertainty sets, we show that a
revised minimum distance problem with the parametrized uncertainty set recovers the statistical
consistency.

The paper is organizes as follows. In Section 2, we present the relation between loss functions
and uncertainty sets. In Section 3, we propose a kernel-based learning algorithm using uncertainty
sets. Section 4 is devoted to study the statistical properties of the proposed algorithm. Section 5 is
the concluding remarks.

We summarize some notations to be used throughout the paper. For a set S in a linear space, the
convex-hull of S is denoted as convS or conv(S). For a finite set S, the cardinality of S is denoted
as |S|. The expectation of the random variable Z is described as E[Z]. The set of all measurable
functions on X is denoted by L0. The supremum norm of f ∈ L0 is denoted as ‖f‖∞. For the
reproducing kernel Hilbert space H, ‖f‖H is the norm of f ∈ H defined from the inner product on
H.

2. Relation between loss functions and uncertainty sets

We study the relation between the loss function and the uncertainty set.

2.1. From loss functions to uncertainty sets

Let ` : R→ R be a convex and non-decreasing function. For the training samples, (x1, y1), . . . , (xm, ym),
we propose a learning method in which the linear decision function, f(x) = wTx+ b, is estimated
by solving

inf
w,b,ρ
−2ρ+

1

m

m∑
i=1

`(ρ− yi(wTxi + b)) subject to ‖w‖2 ≤ λ2, b ∈ R, ρ ∈ R. (3)

The regularization effect is introduced as the constraint ‖w‖2 ≤ λ2, where λ is the regularization
parameter which may depend on the sample size. The statistical learning using (3) is regarded as
an extension of ν-SVM. To see this, we define `(z) = max{2z/ν, 0}. Let ŵ, b̂, ρ̂ be an optimal
solution of (1) for a fixed ν ∈ (0, 1). By comparing the optimality conditions of (1) and (3), we can
confirm that (3) with λ = ‖ŵ‖ has the same optimal solution as ν-SVM.

In a similar way as ν-SVM, we derive the dual problem of (3), and obtain the uncertainty set
associated with the loss function ` in (3). The detailed calculation is presented in Appendix A. We
define the conjugate function of `(z) as `∗(x) = supz∈R{xz − `(z)}, and the constraint α ∈ ∆
denotes that the vector α satisfies

∑
i∈M+

αi =
∑

i∈M− αi = 1, αi ≥ 0. For each binary label, we
define the parametrized uncertainty set by

U±[c] =

{ ∑
i∈M±

αixi : α ∈ ∆,
1

m

∑
i∈M±

`∗(mαi) ≤ c
}
⊂ X , c ∈ R, (4)

i.e., U+[c] for y = +1 and U−[c] for y = −1. Then, the dual problem of (3) is represented as

inf
cp,cn,zp,zn

cp + cn + λ‖zp − zn‖ subject to zp ∈ U+[cp], zn ∈ U−[cn], cp, cn ∈ R. (5)
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For all feasible solutions, the uncertainty sets U+[cp] and U−[cn] are not empty. Let ẑp and ẑn be
the optimal solution, then, the optimal solution of w in (3) is equal to ŵ = λ(ẑp − ẑn)/‖ẑp − ẑn‖
for ẑp 6= ẑn and ŵ = 0 for ẑp = ẑn. The relation between the loss function and the uncertainty set
is given by (4). The estimation of the bias term b is considered in Section 3.

Example 1 (Truncated quadratic loss) Now consider `(z) = (max{1+z, 0})2. This loss function
is used in L2-SVM (Schölkopf and Smola, 2001). The conjugate function is `∗(α) = −α + α2/4
for α ≥ 0 and `∗(α) = ∞ for α < 0. We define x̄± and Σ̂± as the empirical mean and the
empirical covariance matrix of the samples {xi : i ∈ M±}, i.e., x̄± = 1

m±

∑
i∈M± xi and Σ̂± =

1
m±

∑
i∈M±(xi − x̄±)(xi − x̄±)T , where m+ and m− are defined as m± = |M±|. Suppose

that Σ̂± is invertible. Then, the uncertainty set corresponding to the truncated quadratic loss is
given as U±[c] =

{∑
i∈M± αixi : α ∈ ∆,

∑
i∈M± α

2
i ≤ 4(c + 1)/m

}
=
{
z ∈ conv{xi :

i ∈ M±} : (z − x̄±)T Σ̂−1
± (z − x̄±) ≤ 4(c + 1)m±/m

}
. A similar uncertainty set is used in

minimax probability machine (MPM) (Lanckriet et al., 2003) and maximum margin MPM (Nath
and Bhattacharyya, 2007), though the constraint z ∈ conv{xi : i ∈M±} is not imposed therein.

2.2. From uncertainty sets to loss functions

We derived parametrized uncertainty sets associated with convex loss functions. Inversely, if the
uncertainty set is represented as the form of (4), there exists the corresponding loss function. In
general, however, the problem (5) with general uncertainty set does not lead to the minimization
problem of the expected loss function under the empirical distribution. This section is devoted to
study a way of revising the uncertainty set so as to possess the corresponding loss function.

Suppose that the parametrized uncertainty sets are defined as

U±[c] =

{ ∑
i∈M±

αixi : L∗±(α±) ≤ c
}
⊂ X , (6)

where L∗+ (L∗−) is the conjugate of a convex function L+ (L−), and the arguments α+ and α− are
defined as α± = (αi)i∈M± . In Example 1, the function L∗±(α±) = m

4

∑
i∈M± α

2
i − 1 is employed

with the constraint α ∈ ∆. Here, we consider the following optimization problem,

min
cp,cn,zp,zn

cp + cn + λ‖zp − zn‖ subject to cp, cn ∈ R,

zp ∈ U+[cp] ∩ conv{xi : i ∈M+}, zn ∈ U−[cn] ∩ conv{xi : i ∈M−}.

In the above problem, the constraint defined from the convex-hulls conv{xi : i ∈ M±} is added,
since the uncertainty set (4) has the same constraint. The dual formulation of the above problem is
given as

inf
w,b,ρ,ξp,ξn

−2ρ+ L+(ξ+) + L−(ξ−) subject to ρ− yi(wTxi + b) ≤ ξi,∀i, ‖w‖2 ≤ λ2, (7)

where ξ+ = (ξi)i∈M+ and ξ− = (ξi)i∈M− . The dual form implies that L± are regarded as the loss
functions for the decision function on training samples. When L± are represented as the empirical
mean of a loss function, we can use the standard theoretical tools to analyze the statistical properties
of the learning algorithm.
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To link the uncertainty set with the empirical loss minimization, we revise the uncertainty sets
U±[c] such that the function L∗± has the additive form. Let m+ and m− be m± = |M±|, and we
define m±-dimensional vectors 1± = (1, . . . , 1) and 0± = (0, . . . , 0).

For convex functions L∗± : Rm± → R, we define ¯̀∗ : R→ R ∪ {∞} by

¯̀∗(α) =

{
L∗+(

α

m
1+) + L∗−(

α

m
1−)− L∗+(0+)− L∗−(0−) α ≥ 0,

∞, α < 0.
(8)

Then, we define the revised uncertainty set Ū±[c] by

Ū±[c] =

{ ∑
i∈M±

αixi : α ∈ ∆,
1

m

∑
i∈M±

¯̀∗(αim) ≤ c
}
. (9)

The dual problem of (5) with U±[c] = Ū±[c] is given as

inf
w,b,ρ,ξ

−2ρ+
1

m

∑
i∈M

¯̀(ξi) subject to ρ− yi(wTxi + b) ≤ ξi,∀i, ‖w‖2 ≤ λ2. (10)

The revision of the uncertainty sets leads to the empirical mean of the revised loss function ¯̀. When
we study statistical properties of the estimator given by the optimal solution of (10), we can apply the
standard theoretical tools, since the objective in the primal expression is described by the empirical
mean of the revised loss functions.

We explain the reason why the revised uncertainty set is defined as the form of (9). When the
function L∗+ + L∗− is described in the additive form, the uncertainty set is kept unchanged by the
revision (8). Indeed, if there exists a closed, convex, proper function ` : R → R such that `∗(0) =
0, `∗(α) =∞ for α < 0 and L∗+(α+) +L∗−(α−)−L∗+(0+)−L∗−(0−) = 1

m

∑
i∈M `∗(αim) hold,

we obtain ¯̀= `. See Rockafellar (1970) for the definition of closed, proper function.
We consider the other representation of the uncertainty set. Suppose that the uncertainty set is

defined by U±[c] = {
∑

i∈M± αixi : h∗±
(∑

i∈M± αixi
)
≤ c}, where h± are convex functions on

the input space X . Let µ+ (resp. µ−) be the mean of the input vector x conditioned on the positive
(resp. negative) label. We define ¯̀∗ by

¯̀∗(α) =

{
h∗+(α

m+

m
µ+) + h∗−(α

m−
m
µ−)− h∗+(0)− h∗−(0) α ≥ 0,

∞, α < 0.
(11)

and the revised uncertainty set is defined by (9) with the above ¯̀∗. In Appendix B, we explain the
reason why we employ the formula (11) for the revision of the uncertainty set.

We show an example to illustrate how the revision of the uncertainty set works.

Example 2 We suppose that µ± are the mean vectors and Σ± are the covariance matrices of
the input vector conditioned on each label. We define the uncertainty set by U±[c] = {z ∈
conv{xi : i ∈ M±} : (z − µ)TΣ−1

± (z − µ) ≤ c, ∀µ ∈ A±}, where A± denotes an esti-
mation error of the mean vector µ±. For example, for a fixed radius r > 0, A± is defined as
A± = {µ ∈ X : (µ−µ±)TΣ−1

± (µ−µ±) ≤ r2}. The uncertainty set with estimation error is used
by Lanckriet et al. (2003) in MPM. The above uncertainty sets will be useful, when the probability in
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the training phase is slightly different from that in the test phase. Brief calculation yields that U±[c]
is represented by the level set of the convex function h∗±(z) = maxµ∈A± (z − µ)TΣ−1

± (z − µ) =

(
√

(z − µ±)TΣ−1
± (z − µ±) + r)2. The revised uncertainty set Ū±[c] is defined by the function

¯̀∗ derived from h∗±. We suppose that µ+ 6= 0 and µ− = 0 hold. Let d =
√
µT+Σ−1

+ µ+ and

h = r/d(> 0). Then, the corresponding loss function is given as ¯̀(z) = md2

mp
u
(
z
d2

)
, where u(z)

as defined as u(z) = 0 for z ≤ −2h − 2, u(z) = ( z2 + 1 + h)20 for −2h − 2 ≤ z ≤ −2h,
u(z) = z + 2h + 1 for −2h ≤ z ≤ 2h, and u(z) = z2

4 + z(1 − h) + (1 + h)2 for 2h ≤ z. When
r = 0 holds, ¯̀(z) is reduced to the truncated quadratic function in Example 1. For the positive r,
¯̀(z) is linear around z = 0. By introducing the estimation error represented byA±, the penalty for
the misclassification is reduced from quadratic to linear around the decision boundary, though the
original uncertainty set U±[c] does not correspond any loss function.

3. Kernel-based learning algorithm using uncertainty set

Based on the argument in the previous section, we present a kernel variant of the minimum distance
problem using parametrized uncertainty sets. Suppose that training samples (x1, y1), . . . , (xm, ym) ∈
X × {+1,−1} are observed, where X is not necessarily a subset of the Euclidean space. We de-
fine the kernel function k : X 2 → R, and let H be the reproducing kernel Hilbert space (RKHS)
endowed with the kernel function k. See the book written by Schölkopf and Smola (2001) for
the details of the kernel methods in machine learning. We consider the estimator of the decision
function with the form of f(x) + b, where f ∈ H, b ∈ R.

In Figure 1, we describe the learning algorithm. In the learning algorithm, training samples are
divided into two disjoint subsets, T1 and T2. The main reason that we decompose the set of training
samples into two subsets is to simplify the analysis of the learning algorithm. The training samples
in T1 are used for the estimation of the function part f ∈ H in the decision function. We solve the
problem (12) which is a kernel variant of the problem (5). For the estimation of the bias term, the
empirical 0-1 loss on the data set T2 is minimized with respect to the one-dimensional parameter b.

In the kernel-based algorithm, the parametrized uncertainty set is defined as a convex subset
of the convex-hull of {k(·, x(1)

i ) : i ∈ M±} in H. Moreover, we assume that U±[c] ⊂ U±[c′]
holds for c ≤ c′ such as (6). When the uncertainty sets involve some parameters to be estimated, a
prior knowledge or additional samples independent of the training samples T1 ∪ T2 is used for the
estimation.

4. Statistical Properties of Kernel-based Learning Algorithm

In this section, we prove that the expected 0-1 loss of the estimator provided in Figure 1 converges to
the Bayes risk E∗, when the uncertainty set corresponds to a classification-calibrated loss function.

4.1. Definitions and assumptions

We derive the dual representation of the learning algorithm in Figure 1. For a convex function
` : R → R, let `∗ be the conjugate function of `. Suppose that the uncertainty sets are described as

29.6



CONJUGATE PROPERTY IN CLASSIFICATION

Inputs: Decompose the training samples into two disjoint subsets, T1 = {(x(1)
i , y

(1)
i ) : i =

1, . . . ,m1} and T2 = {(x(2)
i , y

(2)
i ) : i = 1, . . . ,m2}. For the set of training samples T1,

let M+ and M− be the index sets defined by M± = {i : y
(1)
i = ±1, i = 1, . . . ,m1}.

We define the RKHS H with the kernel function k(x, x′). Prepare the parametrized
uncertainty sets U±[c] in H such that U±[c] ⊂ conv{k(·, x(1)

i ) : i ∈ M±}. Set a
regularization parameter λ > 0.

Step 1. Solve the optimization problem,

inf
cp,cn
fp,fn

cp + cn + λ‖fp − fn‖H subject to fp ∈ U+[cp], fn ∈ U−[cn], cp, cn ∈ R. (12)

Let f̂p and f̂n be optimal solutions of fp and fn. Define f̂ by f̂ = λ(f̂p−f̂n)/‖f̂p−f̂n‖H
for f̂p 6= f̂n and f̂ = 0 for f̂p = f̂n.

Step 2. Solve the one-dimensional optimization problem with respect to the bias term,
minb∈R

1
m2

∑m2
i=1[[ y

(2)
i (f̂(x

(2)
i ) + b) ≤ 0 ]], which is defined from the estimator f̂ and

the data set T2. The optimal solution is denoted as b̃.

Output. The estimator of the decision function is given by f̂(x) + b̃.

Figure 1: Kernel-based learning algorithm using uncertainty sets.

the form of

U±[c] =

{ ∑
i∈M±

αik(·, x(1)
i ) ∈ H : α ∈ ∆,

1

m

∑
i∈M±

`∗(mαi) ≤ c
}
. (13)

We can obtain the uncertainty set of the form (13) by applying the revision method proposed in Sec-
tion 2.2. As shown in Appendix C, we find that the dual representation of (12) with the uncertainty
set (13) is given as

min
f,b,ρ
−2ρ+

1

m1

m1∑
i=1

`(ρ− y(1)
i (f(x

(1)
i ) + b)) subject to f ∈ H, b ∈ R, ρ ∈ R, ‖f‖2H ≤ λ2. (14)

We define some notations. Let f̂ , b̂ and ρ̂ be an optimal solution of (14). Note that f̂ is obtained
from the dual problem as shown in Step 1 of Figure 1. For a measurable function f : X → R and a
real number ρ ∈ R, we define the expected lossR(f, ρ) and the regularized expected lossRλ(f, ρ)
by R(f, ρ) = −2ρ + E[`(ρ − yf(x))], Rλ(f, ρ) = −2ρ + E[`(ρ − yf(x))] + θ(‖f‖2H ≤ λ2),
where λ is a positive number and θ(A) equals 0 when A is true and ∞ otherwise. Let R∗ be
the infimum of R(f, ρ), i.e., R∗ = inf{R(f, ρ) : f ∈ L0, ρ ∈ R}. For the set of training
samples, T = {(x1, y1), . . . , (xm, ym)}, the empirical loss R̂T (f, ρ) and the regularized empirical
loss R̂T,λ(f, ρ) are defined by R̂T (f, ρ) = −2ρ + 1

m

∑m
i=1 `(ρ − yif(xi)), and R̂T,λ(f, ρ) =

−2ρ + 1
m

∑m
i=1 `(ρ − yif(xi)) + θ(‖f‖2H ≤ λ2), respectively. For the observed training samples
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T1 = {(x(1)
i , y

(1)
i ) : i = 1, . . . , ,m1}, clearly the problem (14) is identical to the minimization of

R̂T1,λ(f, ρ). For the index sets M+ and M− in Figure 1, we define m± = |M±|.
We introduce the following assumptions.

Assumption 1 (universal kernel) The input space X is a compact metric space. The kernel func-
tion k : X 2 → R is continuous, and satisfies supx∈X

√
k(x, x) ≤ K < ∞, where K is a positive

constant. In addition, k is universal, i.e., the RKHS associated with k is dense in the set of all
continuous functions on X with respect to the supremum norm (Steinwart and Christmann, 2008,
Definition 4.52).

Assumption 2 (non-deterministic assumption) There exists a positive constant ε > 0 such that
P ({x ∈ X : ε ≤ P (+1|x) ≤ 1− ε}) > 0 holds, where P (y|x) is the conditional probability of the
label y for given input x.

Assumption 3 (basic assumptions on the loss function) The loss function ` : R→ R satisfies the
following conditions.

1. ` is a non-decreasing, convex function, and satisfies the non-negativity condition, i.e., `(z) ≥
0 for all z ∈ R. In addition, `(z) is not a constant function, i.e., limz→∞ `(z) =∞ holds.

2. Let ∂`(z) be the subdifferential of the loss function ` at z ∈ R (Rockafellar, 1970, Chap. 23).
For any M > 0, there exists z0 such that for all z ≥ z0 and all g ∈ ∂`(z), the inequality
g ≥M holds. In other word, limz→∞ ∂`(z) =∞ holds.

The hinge loss `(z) = max{z, 0} used in ν-SVM and the logistic loss `(z) = log(1 + ez) do not
satisfy the basic assumption above, since the derivative does not go to infinity. On the other hand,
the truncated quadratic loss and the exponential loss meet the basic assumption.

Assumption 4 (modified classification-caliblated loss)

1. `(z) is first order differentiable for z ≥ −`(0)/2, and `′(z) > 0 holds for z ≥ −`(0)/2.

2. Let ψ(θ, ρ) be the function defined as ψ(θ, ρ) = `(ρ)− infz∈R
{

1+θ
2 `(ρ− z) + 1−θ

2 `(ρ+ z)
}

for 0 ≤ θ ≤ 1, ρ ∈ R. There exist a function ψ̃(θ) and a positive real ε > 0 such that
the following conditions are satisfied: (a) ψ̃(0) = 0 and ψ̃(θ) > 0 for 0 < θ ≤ ε. (b)
ψ̃(θ) is continuous and strictly increasing function on the interval [0, ε]. (c) The inequality
ψ̃(θ) ≤ inf

ρ≥−`(0)/2
ψ(θ, ρ) holds for 0 ≤ θ ≤ ε.

In Section 4.3, we shall give some sufficient conditions for existence of the function ψ̃ in Assump-
tion 4.

In the following, we prove the convergence of the error rate to the Bayes risk E∗. The proof
consists of two parts. In Section 4.2, we prove that the expected loss for the estimated decision
function, R(f̂ + b̂, ρ̂), converges to the infimum of the expected loss R∗. Here, we apply the
technique developed by Steinwart (2005). Then, we prove the convergence of the error rate E(f̂+ b̃)
to the Bayes risk E∗.

In this proof, the concept of the classification-calibrated loss (Bartlett et al., 2006) plays an
important role.
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4.2. Convergence to Bayes Risk

In Appendix D, we prove that limλ→∞ inf{Rλ(f, ρ) : f ∈ H, ρ ∈ R} = R∗ > −∞ holds under
Assumption 1, 2 and 3. We derive an upper bound of the norm of optimal solutions.

Lemma 1 Let λm1 be the regularization parameter depending on m1. Under Assumption 1, 2 and
3, there are positive constants c, C and a natural number M such that the optimal solutions f̂ , b̂
and ρ̂ satisfy

‖f̂‖H ≤ λm1 , |̂b| ≤ Cλm1 , |ρ̂| ≤ Cλm1 (15)

with the probability greater than 1− e−cm1 for m1 ≥M .

Proof We show an idea of the proof. A rigorous proof is shown in Appendix E. Comparing
the objective value R̂T1,λm1

(f + b, ρ) at the optimal solution (f̂ , b̂, ρ̂) and that at a feasible so-
lution (f, b, ρ) = (0, 0, 0), we have ρ̂ ≥ −`(0)/2. The optimality condition w.r.t. ρ̂ leads to
2 ∈ 1

m1

∑m1
i=1 ∂`(ρ̂−y

(1)
i (f̂(x

(1)
i )+b̂)) ≥ 1

m1

∑m+

i=1 ∂`(ρ̂−b̂−Kλm1)+ 1
m1

∑m−
i=1 ∂`(ρ̂+b̂−Kλm1).

The inequalities above and the monotonicity of the subdifferential lead to the fact that there exists
a constant z̄ such that |ρ̂| ≤ Kλm1 + z̄ and |̂b| ≤ Kλm1 + z̄ hold with high probability. Here, z̄ is
determined from the marginal probability P (Y = ±1) and the loss function `.

Let us define the covering number of a metric space.

Definition 2 (covering number) For a metric space G, the covering number of G is defined as
N (G, ε) = min{n ∈ N : g1, . . . , gn ∈ G such that G ⊂

⋃n
i=1B(gi, ε)}, where B(g, ε) denotes the

closed ball with center g and radius ε.

Due to Lemma 1, we see that the optimal solution, (f̂ , b̂, ρ̂), is included in the set Gm1 = {(f, b, ρ) ∈
H × R2 : ‖f‖H ≤ λm1 , |b| ≤ Cλm1 , |ρ| ≤ Cλm1} with high probability. Suppose that the
norm ‖f‖∞ + |b| + |ρ| is introduced on Gm1 . We define the function L(x, y; f, b, ρ) = −2ρ +
`(ρ − y(f(x) + b)), and the function set Lm1 = {L(x, y; f, b, ρ) : (f, b, ρ) ∈ Gm1}. Since ` :
R → R is a finite-valued convex function, ` is locally Lipschitz continuous. Then, for any sample
size m1, there exists a constant κm1 depending on m1 such that |`(z) − `(z′)| ≤ κm1 |z − z′|
holds for all z and z′ satisfying |z|, |z′| ≤ (K + 2C)λm1 . Then, for any (f, b, ρ), (f ′, b′, ρ′) ∈
Gm1 , we have |L(x, y; f, b, ρ) − L(x, y; f ′, b′, ρ′)| ≤ 2|ρ − ρ′| + κm1(|ρ − ρ′| + |b − b′| + ‖f −
f ′‖∞) ≤ (2 + κm1)(|ρ − ρ′| + |b − b′| + ‖f − f ′‖∞). The covering number of Lm1 is evaluated
by N (Lm1,ε) ≤ N

(
Gm1 ,

ε
2+κm1

)
, in which the supremum norm is defined on Lm1 . Let the metric

space Fm1 be Fm1 = {f ∈ H : ‖f‖H ≤ λm1} endowed with the supremum norm, then, we also
have N

(
Gm1 ,

ε
2+κm1

)
≤ N

(
Fm1 ,

ε
3(2+κm1 )

)(6Cλm1 (2+κm1 )
ε

)2. An upper bound of the covering
number of Fm1 is given by Cucker and Smale (2002) and Zhou (2002).

Lemma 3 Let bm1 be bm1 = 4Cλm1 +`((K+2C)λm1) in which C is the positive constant defined
in Lemma 1. Under Assumption 1 and 3, the following inequality holds:

P

(
sup

(f,b,ρ)∈Gm1

|R̂(f + b, ρ)−R(f + b, ρ)| ≥ ε
)

≤ 2N
(
Fm1 ,

ε

9(2 + κm1)

)(
18Cλm1(2 + κm1)

ε

)2

exp

{
− 2m1ε

2

9b2m1

}
. (16)
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Proof We show an idea of the proof. Note that ‖f‖∞ ≤ Kλm1 holds for f ∈ H such that ‖f‖H ≤
λm1 . A brief calculation yields that sup(x,y)∈X×{+1,−1}

(f,b,ρ)∈Gm1

L(x, y; f, b, ρ)−inf(x,y)∈X×{+1,−1}
(f,b,ρ)∈Gm1

L(x, y; f, b, ρ) ≤

bm1 . In the same way as the proof of Lemma 3.4 in Steinwart (2005), the upper bound is derived
from Hoeffding’s inequality and the inequalityN

(
Gm1 ,

ε
2+κm1

)
≤ N

(
Fm1 ,

ε
3(2+κm1 )

)(6Cλm1 (2+κm1 )
ε

)2.

We present the main theorem of this section.

Theorem 4 We suppose that the regularization parameter λ = λm1 satisfies limm1→∞ λm1 = ∞,
and that Assumption 1, 2 and 3 hold. Moreover we assume that (16) converges to zero for any ε > 0,
when the sample size m1 tends to infinity. Then, R(f̂ + b̂, ρ̂) converges to R∗ in probability in the
large sample limit of the data set T1.

Proof We show a sketch of the proof. A rigorous proof is shown in Appendix F. Now, we have the
convergence inff,b,ρRλm1

(f + b, ρ)→ R∗ and the uniform convergence

sup
(f,b,ρ)∈Gm1

|R̂T1(f + b, ρ)−R(f + b, ρ)| → 0

in probability, when m1 tends to infinity. We apply the standard argument on the uniform conver-
gence, we obtain the probabilistic convergence ofR(f̂ + b̂, ρ̂) toR∗.

We show the order of λm1 admitting the assumption in Theorem 4.

Example 3 The Gaussian kernel is universal onX = [0, 1]n ⊂ Rn; see Corollary 4.58 of Steinwart
and Christmann (2008). According to Zhou (2002), the covering number of the Gaussian RKHS is
logN (Fm1 , ε/(18 + 9κm1)) = O

((
log(λm1κm1)

)n+1). For any ε > 0, (16) is bounded above
by exp{O(−m1/b

2
m1

+ (log(λm1κm1))n+1)}. For the truncated quadratic loss, we have κm1 ≤
2((K + 2C)λm1 + 1) = O(λm1) and bm1 ≤ 4Cλm1 + ((K + 2C)λm1 + 1)2 = O(λ2

m1
). Let

us define λm1 = mα
1 with 0 < α < 1/4. Then, for any ε > 0, (16) converges to zero when m1

tends to infinity. In the same way, for the exponential loss we obtain κm1 = O(e(K+2C)λm1 ) and
bm1 = O(e(K+2C)λm1 ). Hence, λm1 = (logm1)α with 0 < α < 1 ensures the convergence of
(16).

In this section, we prove that the expected 0-1 loss E(f̂ + b̃) converges to the Bayes risk E∗ in
the large sample limit. The proof also ensures the convergence of E(f̂+ b̂) to the Bayes risk. Hence,
if the explicit form of the loss function `(z) is obtained from the uncertainty set, solving (14) can
be another promising method for classification problems.

Theorem 5 Suppose that R(f̂ + b̂, ρ̂) converges to R∗ in probability, when the sample size of T1,
i.e., m1, tends to infinity. For the RKHS H and the loss function `, we assume Assumption 1, 3 and
4. Then, E(f̂ + b̃) converges to E∗ in probability, when the sample sizes of T1 and T2 tend to infinity.

A rigorous proof of Theorem 5 is shown in Appendix G. As a result, we find that the prediction
error rate of f̂ + b̃ converges to the Bayes risk under Assumption 1, 2, 3 and 4.
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4.3. Sufficient Conditions of Modified Classification-calibrated Loss

We present some sufficient conditions for existence of the function ψ̃ in Assumption 4. The proofs
of the following lemmas are presented in Appendix H.

Lemma 6 Suppose that the first condition in Assumption 3 and the first condition in Assumption
4 hold. In addition, suppose that ` is first-order continuously differentiable on R. Let d be d =
sup{z ∈ R : `′(z) = 0}, where `′ is the derivative of `. We assume the following conditions: (a)
d < −`(0)/2; (b) `(z) is second-order continuously differentiable on the open interval (d,∞); (c)
`′′(z) > 0 holds on (d,∞); (d) 1/`′(z) is convex on (d,∞). Then, for any θ ∈ [0, 1], the function
ψ(θ, ρ) is non-decreasing as the function of ρ for ρ ≥ −`(0)/2.

When the conditions in Lemma 6 are satisfied, we can choose ψ(θ,−`(0)/2) as ψ̃(θ) for 0 ≤ θ ≤ 1,
since ψ(θ,−`(0)/2) is classification-calibrated under the first condition in Assumption 4. The
lemma above works for the truncated quadratic loss `(z) = (max{1 + z, 0})2 and the exponential
loss `(z) = ez . See Example 4 and Example 5.

We give another sufficient condition for existence of the function ψ̃ in Assumption 4.

Lemma 7 Suppose that the first condition in Assumption 3 and the first condition in Assumption 4
hold. Let d be d = sup{z ∈ R : ∂`(z) = {0}}. Suppose that the inequality −`(0)/2 > d holds.
For ρ ≥ −`(0)/2 and z ≥ 0, we define ξ(z, ρ) by ξ(z, ρ) = {`(ρ+ z) + `(ρ− z)−2`(ρ)}/(z`′(ρ))
for z > 0 and ξ(z, ρ) = 0 for z = 0. Suppose that there exists a function ξ̄(z) for z ≥ 0 such
that the following conditions hold: (a) ξ̄(z) is continuous and strictly increasing on z ≥ 0, and
satisfies ξ̄(0) = 0 and limz→∞ ξ̄(z) > 1; (b) supρ≥−`(0)/2 ξ(z, ρ) ≤ ξ̄(z) holds. Then, there exists

a function ψ̃ defined in the second condition of Assumption 4.

Note that Lemma 7 does not require the second order differentiability of the loss function.

Example 4 For the truncated quadratic loss `(z) = (max{z + 1, 0})2, the first condition in As-
sumption 3 and the first condition in Assumption 4 hold. The inequality −`(0)/2 = −1/2 >
sup{z : `′(z) = 0} = −1 in the sufficient condition of Lemma 6 holds. For z > −1, it is easy to see
that `(z) is second-order differentiable and that `′′(z) > 0 holds. In addition, for z > −1, 1/`′(z)
is equal to 1/(2z + 2) which is convex on (−1,∞). Therefore, the function ψ̃(θ) = ψ(θ,−1/2)
satisfies the second condition in Assumption 4.

Example 5 For the exponential loss `(z) = ez , we have 1/`′(z) = e−z . Hence, due to Lemma 6,
ψ(θ, ρ) is non-decreasing in ρ. Indeed, we have ψ(θ, ρ) = (1−

√
1− θ2)eρ.

Example 6 In Example 2, we presented the uncertainty set with estimation errors. We define ¯̀∗(α)
by ¯̀∗(α) = (|αw − 1|+ h)2 − (1 + h)2 for α ≥ 0 and ¯̀∗(α) = ∞ for α < 0, where w and h are
positive constants. Then, the revised uncertainty set is described by ¯̀∗. Here, we suppose w > 1/2.
For the function ¯̀∗ defined above, the corresponding loss function is given as ¯̀(z) = u(z/w), where
u(z) is equal to the function u+(z) with h+ = h defined in Example 2. Forw > 1/2, we can confirm
that sup{z : ¯̀′(z) = 0} < −¯̀(0)/2 holds. Since u(z) is not strictly convex around z = 0, Lemma
6 does not work. Hence, we apply Lemma 7. A simple calculation yields that ¯̀′(−¯̀(0)/2) ≥ (4w−
1)/(4w2) > 0 holds for any h ≥ 0. Note that ¯̀(z) is differentiable on R. Thus, the monotonicity of
¯̀′ for the convex function leads to ξ(z, ρ) = 1

¯̀′(ρ)
(

¯̀(ρ+z)−¯̀(ρ)
z −

¯̀(ρ)−¯̀(ρ−z)
z ) ≤

¯̀′(ρ+z)−¯̀′(ρ−z)
¯̀′(ρ)

. Since
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the derivative ¯̀′(z) is Lipschitz continuous and the Lipschitz constant is equal to 1/(2w), we have
¯̀′(ρ+z)− ¯̀′(ρ−z) ≤ z/w. Therefore, the inequality supρ≥−¯̀(0)/2 ξ(z, ρ) ≤ supρ≥−¯̀(0)/2

z/w
¯̀′(ρ)

=
z/w

¯̀′(−¯̀(0)/2)
≤ 4w

4w−1z ≤ 2z holds. We see that ξ̄(z) = 2z satisfies the sufficient conditions in Lemma
7. Hence, the loss function corresponding to the revised uncertainty set satisfies the conditions
for statistical consistency, though the original uncertainty set with the estimation error does not
correspond to the empirical mean of a loss function.

5. Conclusion

In this paper, we studied the relation between the loss function approach and the minimum distance
approach in binary classification problems. We proposed the learning algorithm based on the revised
minimum distance problem, and proved the statistical consistency. In our proof, the hinge loss used
in ν-SVM is excluded, though Steinwart (2003) proved the statistical consistency of ν-SVM with
a nice choice of the regularization parameter. A future work is to relax the assumptions of our
theoretical result so as to include the hinge loss function and other popular loss functions such as
the logistic loss. Also, it is important to derive the convergence rate of the proposed learning method.
Developing an optimization algorithm is needed for practical data analysis by the statistical learning
with uncertainty sets.
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Appendix A. Derivation of (5)

We introduce the slack variables ξi, i = 1, . . . ,m satisfying the inequalities ξi ≥ ρ − yi(wTxi +
b), i = 1, . . . ,m. The Lagrangian function of the problem (3) is given as

L(w, b, ρ, ξ,α, µ) = −2ρ+
1

m

m∑
i=1

`(ξi) +
m∑
i=1

αi(ρ− yi(wTxi + b)− ξi) + µ(‖w‖2 − λ2),

where α1, . . . , αm and µ are the non-negative Lagrange multipliers. The optimality conditions,

∂L

∂ρ
= 0,

∂L

∂b
= 0,

and the non-negativity ofαi lead to the constraint on Lagrange multipliers,
∑

i∈M+
αi =

∑
i∈M− αi =

1, αi ≥ 0. In the following, the constraints
∑

i∈M+
αi =

∑
i∈M− αi = 1, αi ≥ 0 are denoted by

α ∈ ∆. We define the conjugate function of `(z) as `∗(x) = supz∈R{xz − `(z)}. Then, the
min-max theorem yields the dual problem of (3),

sup
α≥0,µ≥0

inf
w,b,ρ,ξ

L(w, b, ρ, ξ,α, µ)

= − inf
α,µ≥0

sup
w,ξ

{
1

m

m∑
i=1

(mαiξi − `(ξi)) +

m∑
i=1

αiyix
T
i w − µ(‖w‖2 − λ2) : α ∈ ∆

}

= − inf
α

{
1

m

m∑
i=1

`∗(mαi) + λ
∥∥ ∑
i∈M+

αixi −
∑
i∈M−

αixi
∥∥ : α ∈ ∆

}

= − inf
α,cp,cn

{
cp + cn + λ

∥∥ ∑
i∈M+

αixi −
∑
i∈M−

αixi
∥∥

: α ∈ ∆,
1

m

∑
i∈M+

`∗(mαi) ≤ cp,
1

m

∑
i∈M−

`∗(mαi) ≤ cn
}
. (17)

29.13



KANAMORI TAKEDA SUZUKI

By using the uncertainty set (4), the problem (17) is represented as (5). In Appendix C, we present
a rigorous proof that under some assumptions on the loss function `, the min-max theorem works in
the above Lagrangian function, i.e., there is no duality gap.

Appendix B. Revision of Uncertainty Sets

We explain a validity of the formula (11). We want to find a function ¯̀∗(α) such that h∗+(
∑

i∈M+
αixi)+

h∗−(
∑

i∈M− αixi) − h∗+(0) − h∗−(0) is close to 1
m

∑m
i=1

¯̀∗(mαi) in some sense. We substitute
αi = α/m into h∗±(

∑
i∈M± αixi). In the large sample limit, h∗±(

∑
i∈M± α/mxi) is approximated

by h∗±(αm±m µ±). Suppose that h∗+(αm+

m µ+) + h∗−(αm−m µ−) − h∗+(0) − h∗+(0) is represented as
1
m

∑m
i=1

¯̀∗( αmm) = ¯̀∗(α). Then, we obtain (11).

Appendix C. Duality between (12) and (14)

Lemma 8 Suppose that m± = |M±| are positive. Under Assumption 1 and 3, there exists an
optimal solution of (14). Moreover, the dual problem of (14) yields the problem (12) with the
uncertainty set (13).

Proof First, we prove the existence of an optimal solution. According to the standard argument on
the kernel estimator, we can restrict the function part f to be the form of

f(x) =

m1∑
j=1

αjk(x, x
(1)
j ).

Then, the problem is reduced to the finite-dimensional problem,

min
α,b,ρ
−2ρ+

1

m1

m1∑
i=1

`

(
ρ− y(1)

i

( m1∑
j=1

αjk(x
(1)
i , x

(1)
j ) + b

))
subject to

m1∑
i,j=1

αiαjk(x
(1)
i , x

(1)
j ) ≤ λ2.

(18)

Let ζ0(α, b, ρ) be the objective function of (18). Let us define S be the linear subspace in Rm1

spanned by the column vectors of the gram matrix (k(x
(1)
i , x

(1)
j ))m1

i,j=1. We can impose the constraint
α = (α1, . . . , αm1) ∈ S, since the orthogonal complement of S does not affect the objective and
the constraints in (18). We see that Assumption 1 and the reproducing property yield the inequality
‖y(1)
i

∑m1
i=1 αik(·, x(1)

i )‖∞ ≤ Kλ. Due to this inequality and the assumptions on the function `, the
objective function ζ0(α, b, ρ) is bounded below by

ζ1(b, ρ) = −2ρ+
m+

m1
`(ρ− b−Kλ) +

m−
m1

`(ρ+ b−Kλ). (19)

Hence, for any real number c, the inclusion relation{
(α, b, ρ) : ζ0(α, b, ρ) ≤ c,

m1∑
i,j=1

αiαjk(x
(1)
i , x

(1)
j ) ≤ λ2, α ∈ S

}
(20)

⊂
{

(α, b, ρ) : ζ1(b, ρ) ≤ c,
m1∑
i,j=1

αiαjk(x
(1)
i , x

(1)
j ) ≤ λ2, α ∈ S

}
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holds. Note that the vector α satisfying
∑m1

i,j=1 αiαjk(x
(1)
i , x

(1)
j ) ≤ λ2 and α ∈ S is restricted

to a compact subset in Rm1 , since the gram matrix (k(x
(1)
i , x

(1)
j ))mi,j=1 is positive definite on the

subspace S. We shall prove that the subset (20) is compact, if they are not empty. We see that the
two sets above are closed subsets, since both ζ0 and ζ1 are continuous. By the variable change from
(b, ρ) to (u1, u2) = (ρ− b, ρ+ b), ζ1(b, ρ) is transformed to the convex function ζ2(u1, u2) defined
by

ζ2(u1, u2) = −u1 +
m+

m1
`(u1 −Kλ)− u2 +

m−
m1

`(u2 −Kλ).

The function `(z) is a non-decreasing and non-negative function, and the subgradient of `(z) di-
verges to infinity, when z tends to infinity. Hence, we have

lim
|u1|→∞

−u1 +
m+

m1
`(u1 −Kλ) =∞.

The same limit holds for −u2 + m−
m1
`(u2 − Kλ). Hence, the level set of ζ2(u1, u2) is closed and

bounded, i.e., compact. As a result, the level set of ζ1(b, ρ) is also compact. Therefore, the subset
(20) is also compact in Rm1+2. This implies that (18) has an optimal solution.

Next, we prove the duality between (12) and (14). Since (18) has an optimal solution, the
problem using the slack variables ξi, i = 1, . . . ,m1,

min
α,b,ρ,ξ

−2ρ+
1

m1

m1∑
i=1

`(ξi)

subject to
m1∑
i,j=1

αiαjk(x
(1)
i , x

(1)
j ) ≤ λ2, ρ− y(1)

i (

m1∑
j=1

αik(x
(1)
i , x

(1)
j ) + b) ≤ ξi, i = 1, . . . ,m1.

also has an optimal solution and the finite optimal value. In addition, the above problem clearly
satisfies the Slater condition (Bertsekas et al., 2003, Assumption 6.2.4). Indeed, at the feasible so-
lution, α = 0, b = 0, ρ = 0 and ξi = 1, i = 1, . . . ,m1, the constraint inequalities are all inactive
for positive λ. Hence, Proposition 6.4.3 in Bertsekas et al. (2003) ensures that the min-max theorem
holds, i.e., there is no duality gap.

Appendix D. Convergence of Expected Loss

Lemma 9 Under Assumption 2 and Assumption 3, we haveR∗ > −∞.

Proof Let S ⊂ X be the subset S = {x ∈ X : ε ≤ P (+1|x) ≤ 1 − ε}, then we have P (S) > 0.
Due to the non-negativity of the loss function `, we have

R(f, ρ) ≥ −2ρ+

∫
S

{
P (+1|x)`(ρ− f(x)) + P (−1|x)`(ρ+ f(x))

}
P (dx)

=

∫
S

{
− 2

P (S)
ρ+ P (+1|x)`(ρ− f(x)) + P (−1|x)`(ρ+ f(x))

}
P (dx).
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For given η satisfying ε ≤ η ≤ 1− ε, we define the function ξ(f, ρ) by

ξ(f, ρ) = − 2

P (S)
ρ+ η`(ρ− f) + (1− η)`(ρ+ f), f, ρ ∈ R.

We derive a lower bound inf{ξ(f, ρ) : f, ρ ∈ R}. Since `(z) is a finite-valued convex function on
R, the subdifferential ∂ξ(f, ρ) ⊂ R2 is given as

∂ξ(f, ρ) =

{
(0,− 2

P (s)
)T + uη(−1, 1)T + v(1− η)(1, 1)T : u ∈ ∂`(ρ− f), v ∈ ∂`(ρ+ f)

}
.

Formulas of the subdifferential are presented in Theorem 23.8 and Theorem 23.9 of Rockafellar
(1970). We prove that there exist f∗ and ρ∗ such that (0, 0)T ∈ ∂ξ(f∗, ρ∗) holds. Since the second
condition in Assumption 3 holds for the convex function `, the union ∪z∈R∂`(z) includes all the
positive real numbers. Hence, there exist z1 and z2 satisfying 1

ηP (S) ∈ ∂`(z1) and 1
(1−η)P (S) ∈

∂`(z2). Then, for f∗ = (z2 − z1)/2, ρ∗ = (z1 + z2)/2, the null vector is an element of ∂ξ(f∗, ρ∗).
Since ξ(f, ρ) is convex in (f, ρ), the minimum value of ξ(f, ρ) is attained at (f∗, ρ∗). Define zup as
a real number satisfying

g >
1

εP (S)
, ∀g ∈ ∂`(zup).

Since ε ≤ η ≤ 1 − ε is assumed, both z1 and z2 are less than zup due to the monotonicity of the
subdifferential. Then, the inequality

ξ(f, ρ) ≥ −z1 + z2

P (S)
+ η`(z1) + (1− η)`(z2) ≥ − 2zup

P (S)

holds for all f, ρ ∈ R and all η such that ε ≤ η ≤ 1− ε. Hence, for any measurable function
f ∈ L0 and ρ ∈ R, we have

R(f, ρ) ≥
∫
S

−2zup

P (S)
P (dx) ≥ − 2zup.

As a result, we haveR∗ ≥ −2zup > −∞.

Lemma 10 Under Assumption 1, 2 and 3, we have

lim
λ→∞

inf{Rλ(f, ρ) : f ∈ H, ρ ∈ R} = R∗. (21)

Proof Corollary 5.29 of Steinwart and Christmann (2008) ensures that the equality

inf{E[`(ρ− yf(x))] : f ∈ H} = inf{E[`(ρ− yf(x))] : f ∈ L0}

holds for any ρ ∈ R. Thus, we have inf{R(f, ρ) : f ∈ H} = inf{R(f, ρ) : f ∈ L0} for any
ρ ∈ R. Then, the equality

inf{R(f, ρ) : f ∈ H, ρ ∈ R} = R∗
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holds. Under Assumption 2 and Assumption 3, we haveR∗ > −∞ due to Lemma 9. Then, for any
ε > 0, there exist λε > 0, fε ∈ H and ρε ∈ R such that ‖fε‖H ≤ λε andR(fε, ρε) ≤ R∗ + ε hold.
For all λ ≥ λε we have

inf{Rλ(f, ρ) : f ∈ H, ρ ∈ R} ≤ Rλ(fε, ρε) = R(fε, ρε) ≤ R∗ + ε.

On the other hand, it is clear that the inequalityR∗ ≤ inf{Rλ(f, ρ) : f ∈ H, ρ ∈ R} holds. Hence,
Eq.(21) holds.

Appendix E. Proof of Lemma 1

Proof Under Assumption 2, the label probabilities, P (y = +1) and P (y = −1), are positive. We
assume that the inequalities

1

2
P (Y = +1) <

m+

m1
,

1

2
P (Y = −1) <

m−
m1

(22)

hold. Applying Chernoff bound, we see that there exists a positive constant c > 0 depending only on
the marginal probability of the label such that (22) holds with the probability higher than 1−e−cm1 .

Lemma 8 in Appendix C ensures that the problem (14) has optimal solutions f̂ , b̂, ρ̂. The first
inequality in (15), i.e., ‖f̂‖H ≤ λm1 , is clearly satisfied. Then, we have ‖f̂‖∞ ≤ Kλm1 from
the reproducing property of the RKHSs. The definition of the estimator and the non-negativity of `
yield that

−2ρ̂ ≤ −2ρ̂+
1

m1

m1∑
i=1

`(ρ̂− y(1)
i (f̂(x

(1)
i ) + b̂)) ≤ `(0).

Then, we have

ρ̂ ≥ −`(0)

2
. (23)

Next, we consider the optimality condition of the problem (14). The Lagrangian of the optimization
problems is given as

L(f, b, ρ, µ) = −2ρ+
1

m1

m1∑
i=1

`(ρ− y(1)
i (f(x

(1)
i ) + b)) + µ(‖f‖2H − λ2

m1
),

where µ ≥ 0 is the Lagrange multiplier of the inequality constraint ‖f‖2H ≤ λ2
m1

. According to the
calculus of subdifferential introduced in Section 23 of Rockafellar (1970), the derivative of L with
respect to ρ leads to an optimality condition,

0 ∈ −2 +
1

m1

m1∑
i=1

∂`(ρ̂− y(1)
i (f̂(x

(1)
i ) + b̂)).
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The monotonicity and non-negativity of the subdifferential and the bound of ‖f‖∞ lead to

2 ≥ 1

m1

m1∑
i=1

∂`(ρ̂− y(1)
i b̂−Kλm1)

=
1

m1

m+∑
i=1

∂`(ρ̂− b̂−Kλm1) +
1

m1

m−∑
j=1

∂`(ρ̂+ b̂−Kλm1)

≥ 1

m1

m+∑
i=1

∂`(ρ̂− b̂−Kλm1).

In the above expressions,
∑m+

i=1 ∂` denotes the m+-fold sum of the set ∂`. Let zp be a real number
satisfying 2m1

m+
< ∂`(zp), i.e., all elements in ∂`(zp) are greater than 2m1

m+
. Then, ρ̂ − b̂ − Kλm1

should be less than zp. In the same way, for zn satisfying 2m1
m−

< ∂`(zn), we have ρ̂+ b̂−Kλm1 <
zn. Hence, the inequalities

ρ̂ ≤ Kλm1 + max{zp, zn},

|̂b| ≤ `(0)

2
+Kλm1 + max{zp, zn}

hold, in which ρ̂ ≥ −`(0)/2 is used in the second inequality. Define z̄ as a real number such that

max

{
4

P (Y = +1)
,

4

P (Y = −1)

}
< g, ∀g ∈ ∂`(z̄).

Inequalities in (22) lead to

max

{
2m1

m+
,

2m1

m−

}
< max

{
4

P (Y = +1)
,

4

P (Y = −1)

}
.

Hence, we can choose z̄ satisfying max{zp, zn} < z̄. Suppose that `(0)/2 ≤ Kλm1 + z̄ holds for
m1 ≥M . Then, the inequalities

|ρ̂| ≤ Kλm1 + z̄, |̂b| ≤ `(0)

2
+Kλm1 + z̄,

hold with the probability higher than 1− e−cm1 for m1 ≥M . By choosing an appropriate positive
constant C > 0, we obtain (15).

Appendix F. Proof of Theorem 4

Proof Lemma 10 in Appendix D assures that, for any γ > 0, there exists sufficiently large M1 such
that

| inf{Rλm1
(f + b, ρ) : f ∈ H, b, ρ ∈ R} −R∗| ≤ γ
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holds for all m1 ≥M1. Thus, there exist fγ , bγ and ργ such that

|Rλm1
(fγ + bγ , ργ)−R∗| ≤ 2γ

and ‖fγ‖H ≤ λm1 hold for m1 ≥M1. Due to the law of large numbers, the inequality

|R̂T1(fγ + bγ , ργ)−R(fγ + bγ , ργ)| ≤ γ

holds with high probability, say 1 − δm1 , for m1 ≥ M2. The boundedness property in Lemma 1
leads to

P ((f̂ , b̂, ρ̂) ∈ Gm1) ≥ 1− e−cm1

for m1 ≥M3. In addition, by the uniform bound shown in Lemma 3, the inequality

sup
(f,b,ρ)∈Gm1

|R̂T1(f + b, ρ)−R(f + b, ρ)| ≤ γ

holds with probability 1− δ′m1
. Hence, the probability such that the inequality

|R̂T1(f̂ + b̂, ρ̂)−R(f̂ + b̂, ρ̂)| ≤ γ

holds is higher than 1 − e−cm1 − δ′m1
for m1 ≥ M3. Let M0 be M0 = max{M1,M2,M3}. We

have the inequalities

R̂T1(f̂ + b̂, ρ̂) = R̂T1,λm1
(f̂ + b̂, ρ̂) ≤ R̂T1,λm1

(fγ + bγ , ργ) = R̂T1(fγ + bγ , ργ).

Then, for any γ > 0, the following inequalities hold with probability higher than 1−e−cm1−δ′m1
−

δm1 for m1 ≥M0,

R(f̂ + b̂, ρ̂) ≤ R̂T1(f̂ + b̂, ρ̂) + γ

≤ R̂T1(fγ + bγ , ργ) + γ

≤ R(fγ + bγ , ργ) + 2γ

= Rλm1
(fγ + bγ , ργ) + 2γ

≤ R∗ + 4γ.

Appendix G. Proof of Theorem 5

Proof For a fixed ρ such that ρ ≥ −`(0)/2, the loss function `(ρ − z) is classification-calibrated
(Bartlett et al., 2006), since `′(ρ) > 0 holds. Hence ψ(θ, ρ) in Assumption 4 satisfies ψ(0, ρ) = 0,
ψ(θ, ρ) > 0 for 0 < θ ≤ 1, and ψ(θ, ρ) is continuous and strictly increasing for θ ∈ [0, 1]. In
addition, for all f ∈ H and b ∈ R, the inequality

ψ(E(f + b)− E∗, ρ) ≤ E[`(ρ− y(f(x) + b))]− inf
f∈H,b∈R

E[`(ρ− y(f(x) + b))]
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holds for the classification-calibrated loss. Here we used the equality

inf{E[`(ρ− y(f(x) + b))] : f ∈ H, b ∈ R} = inf{E[`(ρ− y(f(x) + b))] : f ∈ L0, b ∈ R},

which is shown in Corollary 5.29 of Steinwart and Christmann (2008). Hence, we have

ψ(E(f̂ + b̂)− E∗, ρ̂) ≤ E[`(ρ̂− y(f̂(x) + b̂))]− inf
f∈H,b∈R

E[`(ρ̂− y(f(x) + b))]

= R(f̂ + b̂, ρ̂)− inf
f∈H,b∈R

R(f + b, ρ̂),

since ρ̂ ≥ −`(0)/2 holds due to (23). We assumed thatR(f̂ + b̂, ρ̂) converges toR∗ in probability.
Then, for any ε > 0, the inequality

R∗ ≤ inf
f∈H,b∈R

R(f + b, ρ̂) ≤ R(f̂ + b̂, ρ̂) ≤ R∗ + ε

holds with high probability for sufficiently large m1. Thus, ψ(E(f̂ + b̂)− E∗, ρ̂) converges to zero
in probability. The inequality

0 ≤ ψ̃(E(f̂ + b̂)− E∗) ≤ ψ(E(f̂ + b̂)− E∗, ρ̂)

and the assumption on the function ψ̃ ensure that E(f̂ + b̂) converges to E∗ in probability, when m1

tends to infinity. As a result, for any γ > 0,

|E(f̂ + b̂)− E∗| ≤ γ (24)

holds with probability higher than 1−δm1,γ with respect to the probability distribution of T1, where
δm1,γ satisfies limm1→∞ δm1,γ = 0 for any γ > 0.

Next, we study the relation between f̂ + b̂ and f̂ + b̃. The sample size of T2 is m2. For any fixed
f ∈ H, we define the set of 0-1 valued functions, Sf = {[[ f(x) + b ]] : b ∈ R}. The VC-dimension
of Sf equals to one1. Indeed, for two distinct points x, x′ ∈ X such that f(x) ≥ f(x′), the event
such that [[ f(x) + b ]] = 0 and [[ f(x′) + b ]] = 1 is impossible. Hence, for any ε > 0 and any
f ∈ H, the inequality

sup
b∈R
|ÊT2(f + b)− E(f + b)| ≤ γ (25)

holds with probability higher than 1− δ′′m2,γ with respect to the joint probability of training sample
T2. Note that δ′′m2,γ depends only on m2, γ and the VC-dimension of Sf . Thus, δ′′m2

is independent
of the choice of f ∈ H. Remember that f̂ + b̂ depends only on the data set T1. Due to the law of
large numbers, the inequality

|ÊT2(f̂ + b̂)− E(f̂ + b̂)| ≤ γ

holds with probability higher than 1 − δ′m2,γ with respect to the probability distribution of T2 con-
ditioned on T1. Since the 0-1 loss is bounded, it is possible to choose δ′m2,γ independent of f̂ . From
the uniform convergence property (25), the following inequality also holds

|ÊT2(f̂ + b̃)− E(f̂ + b̃)| ≤ γ

1. See Vapnik (1998) for the definition of the VC dimension.
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with probability higher than 1− δ′′m2,γ with respect to the probability distribution of T2 conditioned
on the observation of T1. In addition, we have

ÊT2(f̂ + b̃) ≤ ÊT2(f̂ + b̂).

Given the training samples T1 satisfying (24), the inequalities

E(f̂ + b̃) ≤ ÊT2(f̂ + b̃) + γ ≤ ÊT2(f̂ + b̂) + γ ≤ E(f̂ + b̂) + 2γ ≤ E∗ + 3γ

hold with probability higher than 1 − δ′m2,γ − δ
′′
m2,γ with respect to the probability distribution of

T2 conditioned on the observation of T1. Hence, as for the conditional probability, we have

P ({T2 : E(f̂ + b̃) ≤ E∗ + 3γ} |T1) ≥ 1− δ′m2,γ − δ
′′
m2,γ .

Remember that δ′m2,γ and δ′′m2,γ do not depend on T1. Hence, as for the joint probability of T1 and
T2, we have

P ({T1, T2 : E(f̂ + b̃) ≤ E∗ + 3γ}) ≥ (1− δ′m2,γ − δ
′′
m2,γ)(1− δm1,γ).

The above inequality implies that E(f̂ + b̃) converges to E∗ in probability, when m1 and m2 tend to
infinity.

Appendix H. Proofs of Lemma 6 and Lemma 7

First, we show the proof of Lemma 6.
Proof For θ = 0 and θ = 1, we can directly confirm that the lemma holds. In the following, we
assume 0 < θ < 1 and ρ ≥ −`(0)/2. We consider the following optimization problem involved in
ψ(θ, ρ),

inf
z∈R

1 + θ

2
`(ρ− z) +

1− θ
2

`(ρ+ z). (26)

The objective function is a finite-valued convex function on R, and diverges to infinity when z tends
to ±∞. Hence, there exists an optimal solution. Let z∗ ∈ R be an optimal solution of (26). The
optimality condition is given as

(1 + θ)`′(ρ− z∗)− (1− θ)`′(ρ+ z∗) = 0.

We assumed that both 1 + θ and 1 − θ are positive and that ρ ≥ −`(0)/2 > d holds. Hence, both
`′(ρ − z∗) and `′(ρ + z∗) should not be zero. Indeed, if one of them is equal to zero, the other is
also zero, and we have ρ− z∗ ≤ d and ρ+ z∗ ≤ d. These inequalities contradict ρ > d. Hence, we
have ρ− z∗ > d and ρ+ z∗ > d, i.e., |z∗| < ρ− d. In addition, we have

1 + θ

2
=

`′(ρ+ z∗)

`′(ρ+ z∗) + `′(ρ− z∗)
.
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Since `′′(z) > 0 holds on (d,∞), the second derivative of the objective in (26) with respect to z
leads to the positivity condition,

(1 + θ)`′′(ρ− z) + (1− θ)`′′(ρ+ z) > 0

for all z such that ρ − z > d and ρ + z > d. Therefore, z∗ is uniquely determined. For a fixed
θ ∈ (0, 1), the optimal solution can be described as the function of ρ, i.e., z∗ = z(ρ). By the
implicit function theorem, z(ρ) is continuously differentiable with respect to ρ. Then, the derivative
of ψ(θ, ρ) is given as

∂

∂ρ
ψ(θ, ρ) =

∂

∂ρ

{
`(ρ)− 1 + θ

2
`(ρ− z(ρ))− 1− θ

2
`(ρ+ z(ρ))

}
= `′(ρ)− 1 + θ

2
`′(ρ− z(ρ))

(
1− ∂z

∂ρ

)
− 1− θ

2
`′(ρ+ z(ρ))

(
1 +

∂z

∂ρ

)
= `′(ρ)− `′(ρ+ z(ρ))

`′(ρ+ z(ρ)) + `′(ρ− z(ρ))
`′(ρ− z(ρ))

(
1− ∂z

∂ρ

)
− `′(ρ− z(ρ))

`′(ρ+ z(ρ)) + `′(ρ− z(ρ))
`′(ρ+ z(ρ))

(
1 +

∂z

∂ρ

)
= `′(ρ)− 2`′(ρ− z(ρ))`′(ρ+ z(ρ))

`′(ρ+ z(ρ)) + `′(ρ− z(ρ))
.

The convexity of 1/`′(z) for z > d leads to

0 <
1

`′(ρ)
≤ 1

2`′(ρ+ z(ρ))
+

1

2`′(ρ− z(ρ))
=
`′(ρ+ z(ρ)) + `′(ρ− z(ρ))

2`′(ρ− z(ρ))`′(ρ+ z(ρ))
.

Hence, we have

∂

∂ρ
ψ(θ, ρ) ≥ 0

for ρ ≥ −`(0)/2 > d and 0 < θ < 1. As a result, we see that ψ(θ, ρ) is non-decreasing as the
function of ρ.

Next, we show the proof of Lemma 7.
Proof We use the result of Bartlett et al. (2006). For a fixed ρ, the function ξ(z, ρ) is continuous
for z ≥ 0, and the convexity of ` leads to the non-negativity of ξ(z, ρ). Moreover, the convexity and
the non-negativity of `(z) lead to

ξ(z, ρ) ≥ `(ρ+ z)− `(ρ)

z`′(ρ)
− `(ρ)

z`′(ρ)
≥ 1− `(ρ)

z`′(ρ)

for z > 0 and ρ ≥ −`(0)/2, where `(ρ) and `′(ρ) are positive for ρ > −`(0)/2. The above
inequality and the continuity of ξ(·, ρ) ensure that there exists z satisfying ξ(z, ρ) = θ for all θ such
that 0 ≤ θ < 1. We define the inverse function ξ−1

ρ by

ξ−1
ρ (θ) = inf{z ≥ 0 : ξ(z, ρ) = θ}
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for 0 ≤ θ < 1. For a fixed ρ ≥ −`(0)/2, the loss function `(ρ − z) is classification-calibrated
(Bartlett et al., 2006). Hence, Lemma 3 in Bartlett et al. (2006) leads to the inequality

ψ(θ, ρ) ≥ `′(ρ)
θ

2
ξ−1
ρ

(
θ

2

)
,

for 0 ≤ θ < 1. Define ξ̄−1 by

ξ̄−1(θ) = inf{z ≥ 0 : ξ̄(z) = θ}.

From the definition of ξ̄(z), ξ̄−1(θ) is well-defined for all θ ∈ [0, 1). Since ξ(z, ρ) ≤ ξ̄(z) holds,
we have ξ−1

ρ (θ/2) ≥ ξ̄−1(θ/2). In addition, `′(ρ) is non-decreasing as the function of ρ. Thus, we
have

ψ(θ, ρ) ≥ `′
(
−`(0)

2

)
θ

2
ξ̄−1

(
θ

2

)
for all ρ ≥ −`(0)/2 and 0 ≤ θ < 1. Then, we can choose

ψ̃(θ) = `′
(
−`(0)

2

)
θ

2
ξ̄−1

(
θ

2

)
.

It is straightforward to confirm that the conditions of Assumption 4 are satisfied.
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