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Abstract
Randomized algorithms that base iteration-level decisions on samples from some pool are ubiqui-
tous in machine learning and optimization. Examples include stochastic gradient descent and ran-
domized coordinate descent. This paper makes progress at theoretically evaluating the difference
in performance between sampling with- and without-replacement in such algorithms. Focusing
on least means squares optimization, we formulate a noncommutative arithmetic-geometric mean
inequality that would prove that the expected convergence rate of without-replacement sampling is
faster than that of with-replacement sampling. We demonstrate that this inequality holds for many
classes of random matrices and for some pathological examples as well. We provide a determin-
istic worst-case bound on the gap between the discrepancy between the two sampling models, and
explore some of the impediments to proving this inequality in full generality. We detail the conse-
quences of this inequality for stochastic gradient descent and the randomized Kaczmarz algorithm
for solving linear systems.
Keywords: Positive definite matrices. Matrix Inequalities. Randomized algorithms. Random
matrices. Optimization. Stochastic gradient descent.

1. Introduction

Randomized sequential algorithms abound in machine learning and optimization. The most fa-
mous is the stochastic gradient method (see Bottou, 1998; Bertsekas, 2012; Nemirovski et al., 2009;
Shalev-Shwartz and Srebro, 2008), but other popular methods include algorithms for alternating
projections (see Strohmer and Vershynin, 2009; Leventhal and Lewis, 2010), proximal point meth-
ods (see Bertsekas, 2011), coordinate descent (see Nesterov, 2010) and derivative free optimiza-
tion (see Nesterov, 2011; Nemirovski and Yudin, 1983). In all of these cases, an iterative procedure
is derived where, at each iteration, an independent sample from some distribution determines the
action at the next stage. This sample is selected with-replacement from a pool of possible options.

In implementations of many of these methods, however, practitioners often choose to break the
independence assumption. For instance, in stochastic gradient descent, many implementations pass
through each item exactly once in a random order (i.e., according to a random permutation). In ran-
domized coordinate descent, one can cycle over the coordinates in a random order. These strategies,
employing without-replacement sampling, are often easier to implement efficiently, guarantee that
every item in the data set is touched at least once, and often have better empirical performance than
their with-replacement counterparts (see Bottou, 2009).

Unfortunately, the analysis of without-replacement sampling schemes are quite difficult. The
independence assumption underlying with-replacement sampling provides an elegant Markovian
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framework for analyzing incremental algorithms. The iterates in without-replacement sampling
are correlated, and studying them requires sophisticated probabilistic tools. Consequently, most of
the analyses without-replacement optimization assume that the iterations are assigned determinis-
tically. Such deterministic orders might incur exponentially worse convergence rates than random-
ized methods (Nedic and Bertsekas, 2000), and deterministic orders still require careful estimation
of accumulated errors (see Luo, 1991; Tseng, 1998). The goal of this paper is to make progress
towards patching the discrepancy between theory and practice of without-replacement sampling in
randomized algorithms.

In particular, in many cases, we demonstrate that without-replacement sampling outperforms
with-replacement sampling provided a noncommutative version of the arithmetic-geometric mean
inequality holds. Namely, if A1, . . . ,An are a collection of d × d positive semidefinite matrices,
we define the arithmetic and (symmetrized) geometric means to be

MA :=
1

n

n∑
i=1

Ai , and MG :=
1

n!

∑
σ∈Sn

Aσ(1) × · · · ×Aσ(n)

where Sn denotes the group of permutations. Our conjecture is that the norm of MG is always less
than the norm of (MA)n. Assuming this inequality, we show that without-replacement sampling
leads to faster convergence for both the least mean squares and randomized Kaczmarz algorithms
of Strohmer and Vershynin (2009).

Using established work in matrix analysis, we show that these noncommutative arithmetic-
geometric mean inequalities hold when there are only two matrices in the pool. We also prove
that the inequality is true when all of the matrices commute. We demonstrate that if we don’t
symmetrize, there are deterministically ordered products of nmatrices whose norm exceeds ‖MA‖n
by an exponential factor. That is, symmetrization is necessary for the noncommutative arithmetic-
geometric mean inequality to hold.

While we are unable to prove the noncommutative arithmetic-geometric mean inequality in full
generality, we verify that it holds for many classes of random matrices. Random matrices are, in
some sense, the most interesting case for machine learning applications as in empirical risk mini-
mization, online learning, and many other settings, we assume that our data is generated by some
i.i.d random process. In Section 4, we show that if A1, . . . ,An are generated i.i.d. from certain
distributions, then the noncommutative arithmetic-geometric mean inequality holds in expectation
with respect to the Ai. Section 4.1 assumes that Ai = ZiZ

T
i where Zi have independent entries,

identically sampled from some symmetric distribution. In Section 4.2, we analyze the random ma-
trices that commonly arise in stochastic gradient descent and related algorithms, again proving that
without-replacement sampling exhibits faster convergence than with-replacement sampling. We
close with a discussion of other open conjectures that could impact machine learning theory, algo-
rithms, and software.

2. Sampling in incremental gradient descent

To illustrate how with- and without-replacement sampling methods differ in randomized optimiza-
tion algorithms, we focus on one core algorithm, the Incremental Gradient Method (IGM). Recall
that the IGM minimizes the function

minimize
x

f(x) =
n∑
i=1

fi(x) (1)
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via the iteration
xk = xk−1 − γk∇fik(xk−1) . (2)

Here, x0 is an initial starting vector, γk are a sequence of nonnegative step sizes, and the indices ik
are chosen using some (possibly deterministic) sampling scheme. When f is strongly convex, the
IGM iteration converges to a near-optimal solution of (1) for any x0 under a variety of step-sizes
protocols and sampling schemes including constant and diminishing step-sizes (see Anstreicher
and Wolsey, 2000; Bertsekas, 2012; Nemirovski et al., 2009). In the next examples, we study the
specialized case where the fi are quadratic and the IGM is equivalent to the least mean squares
algorithm of Widrow and Hoff (1960).

2.1. One-dimensional Examples

First consider the following toy one-dimensional least-squares problem

minimize
x

1

2

n∑
i=1

(x− yi)2 . (3)

where yi is a sequence of scalars with mean µy and variance σ2. Applying (2) to (3) results in
the iteration xk = xk−1 − γk(xk−1 − yik). If we initialize the method with x0 = 0 and take n
steps of incremental gradient with stepsize γk = 1/k, we have xn = 1

n

∑n
j=1 yij , where ij is the

index drawn at iteration j. If the steps are chosen using a without-replacement sampling scheme,
xn = µy, the global minimum. On the other hand, using with-replacement sampling, we will have
E[(xn − µy)2] = σ2

n , which is positive mean square error.
Another toy example that further illustrates the discrepancy is the least-squares problem

minimize
x

1

2

n∑
i=1

βi(x− y)2

where βi are positive weights. Here, y is a scalar, and the global minimum is clearly y. Let’s
consider the incremental gradient method with constant stepsize γk = γ < minβ−1

i . Then after n
iterations we will have

|xn − y| = |y|
n∏
j=1

(1− γβij )

If we perform without-replacement sampling, this error is given by

|xn − y| = |y|
n∏
i=1

(1− γβi) .

On the other hand, using with-replacement sampling yields

E[|xn − y|] = |y|

(
1− γ

n

n∑
i=1

βi

)n
.

By the arithmetic-geometric mean inequality, we then have that the without-replacement sample
is always closer to the optimal value in expectation. This sort of discrepancy is not simply a fea-
ture of these toy examples. We now demonstrate that similar behavior arises in multi-dimensional
examples.
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2.2. IGM in more than one dimension

Now consider IGM in higher dimensions. Let x? be a vector in Rd and set

yi = aTi x? + ωi for i = 1, . . . , n

where ai ∈ Rd are some test vectors and ωi are i.i.d. Gaussian random variables with mean zero
and variance ρ2.

We want to compare with- vs without-replacement sampling for IGD on the cost function

minimize
x

n∑
i=1

(aTi x− yi)2 . (4)

Suppose we walk over k steps of IGD with constant stepsize γ and we access the terms i1, . . . , ik
in that order. Then we have

xk = xk−1 − γaik(aTikxik−1
− yik) =

(
I − γaika

T
ik

)
xik−1

+ γaikyik .

Subtracting x? from both sides of this equation then gives

xk − x? =
(
I − γaika

T
ik

)
(xk−1 − x?) + γaikωik (5)

=

k∏
j=1

(
I − γaijaTij

)
(x0 − x?) +

k∑
`=1

∏
k≥j>`

(
I − γaijaTij

)
γai`ωi` .

Here, the product notation means we multiply by the matrix with smallest index first, then left
multiply by the matrix with the next index and so on up to the largest index.

Our goal is to estimate the risk after k steps, namely E[‖xk − x?‖2], and demonstrate that this
error is smaller for the without-replacement model. The expectation is with respect to the IGM
ordering and the noise sequence ωi. To simplify things a bit, we take a partial expectation with
respect to ωi:

E[‖xk − x?‖2] = E


∥∥∥∥∥∥

k∏
j=1

(
I − γaija

T
ij

)
(x0 − x?)

∥∥∥∥∥∥
2
+ ρ2γ2

k∑
`=1

E


∥∥∥∥∥∥
∏

k≥j>`

(
I − γaija

T
ij

)
ai`

∥∥∥∥∥∥
2

(6)

In this case, we need to compare the expected value of matrix products under with or without-
replacement sampling schemes in order to conclude which is better. Is there a simple conjecture,
analogous to the arithmetic-geometric mean inequality, that would guarantee without-replacement
sampling is always better?

2.3. The Randomized Kaczmarz algorithm

As another high-dimensional example in the same spirit, we consider the randomized Kaczmarz
algorithm of Strohmer and Vershynin (2009). The Kaczmarz algorithm is used to solve the over-
determined linear system Φx = y. Here Φ is an n × d matrix with n > d and we assume
there exists an exact solution x? satisfying Φx? = y. Kaczmarz’s method solves this system by
alternating projections (Kaczmarz, 1937) and was implemented in the earliest medical scanning
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devices (Hounsfield, 1973). In computer tomography, this method is called the Algebraic Recon-
struction Technique (Herman, 1980; Natterer, 1986) or Projection onto Convex Sets (Sezan and
Stark, 1987).

Kaczmarz’s algorithm consists of iterations of the form

xk+1 = xk +
yi − φTikxk
‖φik‖2

φik . (7)

where the rows of Φ are accessed in some deterministic order. This sequence can be interpreted as
an incremental variant of Newton’s method on the least squares cost function

minimize
x

n∑
i=1

(φTi xk − yi)2

with step size equal to 1 (see Bertsekas, 1999).
Establishing the convergence rate of this method proved difficult in imaging science. On the

other hand, Strohmer and Vershynin (2009) proposed a randomized variant of the Kaczmarz method,
choosing the next iterate with-replacement with probability proportional to the norm ofφi. Strohmer
and Vershynin established linear convergence rates for their iterative scheme. Expanding out (7) for
k iterations, we see that

xk − x? =
k∏
j=1

(
I −

φijφ
T
ij

‖φij‖2

)
(x0 − x?) .

Let us suppose that we modify Strohmer and Vershynin’s procedure to employ without-replacement
sampling. After k steps is the with-replacement or without-replacement model closer to the optimal
solution?

3. Conjectures concerning the norm of geometric and arithmetic means of positive
definite matrices

To formulate a sufficient conjecture which would guarantee that without-replacement sampling out-
performs with-replacement, let us first formalize some notation. Throughout, [n] denotes the set of
integers from 1 to n, and ‖ · ‖ represents the operator norm for matrices and `2 norm for vectors
unless explicitly stated otherwise. Let D be some domain, f : Dk → R, and (x1, . . . , xn) a set of n
elements from D. We define the without-replacement expectation as

Ewo[f(xi1 , . . . , xik)] = (n−k)!
n!

∑
j1 6=j2 6=...6=jk

f(xj1 , . . . , xjk) .

That is, we average the value of f over all ordered tuples of elements from (x1, . . . , xn). Similarly,
the with-replacement expectation is defined as

Ewr[f(xi1 , . . . , xik)] = n−k
n∑

(j1,...,jk)=1

f(xj1 , . . . , xjk) .

With these conventions, we can list our main conjectures as follows:
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Conjecture 1 (Operator Inequality of Noncommutative Arithmetic and Geometric Means) Let
A1, . . . ,An be a collection of positive semidefinite matrices. Then we conjecture that the following
two inequalities always hold:∥∥∥∥∥∥Ewo

 k∏
j=1

Aij

∥∥∥∥∥∥ ≤
∥∥∥∥∥∥Ewr

 k∏
j=1

Aij

∥∥∥∥∥∥ (8)

∥∥∥∥∥∥Ewo

 k∏
j=1

Aik−j+1

k∏
j=1

Aij

∥∥∥∥∥∥ ≤
∥∥∥∥∥∥Ewr

 k∏
j=1

Aik−j+1

k∏
j=1

Aij

∥∥∥∥∥∥ (9)

Note that in (8), we have Ewr[
∏
jAij ] = ( 1

n

∑
iAi)

k = (MA)k.
Assuming this conjecture holds, let us return to the analysis of the IGM (6). Assuming that

x0 − x? is an arbitrary starting vector and that (9) holds, we have that each term in this summation
is smaller for the without-replacement sampling model than for the with-replacement sampling
model. In turn, we expect the without-replacement sampling implementation will return lower risk
after one pass over the data-set. Similarly, for the randomized Kaczmarz iteration (7), Conjecture 1
implies that a without-replacement sample will have lower error after k < n iterations.

In the remainder of this document we provide several case studies illustrating that these non-
commutative variants of the arithmetic-geometric mean inequality hold in a variety of settings,
establishing along the way tools and techniques that may be useful for proving Conjecture 1 in full
generality.

3.1. Prior Art: Two matrices and a search for the geometric mean

Both of the inequalities (8) and (9) are true when n = 2. These inequalities all follow from an well-
estabilished line of research in estimating the norms of products of matrices, started by the seminal
work of Bhatia and Kittaneh (1990). First, the symmetrized geometric mean actually precedes the
square of the arithmetic mean in the positive definite order. Let A and B be positive semidefinite.
Then we have(

1
2A+ 1

2B
)2 − (1

2AB + 1
2BA

)
= 1

4A
2 + 1

4B
2 − 1

4AB −
1
4BA =

(
1
2A−

1
2B
)2 � 0

implying (8). For two matrices, considerably stronger inequalities apply. Bhatia and Kittaneh (2000)
showed that

‖AB‖ ≤
∥∥1

2A+ 1
2B
∥∥2 (10)

demonstrating the arithmetic-geometric mean inequality holds for deterministic orderings of two
matrices. (9) is a consequence of this inequality. We provide a proof of this fact in Appendix B.
The interested reader should consult Bhatia and Kittaneh (2008) for a comprehensive list of similar
inequalities concerning pairs of matrices.

Unfortunately, these techniques are specialized to the case of two matrices, and no proof cur-
rently exists for the inequalities when n ≥ 3. There have been a varied set of attempts to extend the
noncommutative arithmetic-geometric mean inequalities to more than two matrices. Much of the
work in this space has focused on how to properly define the geometric mean of a collection of pos-
itive semidefinite matrices. For instance, Ando et al. (2004) demarcate a list of properties desirable
by any geometric mean, with one of the properties being that the geometric mean must precede the
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arithmetic mean in the positive-definite ordering. Ando et al derive a geometric mean satisfying all
of these properties, but the resulting mean in no way resembles the means of matrices discussed in
this paper. Instead, their geometric mean is defined as a fixed point of a nonlinear map on matrix
tuples. Bhatia and Holbrook (2006) and Bonnabel and Sepulchre (2009) propose geometric means
based on geodesic flows on the Riemannian manifold of positive definite matrices, however these
means also do not correspond to the averaged matrix products that we study in this paper.

3.2. When is it necessary to symmetrize the order?

When the matrices commute, Conjecture 1 is a consequence of the standard arithmetic-geometric
mean inequality (more precisely, a consequence of Maclaurin’s inequalities). A discussion of the
commutative case and Maclaurin’s inequalities can be found in Appendix A. In fact, in this case,
any order of the matrix products will satisfy the desired arithmetic-geometric mean inequalities.

In contrast, symmetrizing over the order of the product is necessary for noncommutative opera-
tors. The following example in fact provides deterministic without-replacement orderings that have
exponentially larger norm than the with-replacement expectation. Let ωn = π/n. For n ≥ 3, define
the collection of vectors

ak;n =

[
cos (kωn)
sin (kωn)

]
. (11)

Note that all of the ak;n have norm 1 and, for 1 ≤ k < n, 〈ak;n,ak+1;n〉 = cos (ωn). The matrices
Ak := ak;na

T
k;n are all positive semidefinite for 1 ≤ k ≤ n, and we have the identity

1

n

n∑
k=1

Ak = 1
2I . (12)

Any set of unit vectors satisfying (12) is called a normalized tight frame, and the vectors (11) form a
harmonic frame due to their trigonometric origin (see Hassibi et al., 2001; Goyal et al., 2001). The
product of theAi is given by

k∏
i=1

Ai = ak;na
T
1;n

k−1∏
j=1

〈aj;n,aj+1;n〉 = ak;na
T
1;n cosk−1 (ωn) ,

and hence ∥∥∥∥∥
k∏
i=1

Ai

∥∥∥∥∥ = cosk−1 (ωn) ≥ 2k cosk−1(ωn)

∥∥∥∥∥∥
(

1

n

n∑
k=1

Ak

)k∥∥∥∥∥∥ .
Therefore, the arithmetic mean is less than the (deterministic) geometric mean for all n ≥ 3.

It turns out that this harmonic frame example is in some sense the worst case. The following
proposition shows that the geometric mean is always within a factor of dk of the arithmetic mean
for any ordering of the without-replacement matrix product.

Proposition 2 LetA1, . . . ,An be d× d positive semidefinite matrices. Then∥∥∥∥∥Ewo

[
k∏
i=1

Aji

]∥∥∥∥∥ ≤ dk
∥∥∥∥∥Ewr

[
k∏
i=1

Aji

]∥∥∥∥∥ .
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Proof If we sample j1, . . . , jk uniformly from [n], then we have∥∥∥∥∥Ewo

[
k∏
i=1

Aji

]∥∥∥∥∥ ≤ Ewo

[∥∥∥∥∥
k∏
i=1

Aji

∥∥∥∥∥
]
≤ Ewo

[
k∏
i=1

‖Aji‖

]
≤ Ewo

[
k∏
i=1

trace(Aji)

]

≤

(
1

n

n∑
i=1

trace(Ai)

)k
= trace

(
1

n

n∑
i=1

Ai

)k
≤

∥∥∥∥∥dn
n∑
i=1

Ai

∥∥∥∥∥
k

.

Here, the first inequality follows from the triangle inequality. The second, because the operator
norm is submultiplicative. The third inequality follows because the trace dominates the operator
norm. The fourth inequality is Maclaurin’s. The fifth inequality follows because the trace of a d×d
positive semidefinite matrix is upper bounded by d times the operator norm.

For the interested reader, we construct examples saturating this worst-case bound in higher
dimensions using harmonic frames in Appendix D.

At first glance, the harmonic frames example appears to cast doubt on the validity of Conjec-
ture 1. However, after symmetrizing over the symmetric group, the 2d harmonic frames do obey (8).

Theorem 3 Let λ(n) = 2F3

[
1 −n/2 + 1/2 −n/2

1/2 −n+ 1
; 1

]
. With the ak;n defined in (11),

1
n!

∑
σ∈Sn

n∏
i=1

aσ(i);na
T
σ(i+1);n = −λ(n)2−nI , and 1 ≥ λ(n) = O(n−1) .

This theorem additionally verifies that there is an asymptotic gap between the arithmetic and geo-
metric means of the harmonic frames example after symmetrization. We include a full proof of this
result in Appendix E. Our first step is to treat the norm variationally using the identity that ‖X‖2 is
the maximum of vTXv over all unit vectors v. Our computation in this stage is effectively com-
puting a Fourier transform of the function of v in an appropriately defined finite group. We show
that the Fourier coefficients can be viewed as enumerating sets, and we compute them exactly using
generating functions.

The combinatorial argument that we use to prove Theorem 3 is very specialized. To provide a
broader set of examples, we now turn to show that Conjecture 1 does in fact hold for many classes
of random matrices.

4. Random matrices

In this section, we show that ifA1, . . . ,An are generated i.i.d. from certain distributions, then Con-
jecture 1 holds in expectation with respect to the Ai. Section 4.1 assumes that Ai = ZiZ

T
i where

Zi have independent entries, identically sampled from some symmetric distribution. In Section 4.2,
we explore when the matricesAi are random rank-one perturbations of the identity as was the case
in the IGM and Kaczmarz examples.

4.1. Random matrices satisfy the noncommutative arithmetic-geometric mean inequality

In this section, we prove the following
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Theorem 4 For each i = 1, . . . , n, suppose Ai = ZiZ
T
i with Zi a d × r random matrix whose

entries are i.i.d. samples from some symmetric distribution. Then Conjecture 1 holds in expectation.

Proof Suppose the entries of each Zi have finite variance σ2 (the theorem would be otherwise
vacuous if we assumed infinite variance). Let the (a, b) entry of Zi be denoted by Z(i)

a,b. Also,
denote byW the matrix with all of the Zi stacked as columns: W = σ−1[Z1, . . . ,Zn].

Let’s first prove that (8) holds in expectation for these matrices. First, consider the without-
replacement samples, which are considerably easy to analyze. Let (j1, . . . , jk) be a without-replacement
sample from [n]. Then ∥∥∥∥∥E

[
k∏
i=1

Aji

]∥∥∥∥∥ = ‖E[A1]k‖ = rkσ2k .

For the arithmetic mean, we can compute

r−kσ−2k

∥∥∥∥∥∥E
( 1

n

n∑
i=1

Ai

)k∥∥∥∥∥∥ ≥ 1

rkσ2kd
trace

E

( 1

n

n∑
i=1

Ai

)k

=E

d−1 trace

( 1

nrσ2

n∑
i=1

Ai

)k = E

[
d−1 trace

((
1

nr
WW T

)k)]
(13)

=d−1(nr)−k
d∑

{a1,...,ak}=1

nr∑
{b1,...,bk}=1

E[Wa1,b1Wa2,b1Wa2,b2Wa3,b2 . . .Wak,bkWa1,bk ]

=(nr)−k
d∑

{a2,...,ak}=1

nr∑
{b1,...,bk}=1

E[W1,b1Wa2,b1Wa2,b2Wa3,b2 . . .Wak,bkW1,bk ] . (14)

Note that since Wij are iid, symmetric random variables, each term in this sum is zero if it contains
an odd power of Wij for some i and j. If all of the powers in a summand are even, its expected
value is bounded below by 1. A simple lower bound for this final term (14) thus looks only at the
contribution from when all of the indices ai are set equal to 1.

(nr)−k
nr∑

{b1,...,bk}=1

E[W 2
1,b1W

2
1,b2 . . .W

2
1,bk

] = E

( 1

nr

nr∑
b=1

W 2
1,b

)k ≥ (E[ 1

nr

nr∑
b=1

W 2
1,b

])k
= 1 .

Here the inequality is Jensen’s. This calculation proves the noncommutative arithmetic-geometric
mean inequality for our family of random matrices. That is, we have demonstrated that the expected
value of the with-replacement sample has greater norm than the expected value of the without-
replacement sample.

To prove (9), we need to control the quantity V (i1, . . . , in) := Aik · · ·Ai2A
2
i1
Ai2 · · ·Aik un-

der the two different sampling models. Essentially the calculation parallels the above proof strategy.
We write out the expectation of V exactly in the case of the without-replacement sampling. Then
we lower bound the arithmetic mean by dropping some terms, all of which must be positive because
the Zij are symmetrically distributed. The remaining terms sum to the geometric mean, proving (9).
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The arguments used to prove Theorem 4 grossly undercount the number of terms that contribute
to the expectation. Bounds on the quantity (13) commonly arise in the theory of random matri-
ces (see the survey by Bai, 1999, for more details and an extensive list of references). Indeed,
if we let d = δn and assume that Wij have bounded fourth moment, we have that (13) tends to
(1 +

√
δ)2k almost surely a n → ∞. That is, the gap between the with- and without-replacement

sampling grows exponentially with k in this scaling regime. Similarly, there is an asymptotic, ex-
ponential gap between the with and without-replacement expectations in (9). In the appendix, we
specialize to the case where the Zi are Gaussian (and hence the Ai are Wishart) and demonstrate

that the ratio of the expectation is bounded below by re
1

4k(k+1)

(
16k

e2r(r+d+1)

)k
.

4.2. Random vectors and the incremental gradient method

We can also use a random analysis to demonstrate that for the least-squares problem (4), without-
replacement sampling outperforms with-replacement sampling if the data is randomly generated.

Let’s look at one step of the recursion (5) and assume that the ai are sampled i.i.d. from some
distribution. Assume that the moments Λ := E[aia

T
i ] and ∆ := E[‖ai‖2aiaTi ] exist. Then we see

immediately that

Ewo[‖xk − x?‖2] = Ewo[xk−1 − x?]T (I − 2γΛ + γ2∆)Ewo[xk−1 − x?] + ρ2γ2 trace(Λ)

because ajk is chosen independently from (aj1 , . . . ,ajk−1
) On the other hand, in the with-replacement

model, we have

Ewr[‖xk − x?‖2] = Ewr

[
(xk−1 − x?)T (I − 2γΛn + γ2∆n)(xk−1 − x?)

]
+ ρ2γ2 trace(Λ)

where

Λn :=
1

n

n∑
i=1

aia
T
i and ∆n :=

1

n

n∑
i=1

‖ai‖2aiaTi .

In this case, we cannot distribute the expected value because the vector x − x? depends on all ai
for 1 ≤ i ≤ n. To get a flavor for how these differ, consider the conditional expectation

Ewr

[
‖xk − x?‖2 | {ai}

]
≤
(
1− 2γλmin(Λn) + γ2λmax(∆n)

)
Ewr

[
‖xk−1 − x?‖2 | {ai}

]
+ ρ2γ2 trace(Λ)

Similarly,

Ewo

[
‖xk − x?‖2

]
≤
(
1− 2γλmin(Λ) + γ2λmax(∆)

)
Ewo

[
‖xk−1 − x?‖2

]
+ ρ2γ2 trace(Λ) .

Expanding out these recursions, we have

Ewo

[
‖xk − x?‖2

]
≤
(
1− 2γλmin(Λ) + γ2λmax(∆)

)k Ewo

[
‖x0 − x?‖2

]
+ ρ2γ trace(Λ)

2λmin(Λ)−γλmax(∆)

Ewr

[
‖xk − x?‖2 | {ai}

]
≤
(
1− 2γλmin(Λn) + γ2λmax(∆n)

)k Ewr

[
‖xk − x?‖2 | {ai}

]
+ ρ2γ trace(Λn)

2λmin(Λn)−γλmax(∆n)
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Now, since
∑

i aia
T
i is positive definite and since λmin is concave on Hermitian matrices, we

have by Jensen’s inequalty that

E[λmin(Λn)] = E

[
λmin

(
1

n

n∑
i=1

aia
T
i

)]
≤ λmin

(
E

[
1

n

n∑
i=1

aia
T
i

])
= λmin (Λ) ,

and, since λmax is convex for symmetric matrices,

E [λmax (∆n)] = E

[
λmax

(
1

n

n∑
i=1

‖ai‖2aiaTi

)]
≥ λmax

(
E

[
1

n

n∑
i=1

‖ai‖2aiaTi

])
= λmax(∆) .

This means that the with-replacement upper bound is worse than the without-replacement estimate
with reasonably high probability on most models of ai. Under mild conditions on ai (including
Gaussianity, bounded entries, subgaussian moments, or bounded Orlicz norm), we can estimate tail
bounds for the eigenvalues of Λn and ∆n (by applying the techniques of Tropp, 2011, for exam-
ple). These large deviation inequalities provide quantitative estimates of the gap between with- and
without-replacement sampling for the least mean squares and randomized Kaczmarz algorithms.
Similar, but more tedious analysis, would reveal that with-replacement sampling fares worse with
diminishing step sizes as well.

5. Discussion and open problems

While i.i.d. matrices are of significant importance in machine learning, the major piece of open work
is proving Conjecture 1 for all positive semidefinite matrix tuples or finding a counterexample for
either of the assertions. As demonstrated by the harmonic frames example, symmetrized products
of deterministic matrices become quickly tedious and difficult to study. Some sort of combinatorial
structure might need to be exploited for a short proof to arise in general. It remains to be seen if this
sort of combinatorics employed in proving Theorem 3 generalizes beyond this particular example,
but we expect these techniques will be useful in future studies of Conjecture 1. In particular, it
would be interesting to see if we could reduce the proof of the conjecture to verifying the conjecture
on frames that arise as the orbit of the representation of some finite group. These frames have been
fully classified by Hassibi et al. (2001), and would reduce Conjecture 1 to a finite list of cases.

A further conjecture and its consequences The generalization of (10) to n ≥ 3 asserts a stronger
version of (8)

Ewo

∥∥∥∥∥∥
k∏
j=1

Aij

∥∥∥∥∥∥
2 ≤ ∥∥∥∥∥ 1

n

n∑
i=1

Ai

∥∥∥∥∥
2k

. (15)

Certainly, (8) follows from (15) by Jensen’s inequality the triangle inequality. Moreover, we showed
that for two matrices, (9) also followed from (10). When n ≥ 3, is it the case that (15) holds? It
could be that for general matrices, it is easier to analyze (15) rather than (9) because the left hand
side of the inequality is not quadratic in the matrices Ai. A further question is if we can generalize
the two matrix case to show that when n ≥ 3, (15) always implies (9).
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Effect of biased orderings. Another possible technique for solving incremental algorithms is to
choose the best ordering of the increments to reach the cost function. In terms of matrices, can we
find the ordering of the matrices Ai that achieves the minimum norm. At first glance this seems
daunting. SupposeAi = aia

T
i where the ai are all unit vectors. Then for σ ∈ Sn∥∥∥∥∥

n∏
i=1

Aσ(i)

∥∥∥∥∥ =

n−1∏
i=1

|〈aσ(i),aσ(i+1)〉|

minimizing this expression with respect to σ amounts to finding the minimum weight traveling
salesman path in the graph with weights log |〈ai,aj〉|. Are there simple heuristics that can get
within a small constant of the optimal tour for these graphs? How do greedy heuristics fare? This
sort of approach was explored with some success for the Kaczmarz method by Eldar and Needell
(2011).

Nonlinear extensions Extending even the random results in this paper to nonlinear algorithms
such as the general incremental gradient descent algorithm or randomized coordinate descent would
require modifying the analyses used here. However, it would be of interest to see which of the
randomization tools employed in this work can be extended to the nonlinear case. For example, if
we assume that the cost function (1) has summands which are sampled i.i.d., can we use similar
tools (e.g., Jensen’s inequality, moment bounds) to show that without-replacement sampling works
even in the nonlinear case?
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Appendix A. Commutative matrices

One case which follows from simple, classical analysis is when the matrices do in fact commute.
Consider the case where A1, . . . ,An are positive semidefinite matrices that mutually commute
with one another: AiAj = AjAi. In this case, we shall see that Conjecture 1 will follow from
an application of Maclaurin’s Inequalities, which generalize the scalar arithmetic-geometric mean
inequality:

Theorem 5 (Maclaurin’s Inequalities) Let x1, . . . , xn be positive scalars. Let

sk =

(
n

k

)−1 ∑
Ω⊂[n]
|Ω|=k

∏
i∈Ω

xi

be the normalized kth symmetric sum. Then we have

s1 ≥
√
s2 ≥ . . . ≥ n−1

√
sn−1 ≥ n

√
sn

Note that s1 ≥ n
√
sn is the standard form of the arithmetic-geometric mean inequality. See Hardy

et al. (1952) for a discussion and proof of this chain of inequalities.
To see that these inequalities immediately imply Conjecture 1 when the matrices Ai are mutu-

ally commutative, note first that when d = 1, we have

Ewo

[
k∏
i=1

ai

]
=

(
n

k

)−1 ∑
Ω⊂[n]
|Ω|=k

∏
i∈Ω

ai ≤

(
1

n

n∑
i=1

ai

)k
= Ewr

[
k∏
i=1

ai

]
.

The higher dimensional analogs follow from similarly. Indeed, if all of the Ai commute, then
the matrices are mutually diagonalizable. That is, we can write Ai = UΛiU

T where U is an
orthogonal matrix, and the Λi = diag(λ

(i)
1 , . . . , λ

(i)
d ) are all diagonal matrices of the eigenvalues.

Then we have∥∥∥∥∥Ewo

[
k∏
i=1

Ai

]∥∥∥∥∥ =

∥∥∥∥∥Ewo

[
k∏
i=1

Λi

]∥∥∥∥∥ = max
j

k∏
i=1

λ
(i)
j ≤ max

j
Ewr

k∏
i=1

λ
(i)
j =

∥∥∥∥∥Ewr

[
k∏
i=1

Ai

]∥∥∥∥∥
verifying our conjecture.

Appendix B. Proof of (9) for n = 2

LetA1 = A andA2 = B be two positive semindefinite matrices. Note that

Ewo[Ai1A
2
i2Ai1 ] = 1

2AB
2A+ 1

2BA
2B (16)

and
Ewr[Ai1A

2
i2Ai1 ] = 1

4A
4 + 1

4AB
2A+ 1

4BA
2B + 1

4B
4 .

We can bound (16) by

1
2‖AB

2A+BA2B‖ ≤ ‖AB2A‖ = ‖AB‖2 ≤ ‖1
2A+ 1

2B‖
4 = ‖(1

2A+ 1
2B)4‖ .
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Here, the first inequality is the triangle inequality and the subsequent equality follows because the
norm ofXTX is equal to the squared norm ofX . The second inequality is (10).

To complete the proof we show

XL := (1
2A+ 1

2B)4 � 1
4A

4 + 1
4AB

2A+ 1
4BA

2B + 1
4B

4 := XR

in the semidefinite ordering. But this follows by observing

XR −XL = 1
48(3A2 −AB −BA−B2)2

+ 1
24(2BA−AB −B2)(2AB −BA−B2) (17)

+ 1
8(AB −B2)(BA−B2) ,

which means that XR −XL is a sum of products of the form Y Y T and hence must be positive
semidefinite. This means, in particular, that ‖XR‖ ≥ ‖XL‖, completing the proof.

For the interested reader, the decomposition (17) was found using the software NCSOSTools
by Cafuta et al. (2011). This software finds decompositions of matrix polynomials into sums of
Hermitian squares.

Appendix C. Additional calculations for random matrices

To verify that (9) holds for our random matrix model, we first record the following property about
the fourth moments of the entries of theAi. Let ξ := E[G4

ij ]
1/4. Then we have

Lemma 6 For any fixed u = 1, . . . , n:

E[Aui1,j1A
u
i2,j2 ] =


r(r − 1)σ4 + rξ4 {i1, j2} = {i2, j2} and i1 = i2

rσ4 {i1, j2} = {i2, j2} and i1 6= i2

0 otherwise

Proof [of Lemma 6] Aui,j =
∑r

k=1 gikgik so that if i 6= j then

EG [(Auii)
2] = EG

 r∑
k=1,k′=1

g2
ikg

2
ik′

 = EG [
∑
k

g4
ik] +

r∑
k,k′=1:k 6=k′

EG [g2
ik]EG [g2

ik′ ] = rξ4 + r(r + 1)σ4 .

EG [(Auij)
2] = EG

 r∑
k=1,k′=1

gikgjkgik′gjk′

 =
r∑

k=1

EG [g2
ikg

2
jk] = rσ4 .

A consequence of this lemma is that E[A2] = (r(r + d − 1)σ4 + rξ4)Id. Using this identity,
we can set ζ := r(r + d− 1)σ4 + rξ4 and we then have

E[V (i1, . . . , ik)] = E[Aik . . .A
2
i1 . . .Aik ] = ζ E[Aik . . .A

2
i2 . . .Aik ] = · · · = ζkId .
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We compute this identity in a second way that describes its combinatorics more explicitly, which
we will use as to derive our lower bound.

E[Vu,v(i1, . . . , ik)] =E

 ∑
p∈[d]2k

A(i1)
u,p1A

(i2n)
p2,v

k−1∏
j=2

A
(ij)
pij−1

,pij
A

(i2k−j+1)
pi2k−j

,pi2k−j+1


=
∑

p∈[d]2k

E[A(i1)
u,p1A

(i2n)
p2,v ]

k−1∏
j=2

E[A
(ij)
pij−1

,pij
A

(i2k−j+1)
pi2k−j

,pi2k−j+1
] .

The second equality uses linearity coupled with the fact that i1, . . . , ik are distinct, hence E[A
(ij)
u,v A

(il)
u′,v′ ] =

E[A
(ij)
u,v ]E[A

(il)
u′,v′ ] since elements from distinct matrices are independent. Many of the terms in this

sum contain odd powers which are zero. Using the fact thatA = AT , we see that all terms that are
non-zero must contain only products of two forms: A2

uu or A2
uv. Then, we can write the sum:

Vu,v(i1, . . . , ik) =
∑
p∈[d]k

E[(A(i1)
u,p1)2]

k∏
j=2

E[(A
(ij)
pj−1,pj )

2] .

Now consider the case that some index may be repeated (i.e., there exist k, l such that ij = il
for j 6= l). The key observation is the following. Let w be a real-valued random variable with a
finite second moment. Then,

E[w2p] ≥ E[w2]p for p = 0, 1, . . . , n , (18)

with equality only for p = 0, 1. This is Jensen’s inequality applied to xp for x ≥ 0 (since w is real
then w2 is positive, and xp is convex on [0,∞) for p = 0, 1, 2, . . . .)

Now consider the case when i1, . . . , ik may be repeated. Let ni be the number of times index i
is repeated.

E[V (i1, . . . , ik)] = E[
∑
p̄∈[d]2

∑
u,v

xuxvA
(i1)
u,p(1)A

(i2N )
p(2),v

k−1∏
j=2

A
(ij)

p(ij−1),p(ij)A
(i2k−j+1)

p(i2k−j),p(i2k−j+1)]

≥
∑
p∈[d]k

∑
u,v

xuxv E[(A
(i1)
u,p(1))

2
k∏
j=2

(A
(ij)

p(j−1),p(j))
2]

≥
∑
p∈[d]k

∑
u,v

xuxv E[(A
(i1)
u,p(1))

2]

k∏
j=2

E[(A
(ij)

p(j−1),p(j))
2]

The first inequality follows from Lemma 6, since all terms are non-negative. The second in-
equality is repeated application of (18). The final equality is the calculation we performed for our
second proof of the equality condition.

This last expression is precisely equal to the without-replacement average. On the other hand,
observe that (18) is strict for p ≥ 2 for Wishart random variables. If there is even a single repeated
value, i.e., ij = il for j 6= l, the second inequality above is also strict. Thus, equality is achieved if
and only if all indicies are distinct.

For the special case of Wishart matrices, we can show that this gap is quite large.
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Lemma 7 For i = 1, . . . , k, we have

EG [V (i, . . . , i)] ≥ ‖x‖2r2−2k 4k!

2k!
σ4k

Proof

E[V (xi, . . . , i)] ≥
d∑

u=1

x2
u EG [A(i)

u,uA
(i)
u,u

k−1∏
j=2

A(i)
u,uA

(i)
u,u]

= ‖x‖2 E[(A(i)
u,u)2k] .

The first inequality is because all the terms are positive and we are selecting out only the self loops.
The equality just groups terms. The following lower bound completes the proof.

E[(Aiuu)2k] = E

 ∑
l1,...,lr

(
2k

l1, . . . , lr

) r∏
l=1

g2
illi

 ≥ r∑
l=1

E[g4k
il ] = r2−2k 4k!

2k!
σ4k .

A simple corollary is the following lower bound on the AM

Ewr E[V (i1, . . . , ik)] ≥ k−k‖x‖2r2−2k .
4k!

2k!
σ4k

We examine the following ratio ρ(r, k, d)

ρ(k, r, d) =
Ewr EG [G(x, i1, . . . , ik)]

Ewo EG [G(x, i1, . . . , ik)]
≥ r4k!

2k!
(4kr(r + d+ 1))−k .

For fixed r, d, ρ grows exponentially with k.

Lemma 8 For k, r, d ≥ 0 then

ρ(k, r, d) ≥ re
1

4k(k+1)

(
16k

e2r(r + d+ 1)

)k
Proof We use a very crude lower and upper bound pair that holds for all k (Cormen et al., 2009,
p. 55).

√
2πk

(
k

e

)k
e

1
2k+1 ≤ k! ≤

√
2πk

(
k

e

)k
e1/2k .

Using this, we can write:

ρ(k, r, d) ≥ r exp{k ln(4k/e)4 − k ln(2k/e)2 − k ln(4kr(r + d+ 1)) +
1

2k
− 1

2k + 1
}

= r exp

{
k ln

42k

e2r(r + d+ 1)
− 1

4k(k + 1)

}
= r

(
16k

e2r(r + d+ 1)

)k
e

1
4k(k+1) .
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Appendix D. Harmonic frames in higher dimensions

The generalization to higher dimensions uses a collection of harmonic frames described by Goyal
et al. (2001). Again, let ωn = π/n.

If d even, set

fk+1 =

√
2

d


ak;n

a3k;n
...

a(d−1)k;n

 for k = 0, 1, . . . , n− 1.

One can verify again using standard trigonometric identities that

1

n

n∑
k=1

fkf
T
k =

1

d
I

Note that the inner products of adjacent fi can be expressed in terms of a Fejer kernel

fTi fi+1 =
2

d

d/2∑
t=1

cos ((2t− 1)ωn) =
2

d
cos ((d/2− 1)ωn)

sin ((d/2 + 1)ωn)

sin (ωn)
− 2

d
cos (ωn)

SettingAk = fkf
T
k , we have∥∥∥∥∥

n∏
k=1

Ak

∥∥∥∥∥ =

(
2

d
cos ((d/2− 1)ωn)

sin ((d/2 + 1)ωn)

sin (ωn)
− 2

d
cos (ωn)

)d−1

showing that this order violates the desired arithmetic-geometric mean inequality.
For d odd

fk+1 =
√

2
d


1√
2

a2k;n

a4k;n
...

a(d−1)k;n

 for k = 0, 1, . . . , n− 1 .

We can again check that

fTi fi+1 = −1

d
+

2

d

(d−1)/2∑
t=0

cos (2tωn) =
2

d
cos ((d− 1)/2ωn)

sin ((d+ 1)/2ωn)

sin (ωn)
− 1

d

which will again violate the arithmetic-geometric mean inequality.

Appendix E. Harmonic frames satisfy the noncommutative arithmetic-geometric
mean inequality

Problem Let S be the SGM of a set of rank 1, idempotent matrices that are parametrized by
angles φ1, . . . , φn (This is slightly more general than we need for our theorem above). Our goal is
to compute the 2-norm of S:

max
v:‖v‖=1

vTSv = max
φv∈[0,2π]

1

n!

∑
σ∈Sn

cos(φv − φσ(1))×
n−1∏
i=1

cos(φσ(i) − φσ(i+1))× cos(φσ(n) − φv)
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E.1. Cosine combinatorics

We will write this function as fourier transform (we pull out the 2n for convenience):

2n max
v:‖v‖=1

vTSv =
∑
k

ck cos(kπn−1) + max
φv

∑
l

dl cos(φv + lπn−1) (19)

To find the ck and dk, we repeatedly apply the following identity:

cosx cos y = 2−1(cos(x+ y) + cos(x− y))

Fix φ1, . . . , φ2, . . . , φn, · · · ∈ [0, 2π]. We first consider a related form, Tn, for n = 1, 2, 3, . . . ,
defined by the following recurrence

T1 = 1 and Tn+1 = Tn cos(ψn − ψn+1)

We compute Tn using the above transformation. But, first, we show the pattern by example:

Example 1

T1 = 1

T2 = cos(ψ1 − ψ2)

T3 = cos(ψ1 − ψ3) + cos(ψ1 − 2ψ2 + ψ3)

T4 = cos(ψ1 − ψ4) + cos(ψ1 − 2ψ3 + ψ4) + cos(ψ1 − 2ψ2 + 2ψ3 − ψ4) cos(ψ1 − 2ψ2 + ψ4)

T4 = cos(ψ1 − ψ4) + cos(ψ1 − 2ψ2 + 2ψ3 − ψ4) + cos(ψ1 − 2ψ3 + ψ4) + cos(ψ1 − 2ψ2 + ψ4)

T5 = cos(ψ1 − ψ5) + cos(ψ1 − 2ψ2 + 2ψ3 − ψ5) + cos(ψ1 − 2ψ3 + ψ5) + cos(ψ1 − 2ψ2 + ψ5)

= cos(ψ1 − 2ψ4 + ψ5) + cos(ψ1 − 2ψ2 + 2ψ3 − 2ψ4 + ψ5) + cos(ψ1 − 2ψ3 + 2ψ4 − ψ5)

+ cos(ψ1 − 2ψ2 + 2ψ4 − ψ5)

In our computation above, ψ1 = φv = ψn. And so, after writing this out, we will get two kinds of
terms: even terms (corresponding to ck) that do not depend on ψv (they cancel) and odd terms that
do contain 2ψv.

We encapsulate this example in a lemma:

Lemma 9 With Tn as defined above, we have for n ≥ 2

Tn = 2−n
∑
k

∑
i1,...,ik

1<i1<i2<···<ik<n

cos(ψ1 − 2ψi1 + 2ψi2 − · · ·+ (−1)k2ψik + (−1)k+1ψn)
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Proof By induction, we have:

Tn+1 = 2−n
∑
k

∑
i1,...,ik

1<i1<i2<···<ik<n

cos(ψ1 − 2ψi1 + 2ψi2 − · · ·+ (−1)kψik + (−1)k+1ψn) cos(ψn − ψn+1)

= 2−(n+1)
∑
k

∑
i1,...,ik

1<i1<i2<···<ik<n

cos(ψ1 − 2ψi1 + 2ψi2 − · · ·+ (−1)kψik + (−1)k+2ψn+1)

+ cos(ψ1 − 2ψi1 + 2ψi2 − · · ·+ (−1)kψik + 2(−1)k+1ψn + (−1)k+2ψn+1)

= 2−(n+1)
∑
k

∑
i1,...,ik

1<i1<i2<···<ik<n+1

cos(ψ1 − 2ψi1 + 2ψi2 − · · ·+ (−1)kψik + (−1)k+2ψn+1)

Fix an n. We now count a symmetrized version of Tn defined as follows: For σ ∈ Sn:

Sn =
1

n!

∑
σ∈Sn

n−1∏
i=1

cos(σ(i)− σ(i+ 1))

We now show that Sn can be written in a form that removes the permtuation. We also assume
some structure here that mimics our product above, namely that φ1 = φn.

Lemma 10 Let φ1, . . . , φn ∈ [0, 2π] such that φ1 = φn. Then,

Sn =
∑

X,Y⊆[n]:|X|=|Y | or |X|=|Y |+1

(
|X|+ |Y |
|Y |

)−1

cos

2

∑
i∈X

φi −
∑
j∈Y

φj


Proof To see this formula, Consider a pair of sets X,Y ⊆ [n]. In how many permutations σ ∈ Sn
does (X,Y ) contribute a term? We need to choose |X| + |Y | positions for these terms to appear
out of n possible places in the order. Thus there are

(
n

|X|+|Y |
)

permutations to choose the slots for
(X,Y ). An (|X|, |Y |) pair only appears in a permutation in σ if the elements of X and Y can be
alternated starting with X . This implies that |X| = 2|Y | + zi where zi ∈ ′,∞. Moreover, there
are |X|!|Y |!(n− (|X|+ |Y ||)! permutations that respect this structure (for any choice of |X|+ |Y |
slots, any ordering of X and Y and the elements outside can occur).(

n

|X|+ |Y |

)
|X|!|Y |!(n− (|X|+ |Y |)! = n!

(
|X|+ |Y |
|Y |

)−1

Pushing the 1/n! factor inside completes the proof.

E.2. Counting on harmonic, finite groups

In the case we care about, the φi have more structure: the set ∈φ〉ni=1
forms a cyclic group under

addition modulo 2π. Let n denote the number of elements in the frame. Fix n. Let ζ denote a nth
root of unity. Define a (harmonic) generating function f
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f(ζ, y, z) =

n∏
i=1

(1 + ζix+ ζ−iy)

We give a shorthand for its coefficients qk,m and rk,m as follows

qk,m := [ζkxmym]f and rk,m := [ζkxm+1ym]f

We observe that qk,m computes the number of sets (X,Y ) where X,Y ⊆ Zn such that:

1.
∑

i∈X i−
∑

j∈Y j = k mod n (since we inspect ζk),

2. |X| = |Y | = m (since we inpect xmym),

For rk,m the only change is that |X| = |Y |+ 1 (since xm+1ym). With this notation, we can express
the coefficients from Eq. 19.

ck =
∑
m

qk,m

(
2m

m

)−1

and dk =
∑
m

rk,m

(
2m+ 1

m

)−1

We use this representation to prove that the SGM is rotationally invariant (i.e., dk = 0 for
k = 0, 1, . . . , n− 1). First, we show that all dk are equal.

Lemma 11 Consider a frame of size n. For anym and k, l = 0, . . . , n−1,
∑

k dk cos(φv+2πk) =
0.

Proof This follow by examining the generating function above. First observe that we have con-
gruence f(x, xjy, z) = f(x, y, z) for j = 0, . . . , n − 1 tells us that [xjyzm]f = [yzm]f . And,
the congruence that [xjyzm]f = [xjy−1zm]f . Combining these facts, we have that rk,m = rl,m.
Since this holds for all k, l, we can conclude that dk = dl by summing over m. Finally, since∑n

l=0 cos(φv + 2lπn−1) = 0 for any fixed φv we conclude the lemma.

Since the SGM does not depend on φv, we conclude it must be of the form αI for some α. The
remainder of this note is to compute that α.

E.3. Computing the coefficients

The argument of this subsection is a generalization of that of Konvalina (1995).

Lemma 12
qk,m = (−1)k

(
n− k
k

)
n

n− k

Proof Define Rn as:

Rn(x, y) = xn + (−y)n −
∑
k

(
n− k
k

)
n

n− k
(xy)k
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Since f(ζ, x, y) = f(ζi, x, y) for any integer n, Fn(x, y) = f(ζ, x, y) is a function of n alone.
That is, we can write

Fn(x, y) =
∏
ζ∈Un

(1 + ζx+ ζ−iy)

Thus, claim boils down to Fn(x,−y) = Rn(x, y).
We show that the zero sets of Fn(x,−y) and Rn are equal. The zero set of Fn(x,−y) is the set

of lines described by
{(x, y) | y = ζ + ζ2x} for ζ ∈ Un

where ζ is any n-th root of unity. Substituting y at the root equation, we get that xy = xζ + ζ2x2.
Now, we check that the following is zero:

xn + (−y)n −
∑
k

(
n− k
k

)
n

n− k
(ζx+ ζ2x2)k

Here, we use the generating function:∑
k

n

n− k

(
n− k
k

)
yk =

(
1−
√

1 + 4y

2

)n
+

(
1 +
√

1 + 4y

2

)n
using this sum, we have:

n∑
k=0

(
n− k
k

)
n

n− k
(ζx+ ζ2x2)k

=

(
1− (2ζx+ 1)

2

)n
+

(
1 + (2ζx+ 1)

2

)n
=(ζx)n + (1 + ζx)n

=xn + (−y)n

The first equality follows from 1 + 4ζx+ 4ζ2x2 = (2xζ + 1)2. The second is just algebra. Finaly,
we use on each term that ζn = 1 and that ζ + ζ2x = −y. This claim holds for all ζ that are roots of
unity, and so the function is identically zero.

To conclude the proof, observe that the zero set described above is the union of n lines of the
form (1 + ζx + ζ−1y). These lines are unique in C: if (1 + ζx + ζ−1y) = (1 + ωx + ω−1y)
then since the x coefficients are the same ζ = ω and so they must be the same. By direct inspec-
tion, thisRn can only have these factors (else the total degree would be higher). Hence,Rn =Qn.

E.4. Finally, to a hypergeometric series

It is possible to get an explicit formula for λ that is related to 3F2. We consider the following series
and show that it is hypergeometric in k:

∑
k

T (n, k)

(
2k

k

)−1

xk =
∑
k

v(k)xk
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Consider the ratio:

v(k + 1)

v(k)
= − (n− k − 1)!((k + 1)!)2

k + 1!(n− 2k − 2)!(n− k − 1)(2k + 2)!

2k!(n− 2k)!k!(n− k)

(n− k)!(k!)2

= −(n− 2k)(n− 2k − 1)(k + 1)

(n− k − 1)(2k + 2)(2k + 1)

=
(k − n/2)(k − n/2 + 1/2)(k + 1)

(k − n+ 1))(k + 1/2)(k + 1)

And so, this is a hypergeometric:

2F3

[
1 −n/2 + 1/2 −n/2

1/2 −n+ 1
; 1

]
= O(n−1)

This completes the proof.
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