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Abstract
Random matrices are widely used in sparse recovery problems, and the relevant properties of ma-
trices with i.i.d. entries are well understood. The current paper discusses the recently introduced
Restricted Eigenvalue (RE) condition, which is among the most general assumptions on the matrix,
guaranteeing recovery. We prove a reduction principle showing that the RE condition can be guar-
anteed by checking the restricted isometry on a certain family of low-dimensional subspaces. This
principle allows us to establish the RE condition for several broad classes of random matrices with
dependent entries, including random matrices with subgaussian rows and non-trivial covariance
structure, as well as matrices with independent rows, and uniformly bounded entries.
Keywords: `1 minimization, Sparsity, Restricted Eigenvalue conditions, Subgaussian random ma-
trices, Design matrices with uniformly bounded entries.

1. Introduction

In a typical high dimensional setting, the number of variables p is much larger than the number of
observations n. This challenging setting appears in statistics and signal processing, for example,
in regression, covariance selection on Gaussian graphical models, signal reconstruction, and sparse
approximation. Consider a simple setting, where we try to recover a vector β ∈ Rp in the following
linear model:

Y = Xβ + ε. (1)

Here X is an n× p design matrix, Y is a vector of noisy observations, and ε is the noise term. Even
in the noiseless case, recovering β (or its support) from (X,Y ) seems impossible when n � p,
given that we have more variables than observations.

A line of recent research shows that when β is sparse, that is, when it has a relatively small
number of nonzero coefficients, it is possible to recover β from an underdetermined system of
equations. In order to ensure reconstruction, the design matrixX needs to behave sufficiently nicely
in a sense that it satisfies certain incoherence conditions. One notion of the incoherence which has
been formulated in the sparse reconstruction literature (Candès and Tao, 2005, 2006, 2007) bears
the name of Uniform Uncertainty Principle (UUP). It states that for all s-sparse sets T , the matrixX
restricted to the columns from T acts as an almost isometry. Let XT , where T ⊂ {1, . . . , p} be the
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n×|T | submatrix obtained by extracting columns ofX indexed by T . For each integer s = 1, 2, . . .
such that s < p, the s-restricted isometry constant θs of X is the smallest quantity such that

(1− θs) ‖c‖22 ≤ ‖XT c‖22 /n ≤ (1 + θs) ‖c‖22 , (2)

for all T ⊂ {1, . . . , p} with |T | ≤ s and coefficients sequences (cj)j∈T . Throughout this paper, we
refer to a vector β ∈ Rp with at most s non-zero entries, where s ≤ p, as a s-sparse vector.

To understand the formulation of the UUP, consider the simplest noiseless case as mentioned
earlier, where we assume ε = 0 in (1). Given a set of values (〈Xi, β 〉)ni=1, where X1, X2, . . . , Xn

are independent random vectors in Rp, the basis pursuit program (Chen et al., 1998) finds β̂ which
minimizes the `1-norm of β′ among all β′ satisfying Xβ′ = Xβ, where X is a n × p matrix with
rows X1, X2, . . . , Xn. This can be cast as a linear program and thus is computationally efficient.
Under variants of such conditions, the exact recovery or approximate reconstruction of a sparse β
using the basis pursuit program has been shown in a series of powerful results (Donoho, 2006b;
Candès et al., 2006; Candès and Tao, 2005, 2006; Donoho, 2006a; Rudelson and Vershynin, 2006,
2008; Candès and Tao, 2007). We refer to these papers for further references on earlier results for
sparse recovery.

In other words, under the UUP, the design matrix X is taken as a n× p measurement ensemble
through which one aims to recover both the unknown non-zero positions and the magnitude of a
s-sparse signal β in Rp efficiently (thus the name for compressed sensing). Naturally, we wish n
to be as small as possible for given values of p and s. It is well known that for random matrices,
UUP holds for s = O(n/ log(p/n)) with i.i.d. Gaussian random entries, Bernoulli, and in general
subgaussian entries (Candès and Tao, 2005; Rudelson and Vershynin, 2005; Candès and Tao, 2006;
Donoho, 2006a; Baraniuk et al., 2008; Mendelson et al., 2008). Recently, it has been shown (Adam-
czak et al., 2009) that UUP holds for s = O(n/ log2(p/n)) when X is a random matrix composed
of columns that are independent isotropic vectors with log-concave densities. For a random Fourier
ensemble, or randomly sampled rows of orthonormal matrices, it is shown that (Rudelson and Ver-
shynin, 2006, 2008) the UUP holds for s = O(n/ logc p) for c = 4, which improves upon the earlier
result of Candès and Tao (2006) where c = 6. To be able to prove UUP for random measurements
or design matrix, the isotropicity condition (cf. Definition 5) has been assumed in all literature cited
above. This assumption is not always reasonable in statistics and machine learning, where we often
come across high dimensional data with correlated entries.

The work of Bickel et al. (2009) formulated the restricted eigenvalue (RE) condition and showed
that it is among the weakest and hence the most general conditions in literature imposed on the Gram
matrix in order to guarantee nice statistical properties for the Lasso estimator (Tibshirani, 1996) as
well as the Dantzig selector (Candès and Tao, 2007). In particular, it is shown to be a relaxation of
the UUP under suitable choices of parameters involved in each condition; see Bickel et al. (2009).
We now state one version of the Restricted Eigenvalue condition as formulated in (Bickel et al.,
2009). For some integer 0 < s0 < p and a positive number k0, RE(s0, k0, X) for matrixX requires
that the following holds:

∀υ 6= 0, min
J⊂{1,...,p},
|J |≤s0

min
‖υJc‖1≤k0‖υJ‖1

‖Xυ‖2
‖υJ‖2

> 0, (3)

where υJ represents the subvector of υ ∈ Rp confined to a subset J of {1, . . . , p}. In the context of
compressed sensing, RE condition can also be taken as a way to guarantee recovery for anisotropic
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measurements. We refer to van de Geer and Buhlmann (2009) for other conditions which are closely
related to the RE condition.

Consider now the linear regression model in (1). For a chosen penalization parameter λn ≥ 0,
regularized estimation with the `1-norm penalty, also known as the Lasso (Tibshirani, 1996) refers
to the following convex optimization problem

β̂ = arg min
β

1

2n
‖Y −Xβ‖22 + λn‖β‖1, (4)

where the scaling factor 1/(2n) is chosen for convenience. Under i.i.d Gaussian noise and the RE
condition, bounds on `2 prediction loss and on `q, 1 ≤ q ≤ 2, loss for estimating the parameter β
in (1) for both the Lasso and the Dantzig selector have all been derived in Bickel et al. (2009). For
a given λn ≥ 0, the Dantzig selector is defined as:

(DS) arg min
β̂∈Rp

∥∥∥β̂∥∥∥
1

subject to
∥∥∥∥ 1

n
XT (Y −Xβ̂)

∥∥∥∥
∞
≤ λn

In particular, `2 loss of Θ(λσ
√
s) were obtained for the Lasso under RE(s, 3, X) and the Dantzig

selector under RE(s, 1, X) respectively in Bickel et al. (2009), where it is shown that RE(s, 1, X)
condition is weaker than the UUP used in Candès and Tao (2007).

RE condition with parameters s0 and k0 was shown to hold for random Gaussian measurements
/ design matrix which consists of n = O(s0 log p) independent copies of a p-dimensional Gaussian
random vector Y with covariance matrix Σ in Raskutti et al. (2010), assuming that condition (3)
holds for the square root of Σ. The matrix Σ is called the population covariance matrix in this
context. As we show below, the bound n = O(s0 log p) can be improved to the optimal one n =
O(s0 log(p/s0)) when RE(s0, k0,Σ

1/2) is replaced with RE(s0, (1 + ε)k0,Σ
1/2) for any ε > 0.

The work by Raskutti et al. (2010) has motivated the investigation for a non-iid subgaussian random
design by Zhou (2009), as well as the present work. The proof of Raskutti et al. (2010) relies on
a deep result from the theory of Gaussian random processes – Gordon’s Minimax Lemma Gordon
(1985). However, this result relies on the properties of the normal random variables, and is not
available beyond the Gaussian setting. To establish the RE condition for more general classes
of random matrices we had to introduce a new approach based on geometric functional analysis.
We defer the comparison of the present paper with Zhou (2009) to Section 1.2. Both Zhou et al.
(2009b) and van de Geer and Buhlmann (2009) obtained weaker (but ealier) results which are based
on bounding the maximum entry-wise difference between sample and the population covariance
matrices. We refer to Raskutti et al. (2010) for a more elaborate comparison.

1.1. Notation and definitions

Let e1, . . . , ep be the canonical basis of Rp. For a set J ⊂ {1, . . . , p}, denote EJ = span{ej :
j ∈ J}. For a matrix A, we use ‖A‖2 to denote its operator norm. For a set V ⊂ Rp, we let
conv V denote the convex hull of V . For a finite set Y , the cardinality is denoted by |Y |. Let Bp

2

and Sp−1 be the unit Euclidean ball and the unit sphere respectively. For a vector u ∈ Rp, let T0

denote the locations of the s0 largest coefficients of u in absolute values, and uT0 be the subvector
of u confined to the locations of its s0 largest coefficients in absolute values. In this paper, C, c, etc,
denote various absolute constants which may change line by line. Occasionally, we use uT ∈ R|T |,

10.3



RUDELSON ZHOU

where T ⊆ {1, . . . , p}, to also represent its 0-extended version u′ ∈ Rp such that u′T c = 0 and
u′T = uT .

We define C(s0, k0), where 0 < s0 < p and k0 is a positive number, as the set of vectors in Rp
which satisfy the following cone constraint:

C(s0, k0) = {x ∈ Rp | ∃I ∈ {1, . . . , p}, |I| = s0 s.t. ‖xIc‖1 ≤ k0 ‖xI‖1} . (5)

Let β be a s-sparse vector and β̂ be the solution from either the Lasso or the Dantzig selector. One
of the common properties of the Lasso and the Dantzig selector is: for an appropriately chosen λn
and under i.i.d. Gaussian noise, the condition

υ := β̂ − β ∈ C(s, k0) (6)

holds with high probability. Here k0 = 1 for the Dantzig selector, and k0 = 3 for the Lasso;
see Bickel et al. (2009) and Candès and Tao (2007) for example. The combination of the cone
property (6) and the RE condition leads to various nice convergence results as stated earlier.

We now define some parameters related to the RE and sparse eigenvalue conditions.

Definition 1 Let 1 ≤ s0 ≤ p, and let k0 be a positive number. We say that a q×p matrix A satisfies
RE(s0, k0, A) condition with parameter K(s0, k0, A) if for any υ 6= 0,

1

K(s0, k0, A)
:= min

J⊆{1,...,p},
|J |≤s0

min
‖υJc‖1≤k0‖υJ‖1

‖Aυ‖2
‖υJ‖2

> 0. (7)

It is clear that when s0 and k0 become smaller, this condition is easier to satisfy.

Definition 2 For m ≤ p, we define the largest and smallest m-sparse eigenvalue of a q × p matrix
A to be

ρmax(m,A) := max
t∈Rp,t6=0;m−sparse

‖At‖22/ ‖t‖
2
2 , (8)

ρmin(m,A) := min
t∈Rp,t6=0;m−sparse

‖At‖22/ ‖t‖
2
2 . (9)

1.2. Main results

The main purpose of this paper is to show that the RE condition holds with high probability for
systems of random measurements/random design matrices of a general nature. To establish such
result with high probability, one has to assume that it holds in average. So, our problem boils down
to showing that, under some assumptions on random variables, the RE condition on the covariance
matrix implies a similar condition on a random design matrix with high probability when n is
sufficiently large (cf. Theorems 6 and Theorem 8). This generalizes the results on UUP mentioned
above, where the covariance matrix is assumed to be identity. Denote by A a fixed q×p matrix. We
consider the design matrix

X = ΨA, (10)

where the rows of the matrix Ψ are isotropic random vectors. An example of such a random matrix
X consists of independent rows, each being a random vector in Rp that follows a multivariate normal
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distribution N(0,Σ), when we take A = Σ1/2 in (10). Our first main result is related to this setup.
We consider a matrix represented as X̃ = Ψ̃A, where the matrix A satisfies the RE condition. The
result is purely geometric, so we consider a deterministic matrix Ψ̃.

We prove a general reduction principle showing that if the matrix Ψ̃ acts as almost isometry on
the images of the sparse vectors under A, then the product Ψ̃A satisfies the RE condition with a
smaller parameter k0. More precisely, we prove Theorem 3.

Theorem 3 Let 1/5 > δ > 0. Let 0 < s0 < p and k0 > 0. Let A be a q × p matrix such that
RE(s0, 3k0, A) holds for 0 < K(s0, 3k0, A) <∞. Set

d = s0 + s0 max
j
‖Aej‖22

16K2(s0, 3k0, A)(3k0)2(3k0 + 1)

δ2
, (11)

and let E = ∪|J |=dEJ for d < p and E denotes Rp otherwise. Let Ψ̃ be a matrix such that

∀x ∈ AE (1− δ) ‖x‖2 ≤
∥∥∥Ψ̃x

∥∥∥
2
≤ (1 + δ) ‖x‖2 . (12)

Then RE(s0, k0, Ψ̃A) condition holds with 0 < K(s0, k0, Ψ̃A) ≤ K(s0, k0, A)/(1− 5δ).

Remark 4 We note that this result does not involve ρmax(s0, A), nor the global parameters of the
matricesA and Ψ̃, such as the norm or the smallest singular value. We refer to Raskutti et al. (2010)
for an example of matrix A satisfying the RE condition, such that ρmax(s0, A) grows linearly with
s0 while the maximum of ‖Aej‖2 is bounded above.

The assumption RE(s0, 3k0, A) can be replaced by RE(s0, (1 + ε)k0, A) for any ε > 0 by
appropriately increasing d. See Remark 14 for details.

We apply the reduction principle to analyze different classes of random design matrices. This
analysis is reduced to checking that the almost isometry property holds for all vectors from some
low-dimensional subspaces, which is easier than checking the RE property directly. The first exam-
ple is the matrix Ψ whose rows are independent isotropic vectors with subgaussian marginals as in
Definition 5. This result extends a theorem of Raskutti et al. (2010) to a non-Gaussian setting, in
which the entries of the design matrix may even not have a density.

Definition 5 Let Y be a random vector in Rp

1. Y is called isotropic if for every y ∈ Rp, E |〈Y, y 〉|2 = ‖y‖22.

2. Y is ψ2 with a constant α if for every y ∈ Rp,

‖〈Y, y 〉‖ψ2
:= inf{t : E exp(〈Y, y 〉2/t2) ≤ 2} ≤ α ‖y‖2 . (13)

The ψ2 condition on a scalar random variable V is equivalent to the subgaussian tail decay of V ,
which means for some constant c,

P (|V | > t) ≤ 2 exp(−t2/c2), for all t > 0.

We use ψ2, vector with subgaussian marginals and subgaussian vector interchangeably. Examples
of isotropic random vectors with subgaussian marginals are:
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• The random vector Y with i.i.d N(0, 1) random coordinates.

• Discrete Gaussian vector, which is a random vector taking values on the integer lattice Zp
with distribution P(X = m) = C exp(−‖m‖22 /2) for m ∈ Zp.

• A vector with independent centered bounded random coordinates. The subgaussian property
here follows from the Hoeffding inequality for sums of independent random variables. This
example includes, in particular, vectors with random symmetric Bernoulli coordinates, in
other words, random vertices of the discrete cube.

It is hard to argue that such multivariate Gaussian or Bernoulli random designs are not relevant for
statistical applications.

Theorem 6 Set 0 < δ < 1, k0 > 0, and 0 < s0 < p. Let A be a q × p matrix satisfying
RE(s0, 3k0, A) condition as in Definition 1. Let d be as defined in (11), and let m = min(d, p). Let
Ψ be an n× q matrix whose rows are independent isotropic ψ2 random vectors in Rq with constant
α. Suppose the sample size satisfies

n ≥ 2000mα4

δ2
log

(
60ep

mδ

)
. (14)

Then with probability at least 1 − 2 exp(−δ2n/2000α4), RE(s0, k0, (1/
√
n)ΨA) condition holds

for matrix (1/
√
n)ΨA with

0 < K(s0, k0, (1/
√
n)ΨA) ≤ K(s0, k0, A)

1− δ
. (15)

Remark 7 We note that all constants in Theorem 6 are explicit, although they are not optimized.

The reconstruction of sparse signals by subgaussian design matrices was analyzed in Mendelson
et al. (2008) and Baraniuk et al. (2008). Note however that both papers used the RIP assumptions
and estimate the deviation of the restricted operator from identity. These methods are not applicable
in our contexts since the matrix A may be far from identity.

Theorem 6 is applicable in various contexts. We describe two examples. The first example
concerns cases which have been considered in Raskutti et al. (2010); Zhou (2009). They show
that the RE condition on the covariance matrix Σ implies a similar condition on a random design
matrix X = ΨΣ1/2 with high probability when n is sufficiently large. In particular, in Zhou (2009),
the author considered subgaussian random matrices of the form X = ΨΣ1/2 where Σ is a p × p
positive semidefinite matrix satisfying RE(s0, k0,Σ

1/2) condition, and Ψ is as in Theorem 6. Unlike
the current paper, the author allowed ρmax(s0,Σ

1/2) as well as K2(s0, k0,Σ
1/2) to appear in the

lower bound on n, and showed that X/
√
n satisfies the RE condition as in (15) with overwhelming

probability whenever

n >
9c′α4

δ2
(2 + k0)2K2(s0, k0,Σ

1/2) min(4ρmax(s0,Σ
1/2)s0 log(5ep/s0), s0 log p) (16)

where the first term was given in Zhou (2009, Theorem 1.6) explicitly, and the second term is an easy
consequence by combining arguments in Zhou (2009) and Raskutti et al. (2010). Analysis there used
Corollary 2.7 in Mendelson et al. (2007) crucially. In the present work, we get rid of the dependency
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of the sample size on ρmax(s0,Σ
1/2), although under a slightly stronger RE(s0, 3k0,Σ

1/2) (See
Remarks 4 and 14). More precisely, let Σ be a p×p covariance matrix satisfying RE(s0, 3k0,Σ

1/2)
condition. Then, (15) implies that with probability at least 1− 2 exp(−δ2n/2000α4),

0 < K(s0, k0, (1/
√
n)ΨΣ1/2) ≤ K(s0, k0,Σ

1/2)

1− δ
(17)

where n satisfies (14) for d defined in (11), withA replaced by Σ1/2. In particular, bounds developed
in the present paper can be applied to obtain tight convergence results for covariance estimation for
a multivariate Gaussian model Zhou et al. (2011).

Another application of Theorem 6 is given in Zhou et al. (2009a). The q × p matrix A can be
taken as a data matrix with p attributes (e.g., weight, height, age, etc), and q individual records. The
data are compressed by a random linear transformation X = ΨA. Such transformations have have
been called “matrix masking” in the privacy literature (Duncan and Pearson, 1991). We think of
X as “public,” while Ψ, which is a n × q random matrix, is private and only needed at the time of
compression. However, even with Ψ known, recovering A from Ψ requires solving a highly under-
determined linear system and comes with information theoretic privacy guarantees when n� q, as
demonstrated in Zhou et al. (2009a). On the other hand, sparse recovery using X is highly feasible
given that the RE conditions are guaranteed to hold by Theorem 6 with a small n. We refer to Zhou
et al. (2009a) for a detailed setup on regression using compressed data as in (10).

The second application of the reduction principle is to the design matrices with uniformly
bounded entries. As we mentioned above, if the entries of such matrix are independent, then its
rows are subgaussian. However, the independence of entries is not assumed, so the decay of the
marginals can be arbitrary slow. Indeed, if all coordinates of the vector equal to the same symmetric
Bernoulli random variable, then the maximal ψ2-norm of the marginals is of the order

√
p.

A natural example for compressed sensing would be measurements of random Fourier coeffi-
cients, when some of the coefficients cannot be measured.

Theorem 8 Let 0 < δ < 1 and 0 < s0 < p. Let Y ∈ Rp be a random vector such that ‖Y ‖∞ ≤M
a.s and denote Σ = EY Y T . Let X be an n × p matrix, whose rows X1, . . . , Xn are independent
copies of Y . Let Σ satisfy the RE(s0, 3k0,Σ

1/2) condition as in Definition 1. Let d be as defined
in (11), where we replace A with Σ1/2. Assume that d ≤ p and ρ = ρmin(d,Σ1/2) > 0. Suppose
the sample size satisfies for some absolute constant C

n ≥ CM2d · log p

ρδ2
· log3

(
CM2d · log p

ρδ2

)
.

Then with probability at least 1− exp
(
−δρn/(6M2d)

)
, RE(s0, k0, X) condition holds for matrix

X/
√
n with 0 < K(s0, k0, X/

√
n)) ≤ K(s0, k0,Σ

1/2)/(1− δ).

Remark 9 Note that unlike the case of a random matrix with subgaussian marginals, the estimate
of Theorem 8 contains the minimal sparse singular value ρ. We will provide an example illustrating
that this is necessary in Remark 20.

We will prove Theorems 3, 6, and 8 in Sections 2, 3, and 4 respectively.
We note that the reduction principle can be applied to other types of random variables. One can

consider the case of heavy-tailed marginals. In this case the estimate for the images of sparse vectors
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can be proved using the technique developed by Vershynin (2011a,b). One can also consider random
vectors with log-concave densities, and obtain similar estimates following the methods of Adamczak
et al. (2009, 2011).

To make our exposition complete, we will show some immediate consequences in terms of
statistical inference on high dimensional data that satisfy such RE and sparse eigenvalue conditions.
As mentioned, the restricted eigenvalue (RE) condition as formulated by Bickel et al. (2009) are
among the weakest and hence the most general conditions in literature imposed on the Gram matrix
in order to guarantee nice statistical properties for the Lasso and the Dantzig selector. For random
design as considered in the present paper, one can show that various oracle inequalities in terms of
`2 convergence hold for the Lasso and the Dantzig selector as long as n satisfies the lower bounds
above. Let s = |supp β| for β in (1). Under RE(s, 9,Σ1/2), a sample size of n = O(s log(p/s))
is sufficient for us to derive bounds corresponding to those in Bickel et al. (2009, Theorem 7.2).
As a consequence, we see that this setup requires only Θ(log(p/s)) observations per nonzero value
in β where Θ hides a constant depending on K2(s, 9,Σ1/2) for the family of random matrices
with subgaussian marginals which satisfies RE(s, 9,Σ1/2) condition. Similarly, we note that for
random matrix X with a.s. bounded entries of size M , n = O(sM2 log p log3(s log p)) samples
are sufficient in order to achieve accurate statistical estimation. We say this is a linear or sublinear
sparsity. For p � n, this is a desirable property as it implies that accurate statistical estimation is
feasible given a very limited amount of data.

2. Reduction principle

We first reformulate the reduction principle in the form of restrictive isometry: we show that if
the matrix Ψ̃ acts as almost isometry on the images of the sparse vectors under A, then it acts the
same way on the images of a set of vectors which satisfy the cone constraint (5). We then prove
Theorem 3 as a corollary of Theorem 10 in Section A. The proof of Theorem 10 itself uses several
auxiliary results, which will be established in the next two subsections.

Theorem 10 Let 1/5 > δ > 0. Let 0 < s0 < p and k0 > 0. Let A be a q × p matrix such that
RE(s0, 3k0, A) condition holds for 0 < K(s0, 3k0, A) <∞. Set

d = s0 + s0 max
j
‖Aej‖22

(
16K2(s0, 3k0, A)(3k0)2(3k0 + 1)

δ2

)
,

and let E = ∪|J |=dEJ for d < p and E = Rp otherwise. Let Ψ̃ be a matrix such that

∀x ∈ AE (1− δ) ‖x‖2 ≤
∥∥∥Ψ̃x

∥∥∥
2
≤ (1 + δ) ‖x‖2 . (18)

Then for any x ∈ A
(
C(s0, k0)

)
∩ Sq−1,

(1− 5δ) ≤
∥∥∥Ψ̃x

∥∥∥
2
≤ (1 + 3δ) (19)

2.1. Preliminary results

Our first lemma is based on Maurey’s empirical approximation argument Pisier (1981). We show
that any vector belonging to the convex hull of many vectors can be approximated by a convex
combination of a few of them.
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Lemma 11 Let u1, . . . , uM ∈ Rq. Let y ∈ conv(u1, . . . , uM ). There exists a setL ⊂ {1, 2, . . . ,M}
such that

|L| ≤ m =
4 maxj∈{1,...,M} ‖uj‖22

ε2

and a vector y′ ∈ conv(uj , j ∈ L) such that∥∥y′ − y∥∥
2
≤ ε.

For each vector x ∈ Rp, let T0 denote the locations of the s0 largest coefficients of x in absolute
values. Any vector x ∈ C(s0, k0) ∩ Sp−1 satisfies:

∥∥xT c
0

∥∥
∞ ≤ ‖xT0‖1 /s0 ≤

‖xT0‖2√
s0

(20)∥∥xT c
0

∥∥
1
≤ k0

√
s0 ‖xT0‖2 ≤ k0

√
s0; and

∥∥xT c
0

∥∥
2
≤ 1. (21)

The next elementary estimate will be used in conjunction with the RE condition.

Lemma 12 For each vector υ ∈ C(s0, k0), let T0 denotes the locations of the s0 largest coefficients
of υ in absolute values. Then

‖υT0‖2 ≥
‖v‖2√
1 + k0

. (22)

We prove lemma 11 and 12 in Section B and Section C respectively.

2.2. Convex hull of sparse vectors

For a set J ⊂ {1, . . . , p}, denote EJ = span{ej : j ∈ J}. In order to prove the restricted isometry

property of Ψ over the set of vectors inA
(
C(s0, k0)

)
∩Sq−1, we first show that this set is contained

in the convex hull of the images of the sparse vectors with norms not exceeding (1 − δ)−1. More
precisely, we state the following lemma, the proof of which appears in Section D.

Lemma 13 Let 1 > δ > 0. Let 0 < s0 < p and k0 > 0. Let A be a q × p matrix such that
RE(s0, k0, A) condition holds for 0 < K(s0, k0, A) <∞. Define

d = d(k0, A) = s0 + s0 max
j
‖Aej‖22

(
16K2(s0, k0, A)k2

0(k0 + 1)

δ2

)
. (23)

Then

A
(
C(s0, k0)

)
∩ Sq−1 ⊂ (1− δ)−1 conv

 ⋃
|J |≤d

AEJ ∩ Sq−1

 (24)

where for d ≥ p, EJ is understood to be Rp.

10.9



RUDELSON ZHOU

2.3. Proof of the reduction principle

To prove the restricted isomorphism condition (19), we apply Lemma 13 with k0 being replaced by
3k0. The upper bound in (19) follows immediately from the lemma. To prove the lower bound, we
consider a vector x ∈ C(s0, k0) as an endpoint of an interval, whose midpoint is a sparse vector
from the same cone. Then the other endpoint of the interval will be contained in the larger cone
C(s0, 3k0). Comparison between the upper estimate for the norm of the image of this endpoint
with the lower estimate for the midpoint will yield the required lower estimate for the point x. The
complete proof appears in Section E.

Remark 14 Let ε > 0. Instead of v defined in (44), one can consider the vector

vε = xI + y − ε(x− y) ∈ C
(
s0, (1 + ε)k0

)
.

Then replacing v by vε throughout the proof, we can establish Theorem 10 under the assumption
RE(s0, (1 + ε)k0, A) instead of RE(s0, 3k0, A), if we increase the dimension d(3k0) by a factor
depending on ε.

3. Subgaussian random design

Theorem 6 can be reformulated as an almost isometry condition for the matrix X = ΨA acting on
the set C(s0, k0). Recall that

d(3k0, A) = s0 + s0 max
j
‖Aej‖22

(
16K2(s0, 3k0, A)(3k0)2(3k0 + 1)

δ2

)
.

Theorem 15 Set 0 < δ < 1, 0 < s0 < p, and k0 > 0. Let A be a q × p matrix satisfying
RE(s0, 3k0, A) condition as in Definition 1. Let m = min(d(3k0, A), p) < p. Let Ψ be an n × q
matrix whose rows are independent isotropic ψ2 random vectors in Rq with constant α. Assume
that the sample size satisfies

n ≥ 2000mα4

δ2
log

(
60ep

mδ

)
. (25)

Then with probability at least 1− 2 exp(δ2n/2000α4), for all υ ∈ C(s0, k0) such that υ 6= 0,

1− δ ≤ 1√
n

‖ΨAυ‖2
‖Aυ‖2

≤ 1 + δ. (26)

Theorem 6 follows immediately from Theorem 15. Indeed, by (26),

∀u ∈ C(s0, k0) s.t. u 6= 0

∥∥∥∥ 1√
n

ΨAu

∥∥∥∥
2

≥ (1− δ) ‖Au‖2 ≥ (1− δ)
‖uT0‖2

K(s0, k0, A)
> 0.

To derive Theorem 15 from Theorem 10 we need a lower estimate for the norm of the image of
a sparse vector. Such estimate relies on the standard ε-net argument similarly to Mendelson et al.
(2008, Section 3). A complete proof of Theorem 15 appears in Section F.
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Theorem 16 Set 0 < δ < 1. Let A be a q × p matrix, and let Ψ be an n × q, matrix whose rows
are independent isotropic ψ2 random vectors in Rq with constant α. For m ≤ p, assume that

n ≥ 80mα4

τ2
log

(
12ep

mτ

)
. (27)

Then with probability at least 1− 2 exp(−τ2n/80α4), for all m-sparse vectors u in Rp,

(1− τ) ‖Au‖2 ≤
1√
n
‖ΨAu‖2 ≤ (1 + τ) ‖Au‖2 . (28)

We note that Theorem 16 does not require the RE condition to hold. No particular upper bound on
ρmax(m,A) is imposed here either. Proof of Theorem 16 appears in Section G.

We now state a large deviation bound for m-sparse eigenvalues ρmin(m, X̃) and ρmax(m, X̃)
for random design X̃ = n−1/2ΨA which follows from Theorem 16 directly.

Corollary 17 Suppose conditions in Theorem 16 hold. Then with probability≥ 1−2 exp(−τ2n/80α4),

(1− τ)
√
ρmin(m,A) ≤

√
ρmin(m, X̃) ≤

√
ρmax(m, X̃) ≤ (1 + τ)

√
ρmax(m,A). (29)

4. RE condition for random matrices with bounded entries

We next consider the case of design matrixX consisting of independent identically distributed rows
with bounded entries. As in the previous section, we reformulate Theorem 8 in the form of an
almost isometry condition.

Theorem 18 Let 0 < δ < 1and 0 < s0 < p. Let Y ∈ Rp be a random vector such that ‖Y ‖∞ ≤M
a.s., and denote Σ = EY Y T . Let X be an n× p matrix, whose rows X1, . . . , Xn are independent
copies of Y . Let Σ satisfy the RE(s0, 3k0,Σ

1/2) condition as in Definition 1. Set

d = d(3k0,Σ
1/2) = s0 + s0 max

j

∥∥∥Σ1/2ej

∥∥∥2

2

(
16K2(s0, 3k0,Σ

1/2)(3k0)2(3k0 + 1)

δ2

)
.

Assume that d ≤ p and ρ = ρmin(d,Σ1/2) > 0. If for some absolute constant C

n ≥ CM2d · log p

ρδ2
· log3

(
CM2d · log p

ρδ2

)
,

then with probability at least 1− exp
(
−δρn/(6M2d)

)
all vectors u ∈ C(s0, k0) satisfy

(1− δ) ‖u‖2 ≤
‖Xu‖2√

n
≤ (1 + δ) ‖u‖2 .

Similarly to Theorem 15, Theorem 18 can be derived from Theorem 10, and the corresponding
bound for d-sparse vector, the proof of which appears in Section H.
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Theorem 19 Let Y ∈ Rp be a random vector such that ‖Y ‖∞ ≤M a.s., and denote Σ = EY Y T .
Let X be an n × p matrix, whose rows X1, . . . , Xn are independent copies of Y . Let 0 < m ≤ p.
If ρ = ρmin(m,Σ1/2) > 0 and

n ≥ CM2m · log p

ρδ2
· log3

(
CM2m · log p

ρδ2

)
, (30)

then with probability at least 1− 2 exp
(
− ερn

6M2m

)
all m-sparse vectors u satisfy

1− δ ≤ 1√
n
·

∥∥∥∥∥ Xu∥∥Σ1/2u
∥∥

2

∥∥∥∥∥
2

≤ 1 + δ.

To prove Theorem 19 we consider random variables Zu = ‖Xu‖2 /(
√
n
∥∥Σ1/2u

∥∥
2
) − 1, and

estimate the expectation of the supremum of Zu over the set of sparse vectors using Dudley’s en-
tropy integral. The proof of this part closely follows Rudelson and Vershynin (2008), so we will
only sketch it. To derive the large deviation estimate from the bound on the expectation we use Ta-
lagrand’s measure concentration theorem for empirical processes Talagrand (1996), which provides
a sharper estimate, than the method used in Rudelson and Vershynin (2008).

Remark 20 Note that unlike the case of a random matrix with subgaussian marginals, the estimate
of Theorem 19 contains the minimal sparse singular value ρ. This is, however, necessary, as the
following example shows.

Let m = 2l, and assume that p = k ·m, for some k ∈ N. For j = 1, . . . , k let Dj be the m×m
Walsh matrix. Let A be a p× p block-diagonal matrix with blocks D1, . . . , Dk on the diagonal, and
let Y ∈ Rp be a random vector, whose values are the rows of the matrix A taken with probabilities
1/p. Then ‖Y ‖∞ = 1 and EY Y T = (m/p) · id , so ρ = m/p. Hence, the right-hand side of (30)
reduces to

Cp · log p

δ2
· log3

(
Cp · log p

δ2

)
From the other side, if the matrix X satisfies the conditions of Theorem 19 with, say, δ = 1/2,
then all rows of the matrix A should be present among the rows of the matrix X . An elementary
calculation shows that in this case it is necessary to assume that n ≥ Cp log p, so the estimate (30)
is exact up to a power of the logarithm.

Unlike the matrix Σ, the matrix A is not symmetric. However, the example above can be easily
modified by considering a 2p× 2p matrix

Ã =

(
0 A
AT 0

)
.

This shows that the estimate (30) is tight under the symmetry assumption as well.
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Appendix A. Proof of Theorem 3

Theorem 3 By the RE(s0, 3k0, A) condition, RE(s0, k0, A) condition holds as well. Hence for
u ∈ C(s0, k0) such that u 6= 0,

‖Au‖2 ≥
‖uT0‖2

K(s0, k0, A)
> 0,

and by (19) ∥∥∥Ψ̃Au
∥∥∥

2
≥ (1− 5δ) ‖Au‖2 ≥ (1− 5δ)

‖uT0‖2
K(s0, k0, A)

> 0.

�

Appendix B. Proof of Lemma 11

Lemma 11 Assume that

y =
∑

j∈{1,...,M}

αjuj where αj ≥ 0, and
∑
j

αj = 1.

Let Y be a random vector in Rq such that

P (Y = u`) = α`, ` ∈ {1, . . . ,M}

Then
EY =

∑
`∈{1,...,M}

α`u` = y.

Let Y1, . . . , Ym be independent copies of Y and let ε1, . . . , εm be ±1 i.i.d. mean zero Bernoulli
random variables, chosen independently of Y1, . . . , Ym. By the standard symmetrization argu-
ment Ledoux and Talagrand (1991, Section 6.1), we have

E

∥∥∥∥∥∥y − 1

m

m∑
j=1

Yj

∥∥∥∥∥∥
2

2

≤ 4E

∥∥∥∥∥∥ 1

m

m∑
j=1

εjYj

∥∥∥∥∥∥
2

2

=
4

m2

m∑
j=1

E ‖Yj‖22 ≤
4 max`∈{1,...,M} ‖u`‖22

m
≤ ε2 (31)

where
E ‖Yj‖22 ≤ sup ‖Yj‖22 ≤ max

`∈{1,...,M}
‖u`‖22

and the last inequality in (31) follows from the definition of m.
Fix a realization Yj = ukj , j = 1, . . . ,m for which∥∥∥∥∥∥y − 1

m

m∑
j=1

Yj

∥∥∥∥∥∥
2

≤ ε.

The vector 1
m

∑m
j=1 Yj belongs to the convex hull of {u` : ` ∈ L}, where L is the set of

different elements from the sequence k1, . . . , km. Obviously |L| ≤ m and the lemma is proved. �
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Appendix C. Proof of Lemma 12

Lemma 12 By definition of C(s0, k0), by (20)∥∥υT c
0

∥∥2

2
≤
∥∥υT c

0

∥∥
1

∥∥υT c
0

∥∥
∞ ≤ k0 ‖υT0‖1 · ‖υT0‖1 /s0 ≤ k0 ‖υT0‖

2
2 .

Therefore ‖υ‖22 =
∥∥υT c

0

∥∥2

2
+ ‖υT0‖

2
2 ≤ (k0 + 1) ‖υT0‖

2
2 . �

Appendix D. Proof of Lemma 13

. We first state the following lemma, which concerns the extremum of a linear functional on a big
circle of a q-dimensional sphere. We consider a line passing through the extreme point, and show
that the value of the functional on a point of the line, which is relatively close to the extreme point,
provides a good bound for the extremum.

Lemma 21 let u, θ, x ∈ Rq be vectors such that

1. ‖θ‖2 = 1.

2. 〈x, θ 〉 6= 0.

3. Vector u is not parallel to x.

Define φ : R→ R by:

φ(λ) =
〈x+ λu, θ 〉
‖x+ λu‖2

. (32)

Assume φ(λ) has a local maximum at 0, then

〈x+ u, θ 〉
〈x, θ 〉

≥ 1−
‖u‖2
‖x‖2

.

Proof of Lemma 13. Without loss of generality, assume that d(k0, A) < p, otherwise the
lemma is vacuously true. For each vector x ∈ Rp, let T0 denote the locations of the s0 largest
coefficients of x in absolute values. Decompose a vector x ∈ C(s0, k0) ∩ Sp−1 as

x = xT0 + xT c
0
∈ xT0 + k0 ‖xT0‖1 absconv(ej | j ∈ T c0 ), where ‖xT0‖2 ≥

1√
k0 + 1

by (22)

and hence
Ax ∈ AxT0 + k0 ‖xT0‖1 absconv(Aej | j ∈ T c0 ).

Since the set AC(s0, k0) ∩ Sq−1 is not easy to analyze, we introduce set of a simpler structure
instead. Define

V =
{
xT0 + k0 ‖xT0‖1 absconv(ej | j ∈ T c0 )|x ∈ C(s0, k0) ∩ Sp−1

}
.

For a given x ∈ C(s0, k0) ∩ Sp−1, if T0 is not uniquely defined, we include all possible sets of T0

in the definition of V . Clearly V ⊂ C(s0, k0) is a compact set. Moreover, V contains a base of
C(s0, k0), that is, for any y ∈ C(s0, k0) \ {0} there exists λ > 0 such that λy ∈ V .
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For any v ∈ Rp such that ‖Av‖2 6= 0, define

F (v) =
Av

‖Av‖2
.

By condition RE(s0, k0, A), the function F is well-defined and continuous on C(s0, k0) \ {0}, and,
in particular, on V . Hence,

AC(s0, k0) ∩ Sq−1 = F
(
C(s0, k0) \ {0}

)
= F (V ).

By duality, inclusion (24) can be derived from the fact that the supremum of any linear functional
over the left side of (24) does not exceed the supremum over the right side of it. By the equality
above, it is enough to show that for any θ ∈ Sq−1, there exists z′ ∈ Rp\{0} such that | supp(z′)| ≤ d
and F (z′) is well defined, which satisfies

max
v∈V
〈F (v), θ 〉 ≤ (1− δ)−1〈F (z′), θ 〉. (33)

For a given θ, we construct a d-sparse vector z′ which satisfies (33). Let

z := arg max
v∈V
〈F (v), θ 〉.

By definition of V there exists I ⊂ {1, . . . , p} such that |I| = s0, and for some εj ∈ {1,−1},

z = zI + ‖zI‖1 k0

∑
j∈Ic

αjεjej , where αj ∈ [0, 1],
∑
j∈Ic

αj ≤ 1, and 1 ≥ ‖zI‖2 ≥
1√

k0 + 1
. (34)

Note if αi = 1 for some i ∈ Ic, then z is a sparse vector itself, and we can set z′ = z in order
for (33) to hold. We proceed assuming αi ∈ [0, 1) for all i ∈ Ic in (34) from now on, in which case,
we construct a required sparse vector z′ via Lemma 11. To satisfy the assumptions of this lemma,
denote ep+1 = 0, εp+1 = 1 and set

αp+1 = 1−
∑
j∈Ic

αj , hence αp+1 ∈ [0, 1].

Let

y := AzIc = ‖zI‖1 k0

∑
j∈Ic

αjεjAej = ‖zI‖1 k0

∑
j∈Ic∪{p+1}

αjεjAej

and denoteM := {j ∈ Ic ∪ {p+ 1} : αj > 0}. Let ε > 0 be specified later. Applying Lemma 11
with vectors uj = k0 ‖zI‖1 εjAej for j ∈M, construct a set J ′ ⊂M satisfying

|J ′| ≤ m :=
4 maxj∈Ic k

2
0 ‖zI‖

2
1 ‖Aej‖

2
2

ε2
≤

4k2
0s0 maxj∈Ic ‖Aej‖22

ε2
(35)

and a vector

y′ = k0 ‖zI‖1
∑
j∈J ′

βjεjAej where for J ′ ⊂M, βj ∈ [0, 1] and
∑
j∈J ′

βj = 1
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such that ‖y′ − y‖2 ≤ ε.
Set u := k0 ‖zI‖1

∑
j∈J ′ βjεjej and let

z′ = zI + u.

By construction, Az′ ∈ AEJ , where J := (I ∪ J ′) ∩ {1, . . . , p} and

|J | ≤ |I|+ |J ′| ≤ s0 +m. (36)

Furthermore, we have ∥∥Az −Az′∥∥
2

= ‖A(zIc − u)‖2 =
∥∥y − y′∥∥

2
≤ ε

For {βj , j ∈ J ′} as above, we extend it to {βj , j ∈ Ic ∪ {p + 1}} setting βj = 0 for all j ∈
Ic ∪ {p+ 1} \ J ′ and write

z′ = zI + k0 ‖zI‖1
∑

j∈Ic∪{p+1}

βjεjej where βj ∈ [0, 1] and
∑

j∈Ic∪{p+1}

βj = 1.

If z′ = z, we are done. Otherwise, for some λ to be specified, consider the vector

z + λ(z′ − z) = zI + k0 ‖zI‖1
∑

j∈Ic∪{p+1}

[(1− λ)αj + λβj ] εjej .

We have
∑

j∈Ic∪{p+1} [(1− λ)αj + λβj ] = 1 and

∃ δ0 > 0 s. t. ∀j ∈ Ic ∪ {p+ 1}, (1− λ)αj + λβj ∈ [0, 1] if |λ| < δ0.

To see this, we note that

• This condition holds by continuity for all j such that αi ∈ (0, 1).

• If αj = 0 for some j, then βj = 0 by construction.

Thus
∑

j∈Ic [(1− λ)αj + λβj ] ≤ 1 and z+λ(z′−z) = zI+k0 ‖zI‖1
∑

j∈Ic [(1− λ)αj + λβj ] εjej ∈
V whenever |λ| < δ0.

Consider now a function φ : (−δ0, δ0)→ R,

φ(λ) := 〈F (z + λ(z′ − z)), θ 〉 =
〈Az + λ(Az′ −Az), θ 〉
‖Az + λ(Az′ −Az)‖2

Since z maximizes 〈F (v), θ 〉 for all v ∈ V , φ(λ) attains the local maximum at 0. Then by
Lemma 21, we have

〈Az′, θ 〉
〈Az, θ 〉

=
〈Az + (Az′ −Az), θ 〉

〈Az, θ 〉
≥ 1−

‖(Az′ −Az)‖2
‖Az‖2

=
‖Az‖2 − ‖(Az′ −Az)‖2

‖Az‖2
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hence

〈F (z′), θ 〉
〈F (z), θ 〉

=
〈Az′/‖Az′‖2, θ 〉
〈Az/‖Az‖2 , θ 〉

=
‖Az‖2
‖Az′‖2

× 〈Az
′, θ 〉

〈Az, θ 〉

≥
‖Az‖2

‖Az‖2 + ‖(Az′ −Az)‖2
×
‖Az‖2 − ‖(Az′ −Az)‖2

‖Az‖2

=
‖Az‖2 − ‖(Az′ −Az)‖2
‖Az‖2 + ‖(Az′ −Az)‖2

=
‖Az‖2 − ε
‖Az‖2 + ε

= 1− 2ε

‖Az‖2 + ε
.

By definition, z ∈ C(s0, k0). Hence we apply RE(k0, s0, A) condition and (34) to obtain

‖Az‖2 ≥
‖zI‖2

K(s0, k0, A)
≥ 1√

1 + k0K(s0, k0, A)
.

Now we can set ε = δ
2
√

1+k0K(s0,k0,A)
which yields

〈F (z′), θ 〉
〈F (z), θ 〉

≥ 1− δ (37)

and thus (33) holds. Finally, by (35), we have

m ≤ s0 max
j∈Ic
‖Aej‖22

(
16K2(s0, k0, A)k2

0(k0 + 1)

δ2

)
and hence the inclusion (24) holds in view of (36) and (37). �

It remains to prove Lemma 21.

D.1. Proof of Lemma 21

Lemma 21 Let v = x
‖x‖2

. Also let

θ = βv + γt, where t ⊥ v, ‖t‖2 = 1 and β2 + γ2 = 1, β 6= 0

and u = ηv + µt+ s where s ⊥ v and s ⊥ t

Define f : R→ R by:

f(λ) =
λ

‖x‖2 + λη
, λ 6= − η

‖x‖2
. (38)

Then

φ(λ) =
〈x+ λu, θ 〉
‖x+ λu‖2

=
〈 (‖x‖2 + λη)v + λµt+ λs, βv + γt 〉
‖(‖x‖2 + λη)v + λµt+ λs‖2

=
β(‖x‖2 + λη) + λµγ√

(‖x‖2 + λη)2 + (λµ)2 + λ2 ‖s‖22

=
β + µγf(λ)√

1 + (µ2 + ‖s‖22)f2(λ)
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Since f(λ) = λ
‖x‖2

+O(λ2) we have φ(λ) = β+µγ λ
‖x‖2

+O(λ2) in the neighborhood of 0, Hence,
in order to for φ(λ) to have a local maximum at 0, µ or γ must be 0. Consider these cases separately.

• First suppose γ = 0, then β2 = 1 and |〈x, θ 〉| = ‖x‖2. Hence,

〈x+ u, θ 〉
〈x, θ 〉

= 1 +
〈u, θ 〉
〈x, θ 〉

≥ 1− |〈u, θ 〉|
|〈x, θ 〉|

≥ 1−
‖u‖2
‖x‖2

where |〈u, θ 〉| ≤ ‖u‖2.

• Otherwise, suppose that µ = 0. Then we have |η| = |〈u, v 〉| ≤ ‖u‖2 and

〈x+ u, θ 〉
〈x, θ 〉

= 1 +
〈 ηv + s, βv + γt 〉
〈 v ‖x‖2 , βv + γt 〉

= 1 +
ηβ

‖x‖2 β
= 1 +

η

‖x‖2
≥ 1−

‖u‖2
‖x‖2

where we used the fact that β 6= 0 given 〈x, θ 〉 6= 0.

�

Appendix E. Proof of Theorem 10

Theorem 10 Let v ∈ C(s0, 3k0) \ {0}, and so ‖Av‖2 > 0 by RE(s0, 3k0, A) condition. Let
d(3k0, A) be defined as in (23). As in the proof of Lemma 13, we may assume that d(3k0, A) < p.
By Lemma 13, applied with k0 replaced with 3k0, we have

Av

‖Av‖2
∈ A

(
C(s0, 3k0)

)
∩ Sq−1 ⊂ (1− δ)−1 conv

 ⋃
|J |=d(3k0,A)

AEJ ∩ Sq−1


and

∥∥∥∥∥ Ψ̃Av

‖Av‖2

∥∥∥∥∥
2

≤ 1

1− δ
max

u∈conv(AE∩Sq−1)

∥∥∥Ψ̃u
∥∥∥

2
=

1

1− δ
max

u∈AE∩Sq−1

∥∥∥Ψ̃u
∥∥∥

2
.

The last equality holds, since the maximum of ‖Ψ̃u‖2 occurs at an extreme point of the set conv(AE∩
Sq−1), because of convexity of the function f(x) = ‖Ψ̃x‖2. Hence, by (18)

∀x ∈ A
(
C(s0, 3k0)

)
∩ Sq−1,

∥∥∥Ψ̃x
∥∥∥

2
≤ (1 + δ)(1− δ)−1 ≤ 1 + 3δ (39)

where the last inequality is satisfied once δ < 1/3, which proves the upper estimate in (19).
We have to prove the opposite inequality. Let x = xI + xIc ∈ C(s0, k0) ∩ Sp−1, where the set

I contains the locations of the s0 largest coefficients of x in absolute values. We have

x = xI + ‖xIc‖1
∑
j∈Ic

|xj |
‖xIc‖1

sgn(xj)ej , where 1 ≥ ‖xI‖2 ≥
1√

k0 + 1
by (22) (40)

Let ε > 0 be specified later. We now construct a d(3k0, A)-sparse vector y = xI + u ∈ C(s0, k0),
where u is supported on Ic which satisfies

‖u‖1 = ‖yIc‖1 = ‖xIc‖1 and ‖Ax−Ay‖2 = ‖A(xIc − yIc)‖2 ≤ ε (41)
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To do so, set

w := AxIc = ‖xIc‖1
∑
j∈Ic

|xj |
‖xIc‖1

sgn(xj)Aej .

Let M := {j ∈ Ic : xj 6= 0}. Applying Lemma 11 with vectors uj = ‖xIc‖1 sgn(xj)Aej for
j ∈M, construct a set J ′ ⊂M satisfying

|J ′| ≤ m :=
4 maxj∈M ‖xIc‖21 ‖Aej‖

2
2

ε2
≤

4k2
0s0 maxj∈M ‖Aej‖22

ε2
(42)

and a vector

w′ = ‖xIc‖1
∑
j∈J ′

βjsgn(xj)Aej , where for J ′ ⊂M, βj ∈ [0, 1] and
∑
j∈J ′

βj = 1

such that ‖Ax−Ay‖2 = ‖w′ − w‖2 ≤ ε. Set u := ‖xIc‖1
∑

j∈J ′ βjsgn(xj)ej and let

y = xI + u = xI + ‖xIc‖1
∑
j∈J ′

βjsgn(xj)ej where βj ∈ [0, 1] and
∑
j∈J ′

βj = 1.

By construction, y ∈ C(s0, k0) ∩ EJ , where J := I ∪ J ′ and

|J | = |I|+ |J ′| ≤ s0 +m. (43)

This, in particular, implies that ‖Ay‖2 > 0. Assume that ε is chosen so that s0 + m ≤ d(3k0, A),
and so by (18) ∥∥∥∥∥ Ψ̃Ay

‖Ay‖2

∥∥∥∥∥
2

≥ 1− δ.

Set

v = xI + 2yIc − xIc = y + (yIc − xIc). (44)

Then (41) implies

‖Av‖2 ≤ ‖Ay‖2 + ‖A(yIc − xIc)‖ ≤ ‖Ay‖2 + ε, (45)

and v ∈ C(s0, 3k0) as

‖vIc‖1 ≤ 2 ‖yIc‖1 + ‖xIc‖1 = 3 ‖xIc‖1 ≤ 3k0 ‖xI‖1 = 3k0 ‖vI‖1

where we use the fact that ‖xIc‖1 = ‖yIc‖1. Hence, by the upper estimate (39), we have∥∥∥∥∥ Ψ̃Av

‖Av‖2

∥∥∥∥∥
2

≤ (1 + δ)(1− δ)−1 (46)
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Since y = 1
2(x+v), where yI = xI , we have by the lower bound in (18) and the triangle inequality,

1− δ ≤

∥∥∥∥∥ Ψ̃Ay

‖Ay‖2

∥∥∥∥∥
2

≤ 1

2

(∥∥∥∥∥ Ψ̃Ax

‖Ay‖2

∥∥∥∥∥
2

+

∥∥∥∥∥ Ψ̃Av

‖Ay‖2

∥∥∥∥∥
2

)

≤ 1

2

(∥∥∥∥∥ Ψ̃Ax

‖Ax‖2

∥∥∥∥∥
2

+

∥∥∥∥∥ Ψ̃Av

‖Av‖2

∥∥∥∥∥
2

)
·
‖Ay‖2 + ε

‖Ay‖2

≤ 1

2

(∥∥∥∥∥ Ψ̃Ax

‖Ax‖2

∥∥∥∥∥
2

+
1 + δ

1− δ

)
·
(
1 + δ/6

)
where in the second line, we apply (45) and (41), and in the third line, (46). By the RE(s0, k0, A)
condition and (40) we have

‖Ay‖2 ≥
‖yI‖2

K(s0, k0, A)
=

‖xI‖2
K(s0, k0, A)

≥ 1

K(s0, k0, A) ·
√
k0 + 1

.

Set

ε =
δ

6
√

1 + k0K(s0, k0, A)
so that

‖Ay‖2 + ε

‖Ay‖2
≤ (1 + δ/6

)
.

Then for δ < 1/5 ∥∥∥∥∥ Ψ̃Ax

‖Ax‖2

∥∥∥∥∥
2

≥ 2
1− δ

1 + δ/6
− (1 + δ)(1− δ)−1 ≥ 1− 5δ.

This verifies the lower estimate. It remains to check the bound for the cardinality of J . By (42)
and (43), we have for k0 > 0,

|J | ≤ s0 +m ≤ s0 + s0 max
j∈M
‖Aej‖22

(
16K2(s0, k0, a)(3k0)2(k0 + 1)

δ2

)
< d(3k0, A)

as desired. This completes the proof of Theorem 10.
�

Appendix F. Proof of Theorem 15

For n as bounded in (25), where m = min(d(3k0, A), p), we have (27) holds with τ = δ/5. Then
by Theorem 16, we have with probability at least 1− 2 exp

(
−nδ2/(2000α4)

)
,

∀m-sparse vectors u,
(

1− δ

5

)
‖Au‖2 ≤

1√
n

∥∥∥Ψ̃Au
∥∥∥

2
≤
(

1 +
δ

5

)
‖Au‖2 .

The proof finishes by application of Theorem 10.
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Appendix G. Proof of Theorem 16

We start with a definition.

Definition 22 Given a subset U ⊂ Rp and a number ε > 0, an ε-net Π of U with respect to the
Euclidean metric is a subset of points of U such that ε-balls centered at Π covers U :

U ⊂
⋃
x∈Π

(x+ εBp
2),

where A + B := {a + b : a ∈ A, b ∈ B} is the Minkowski sum of the sets A and B. The covering
number N (U, ε) is the smallest cardinality of an ε-net of U .

The proof of Theorem 16 uses two well-known results. The first one is the volumetric estimate;
see e.g. Milman and Schechtman (1986).

Lemma 23 Given m ≥ 1 and ε > 0. There exists an ε-net Π ⊂ Bm
2 of Bm

2 with respect to the
Euclidean metric such that Bm

2 ⊂ (1− ε)−1 conv Π and |Π| ≤ (1 + 2/ε)m. Similarly, there exists
an ε-net of the sphere Sm−1, Π′ ⊂ Sm−1 such that |Π′| ≤ (1 + 2/ε)m.

The second lemma with a worse constant can be derived from Bernstein’s inequality for subex-
ponential random variables. Since we are interested in the numerical value of the constant, we
provide a proof below.

Lemma 24 Let Y1, . . . , Yn be independent random variables such that EY 2
j = 1 and ‖Yj‖ψ2

≤ α
for all j = 1, . . . , n. Then for any θ ∈ (0, 1)

P

∣∣∣∣∣∣ 1n
n∑
j=1

Y 2
j − 1

∣∣∣∣∣∣ > θ

 ≤ 2 exp

(
− θ2n

10α4

)
.

For a set J ⊂ {1, . . . , p}, denote EJ = span{ej : j ∈ J}, and set FJ = AEJ . For each subset
FJ ∩ Sq−1, construct an ε-net ΠJ , which satisfies

ΠJ ⊂ FJ ∩ Sq−1 and |ΠJ | ≤ (1 + 2/ε)m.

The existence of such ΠJ is guaranteed by Lemma 23. If

Π =
⋃
|J |=m

ΠJ ,

then the previous estimate implies

|Π| = (3/ε)m
(
p

m

)
≤
(

3ep

mε

)m
= exp

(
m log

(
3ep

mε

))
For y ∈ Sq−1 ∩ FJ ⊂ F , let π(y) be one of the closest point in the ε-cover ΠJ . Then

y − π(y)

‖y − π(y)‖2
∈ FJ ∩ Sq−1 where ‖y − π(y)‖2 ≤ ε.
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Denote by Ψ1, . . . ,Ψn the rows of the matrix Ψ, and set Γ = n−1/2Ψ. Let x ∈ Sq−1. Applying
Lemma 24 to the random variables 〈Ψ1, x 〉2, . . . , 〈Ψn, x 〉2, we have that for every θ < 1

P
(∣∣∣‖Γx‖22 − 1

∣∣∣ > θ
)

= P

(∣∣∣∣∣ 1n
n∑
i=1

〈Ψi, x 〉2 − 1

∣∣∣∣∣ > θ

)
≤ 2 exp

(
− nθ2

10α4

)
. (47)

For

n ≥ 20mα4

θ2
log

(
3ep

mε

)
,

the union bound implies

P
(
∃x ∈ Π s. t.

∣∣∣‖Γx‖22 − 1
∣∣∣ > θ

)
≤ 2 |Π| exp

(
− nθ2

10α4

)
≤ 2 exp

(
− nθ2

20α4

)
Then for all y0 ∈ Π

1− θ ≤ ‖Γy0‖22 ≤ 1 + θ and so

1− θ ≤ ‖Γy0‖2 ≤ 1 +
θ

2

with probability at least 1 − 2 exp
(
− nθ2

20α4

)
, The bound over the entire Sq−1 ∩ FJ is obtained by

approximation. We have

‖Γπ(y)‖2 − ‖Γ(y − π(y))‖2 ≤ ‖Γy‖2 ≤ ‖Γπ(y)‖2 + ‖Γ(y − π(y))‖2 (48)

Define
‖Γ‖2,FJ

:= sup
y∈Sq−1∩FJ

‖Γy‖2 .

The RHS of (48) is upper bounded by 1 + θ
2 + ε ‖Γ‖2,FJ

. By taking the supremum over all y ∈
Sq−1 ∩ FJ , we have

‖Γ‖2,FJ
≤ 1 +

θ

2
+ ε ‖Γ‖2,FJ

and hence ‖Γ‖2,FJ
≤ 1 + θ/2

1− ε
.

The LHS of (48) is lower bounded by 1− θ − ε ‖Γ‖2,FJ
, and hence for all y ∈ Sq−1 ∩ FJ

‖Γy‖2 ≥ 1− θ − ε ‖Γ‖2,FJ
≥ 1− θ − ε(1 + θ/2)

1− ε
Putting these together, we have for all y ∈ Sq−1 ∩ FJ

1− θ − ε(1 + θ/2)

1− ε
≤ ‖Γy‖2 ≤

1 + θ/2

1− ε
which holds for all sets J . Thus for θ < 1/2 and ε = θ

1+2θ ,

1− 2θ < ‖Γy‖2 < 1 + 2θ.

For any m-sparse vector u ∈ Sp−1

Au

‖Au‖2
∈ FJ for J = supp(u),

and so
(1− 2θ) ‖Au‖2 ≤ ‖ΓAu‖2 ≤ (1 + 2θ) ‖Au‖2 .

Taking τ = θ/2 finishes the proof for Theorem 16.
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G.1. Proof of Lemma 24

Note that α ≥ ‖Y1‖ψ2
≥ ‖Y1‖2 = 1. Using the elementary inequality tk ≤ k!sket/s, which holds

for all t, s > 0, we obtain

|E(Y 2
j − 1)k| ≤ max(EY 2k

j , 1) ≤ max(k!α2k · EeY
2
j /α

2

, 1) ≤ 2k!α2k

for any k ≥ 2. Since for any j EY 2
j = 1, for any τ ∈ R with |τ |α2 < 1

E exp
[
τ(Y 2

j − 1)
]
≤ 1 +

∑
k=2

1

k!
|τ |k · |E(Y 2

j − 1)k| ≤ 1 +
∑
k=2

|τ |k · 2α2k

≤ 1 +
2τ2α4

1− |τ |α2
≤ exp

(
2τ2α4

1− |τ |α2

)
.

By Markov’s inequality, for τ ∈ (0, α−2)

P

 1

n

n∑
j=1

Y 2
j − 1 > θ

 ≤ E exp

τ n∑
j=1

(Y 2
j − 1)− τθn


= e−τθn ·

(
E exp

[
τ(Y 2 − 1)

])n ≤ exp

(
−τθn+

2τ2α4n

1− |τ |α2

)
.

Set τ = θ
5α4 , so τα2 ≤ 1/5. Then the previous inequality implies

P

 1

n

n∑
j=1

Y 2
j − 1 > θ

 ≤ exp

(
− θ2n

10α4

)
.

Similarly, considering τ < 0, we obtain

P

1− 1

n

n∑
j=1

Y 2
j > θ

 ≤ exp

(
− θ2n

10α4

)
.

�

Appendix H. Proof of Theorem 19

Proof of Theorem 19.
For J ⊂ {1, . . . , p}, let EJ be the coordinate subspace spanned by the vectors ej , j ∈ J . Set

F =
⋃
|J |=m

Σ1/2EJ ∩ Sp−1.

Denote Ψ = Σ−1/2X so EΨΨT = id , and let Ψ1, . . . ,Ψn be independent copies of Ψ. It is enough
to show that with probability at least 1− exp

(
− ερn

6M2m

)
for any y ∈ F∣∣∣∣∣∣1− 1

n

n∑
j=1

〈Ψj , y〉2
∣∣∣∣∣∣ ≤ δ.
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To this end we estimate

∆ := E sup
y∈F

∣∣∣∣∣∣1− 1

n

n∑
j=1

〈Ψj , y〉2
∣∣∣∣∣∣ .

The standard symmetrization argument implies that

E sup
y∈F

∣∣∣∣∣∣1− 1

n

n∑
j=1

〈Ψj , y〉2
∣∣∣∣∣∣ ≤ 2

n
E sup
y∈F

∣∣∣∣∣∣
n∑
j=1

εj〈Ψj , y〉2
∣∣∣∣∣∣ ,

where ε1, . . . , εn are independent Bernoulli random variables taking values ±1 with probability
1/2. The estimate of the last quantity is based on the following Lemma, which is similar to Lemma
3.6 Rudelson and Vershynin (2008).

Lemma 25 Let F be as above, and let ψ1, . . . , ψn ∈ Rp. Set

Q = max
j=1,...,n

∥∥∥Σ1/2ψj

∥∥∥
∞
.

Then

E sup
y∈F

∣∣∣∣∣∣
n∑
j=1

εj〈ψj , y〉2
∣∣∣∣∣∣ ≤

√
CmQ2 · log n · log p

ρ
· log

(
CmQ2

ρ

)
· sup
y∈F

 n∑
j=1

〈ψj , y〉2
1/2

.

Assuming Lemma 25, we finish the proof of the Theorem. First, note that by the definition of Ψj ,

max
j=1,...,n

∥∥∥Σ1/2Ψj

∥∥∥
∞
≤M a.s.

Hence, conditioning on Ψ1, . . . ,Ψn and applying Lemma 25, we obtain

∆ ≤ 2

n
·

√
CmM2 · log n · log p

ρ
· log

(
CmM2

ρ

)
· E sup

y∈F

 n∑
j=1

〈Ψj , y〉2
1/2

,

and by Cauchy–Schwartz inequality,

E sup
y∈F

 n∑
j=1

〈Ψj , y〉2
1/2

≤

E sup
y∈F

n∑
j=1

〈Ψj , y〉2
1/2

,

so

∆ ≤ 2√
n
·

√
CmM2 · log n · log p

ρ
· log

(
CmM2

ρ

)
· (∆ + 1)1/2 .

If n satisfies (30), then
∆ ≤ δ · (∆ + 1)1/2 , and thus ∆ ≤ 2δ.
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For y ∈ F define a random variable f(y) = 〈Ψ, y〉2 − 1. Then |f(y)| ≤ 〈X,Σ−1/2y〉2 + 1 ≤
M2ρ−1m+ 1 := a a.s., because Σ−1/2y is an m-sparse vector, whose norm does not exceed ρ−1/2.
Set

Z = sup
y∈F

n∑
j=1

fj(y),

where f1(y), . . . , fn(y) are independent copies of f(y). The argument above shows that EZ ≤ 2δn.
Then Talagrand’s concentration inequality for empirical processes Talagrand (1996); Ledoux (2001)
reads

P(Z ≥ t) ≤ exp

(
− t

6a

)
≤ exp

(
− tρ

6M2m

)
for all t ≥ 2EZ. Setting t = 4δn, we have

P(sup
y∈F

n∑
j=1

(
〈Ψj , y〉2 − 1

)
≥ 4δn) ≤ exp

(
− 4δnρ

6M2m

)
.

Similarly, considering random variables g(y) = 1− 〈Ψ, y〉2, we show that

P(sup
y∈F

n∑
j=1

(
1− 〈Ψj , y〉2

)
≥ 4δn) ≤ exp

(
− 4δnρ

6M2m

)
,

which completes the proof of the theorem. �

H.1. Proof of Lemma 25

It remains to prove Lemma 25. By Dudley’s inequality, see e.g. Talagrand (2000, Eq. (1.18))

E sup
y∈F

∣∣∣∣∣∣
n∑
j=1

εj〈ψj , y〉2
∣∣∣∣∣∣ ≤ C

∫ ∞
0

log1/2N(F, d, u) du

where N(F, d, u) is the covering number, which is the minimal number of balls of radius u in the
metric d covering the set F . Here d is the natural metric of the related Gaussian process defined as

d(x, y) =

 n∑
j=1

(
〈ψj , x〉2 − 〈ψj , y〉2

)21/2

≤

 n∑
j=1

(〈ψj , x〉+ 〈ψj , y〉)2

1/2

· max
j=1,...,n

|〈ψj , x− y〉|

≤ 2R · ‖x− y‖Y ,

where

R = sup
y∈F

 n∑
j=1

〈ψj , y〉2
1/2

, and ‖z‖Y = max
j=1,...,n

|〈ψj , z〉|.
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The inclusion
√
mBp

1 ⊃
⋃
|J |=mEJ ∩ Sp−1 implies

√
mΣ1/2Bp

1 ⊃ Σ1/2 conv(
⋃
|J |=m

EJ ∩ Sp−1) ⊃ ρ1/2F.

Hence, for any y ∈ F

‖z‖Y ≤ ρ
−1/2√m max

j=1,...,n

∥∥∥Σ1/2ψj

∥∥∥
∞

= ρ−1/2√mQ. (49)

Replacing the metric d with the norm ‖·‖Y , we obtain

E sup
y∈F

∣∣∣∣∣∣
n∑
j=1

εj〈ψj , y〉2
∣∣∣∣∣∣ ≤ CR

∫ ρ−1/2√mQ

0
log1/2N(F, ‖·‖Y , u) du.

The upper limit of integration is greater or equal than the diameter of F in the norm ‖·‖Y , so for
u > ρ−1/2√mQ the integrand is 0. Arguing as in Lemma 3.7 Rudelson and Vershynin (2008), we
can show that

N(F, ‖·‖Y , u) ≤ N(ρ−1/2√mΣ1/2Bp
1 , ‖·‖Y , u) ≤ (2p)l, (50)

where

l =
Cρ−1m

(
maxi=1,...,p maxj=1,...,n |〈Σ1/2ei, ψj〉|

)2
u2

· log n =
CmQ2 · log n

ρu2

Also, since F consists of the union
(
p
m

)
Euclidean spheres, the inclusion (49) and the volumetric

estimate yield

N(F, ‖·‖Y , u) ≤
(
p

m

)
·

(
1 +

2ρ−1/2√mQ
u

)m
≤
(ep
m

)m
·

(
1 +

2ρ−1/2√mQ
u

)m
.(51)

Estimating the covering number of F as in (50) for u ≥ 1, and as in (51) for 0 < u < 1, we obtain

E sup
y∈F

∣∣∣∣∣∣
n∑
j=1

εj〈ψj , y〉2
∣∣∣∣∣∣

≤ CR

∫ 1

0

√
m ·

(
log
(ep
m

)
+ log

(
1 +

2ρ−1/2√mQ
u

))1/2

du

+CR

∫ ρ−1/2√mQ

1

√
CmQ2 · log n

ρu2
·
√

log 2p du

≤ CR

√
mQ2 · log n · log p

ρ
· log

(
CmQ2

ρ

)
.�
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