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Abstract
We pose the question of whether the distributions computed by AdaBoost always converge to a
cycle.

The AdaBoost algorithm (Freund and Schapire, 1997) was designed to combine many “weak”
hypotheses that perform slightly better than random guessing into a “strong” hypothesis that has
very low error. Although extensively studied, some of AdaBoost’s basic convergence properties are
not fully understood. This open problem focuses on one of these, namely, the convergence of the
distributions over training examples that are iteratively computed by the algorithm.

AdaBoost is shown in Fig. 1; see Schapire and Freund (2012) for further background. Briefly,
we are given training examples (x1, y1), . . . , (xm, ym). On each of a sequence of rounds t, Ada-
Boost computes a distribution Dt over the training set which is used to select a weak hypothesis
ht from some space H = {~1, . . . , ~N}, which we presume to be finite and closed under negation
(so that −h ∈ H if h ∈ H). To simplify the discussion, we assume that each weak hypothesis
is selected exhaustively, meaning that ht is chosen, among all h ∈ H, to have minimum weighted
error Pri∼Dt [ht(xi) 6= yi], which is exactly equivalent to choosing ht to have maximum weighted
“correlation” rt, as defined in the figure. The chosen weak hypotheses can eventually be combined
into a final classifier H , as in the figure, although our focus here is only on the distributions Dt.

Each distribution Dt can be viewed as a point in Rm, or more specifically, on the probability
simplex. AdaBoost, together with an exhaustive choice of weak hypotheses, can be regarded as
defining a deterministic mapping from one distribution Dt to the next distribution Dt+1.

Several authors (Rudin et al., 2004; Kutin, 2002; Amit and Blanchard, 2001) have independently
noticed these distributions converging to cycles as t gets large. Such behavior is readily observed
when the number of training examples and weak hypotheses is small. On the other hand, in the
more realistic case of many examples and very many weak hypotheses, other authors have reported
that AdaBoost’s behavior can appear chaotic with respect to its distributions (Caprile et al., 2002).

In our experiments (Rudin et al., 2004), although the initial behavior may seem chaotic, the
distributions tend to converge to a cycle. It is not known how to characterize the relationship of the
examples and hypotheses to properties of the cycle, such as its length, which can vary substantially.

Boosting is often studied under a weak learning assumption, which, in our set-up, states that the
correlations rt are bounded away from zero (so that, for some c > 0, we have rt ≥ c on every round
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Given: (x1, y1), . . . , (xm, ym) where xi ∈ X , yi ∈ {−1,+1}
setH = {~1, . . . , ~N} of weak hypotheses ~j : X → {−1,+1}.

Initialize: D1(i) = 1/m for i = 1, . . . ,m.
For t = 1, . . . , T :
• Train weak learner using distribution Dt; that is, find weak hypothesis ht ∈ Hwith maximum

correlation rt
.
= Ei∼Dt [yiht(xi)].

• Choose αt =
1
2 ln ((1 + rt)/(1− rt)).

• Update, for i = 1, . . . ,m: Dt+1(i) = Dt(i) exp(−αtyiht(xi))/Zt

where Zt is a normalization factor (chosen so that Dt+1 will be a distribution).
Output the final hypothesis: H(x) = sign

(∑T
t=1 αtht(x)

)
.

Figure 1: The boosting algorithm AdaBoost.

t). When this assumption does not hold, it was shown by Collins et al. (2002) that the distributions
Dt must converge to a single, uniquely-defined point (a degenerate cycle of length one). When the
weak learning assumption does hold, the distributions cannot converge to a single point, but they
still may converge to a cycle. Thus, the open problem is concerned with this latter case only.

If it were possible to show that AdaBoost’s distributions always converge to a cycle, and if one
could actually find the cycle (either analytically or numerically), we might be able to substantially
speed up the algorithm by “jumping” to its asymptotic behavior. Or we might be able to directly
solve for AdaBoost’s asymptotic “minimum margin,” perhaps yielding direct insight into its ability
to generalize to unseen training examples.

The mapping of Dt to Dt+1 induced by AdaBoost can be greatly simplified. To do so, we define
them×N matrix M byMij = yi~j(xi), thus encoding which weak hypotheses ~j ∈ H are correct
on which training examples (xi, yi). More abstractly, M can be viewed as an arbitrary {−1,+1}-
valued matrix. Given Dt, AdaBoost’s computation of Dt+1 can then be written equivalently as:

1. jt = argmaxj(D
>
t M)j .

2. rt = (D>t M)jt .
3. Dt+1(i) = Dt(i)/(1 + rt Mijt) for i = 1, . . . ,m.

In step 1, a column jt is selected with maximum correlation, corresponding to the choice of weak
hypothesis ht = ~jt . In step 2, the correlation rt is computed. And in step 3, the new distribution
Dt+1 is computed, here written in an explicit form that does not require further normalization.

We say that the distributions Dt converge to a cycle if there exist “cycle points” (distributions)
D̂1, . . . , D̂` such that Dk`+b → D̂b as integer k →∞, for b = 1, . . . , `. Thus, the open problem is
to determine if, for every matrix M, the distributions Dt necessarily converge to a cycle.

Note that the maximizing column in step 1 may not be unique, in which case it is necessary
to assume that ties are broken in some consistent fashion; for concreteness, let us suppose they are
broken by selecting the column whose index j is smallest. Further, this step breaks the probability
simplex of distributions into regions based on which hypotheses would be selected for which dis-
tributions; the ties occur at the boundary of such regions. As a result of this step, the iterative map
is highly discontinuous. This lack of continuity is the cause of much of the difficulty in working
with this problem since it means that many of the classical results on dynamical systems are inap-
plicable. For instance, this is the primary reason why the well-known “Period Three Implies Chaos”
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Figure 2: A plot of rt over 30,000 iterations of AdaBoost on a small matrix M.

result (Li and Yorke, 1975) does not apply. (In fact, there are matrices M where every distribution
must converge to a 3-cycle.)

From our previous studies (Rudin et al., 2004), we know there are some simple matrices M for
which the distributions must converge to a cycle, and the iterated map provably forms a contraction
in which nearby distributions Dt must get closer to the cycle points over time. (There are multiple
possible cycles, but every possible distribution must converge to one of them.) Also, there is some-
times an analytical expression for these cycle points, and sometimes it is possible to prove there
exists a unique solution for the cycle points if there is no closed-form solution.

In experiments on small matrices M, we have observed cycles of many different lengths, in-
cluding odd and even lengths. Sometimes, AdaBoost takes a very long time to converge to a cycle.
If one of the cycle points is close to the boundary between regions of the simplex, as the distribution
is converging to the cycle, it could cross the boundary. At that point the distributions could map to
a different part of the simplex altogether, and leave the region of attraction. This is illustrated in
Fig. 2 where one of AdaBoost’s parameters (rt) is plotted over 30,000 iterations of AdaBoost. The
apparent lines in the figure are made as AdaBoost alternates between a small number of possible
values of rt as it cycles. Around iteration 9,000, the weight vector crosses one of the regions in the
simplex and no longer follows its previous cycle. Eventually, it finds this cycle and converges again.

The open problem is to prove or disprove that AdaBoost’s distributions Dt converge to a cycle in
all cases, that is, for every {−1,+1}-valued matrix M. A reward of $100 is offered for a complete
and general resolution of this problem.
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