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Abstract
We develop a PAC-Bayesian bound for the convergence rate of a Bayesian variant of Multiple
Kernel Learning (MKL) that is an estimation method for the sparse additive model. Standard
analyses for MKL require a strong condition on the design analogous to the restricted eigenvalue
condition for the analysis of Lasso and Dantzig selector. In this paper, we apply PAC-Bayesian
technique to show that the Bayesian variant of MKL achieves the optimal convergence rate without
such strong conditions on the design. Basically our approach is a combination of PAC-Bayes
and recently developed theories of non-parametric Gaussian process regressions. Our bound is
developed in a fixed design situation. Our analysis includes the existing result of Gaussian process
as a special case and the proof is much simpler by virtue of PAC-Bayesian technique. We also give
the convergence rate of the Bayesian variant of Group Lasso as a finite dimensional special case.
Keywords: PAC-Bayes, Multiple Kernel Learning, Group Lasso, Gaussian Process, Sparse Learn-
ing, Additive Model

1. Introduction

Sparse additive modeling is a powerful technique for nonparametric regression in high dimensional
data (Ravikumar et al., 2009; Raskutti et al., 2012; Hastie and Tibshirani, 1999). In the past decade,
a great amount of studies have been devoted to sparse statistical models. Sparsity gives a nice in-
terpretation of the estimated results and enables statisticians to develop methodologies that yield
reasonable performances even for high dimensional data. Although a linear high dimensional mod-
eling has attracted much attentions, there has been also attempts to develop a nonparametric method
to achieve more flexible data analysis in high dimensional data. One possible way is to just fit a
nonparametric function f(x) to the full input space, but that suffers the curse of dimensionality. To
avoid this problem, sparse additive model splits the input data x into M subsets (x(1), . . . , x(M))
and fits the sum of functions fm(x(m)) to the data, y =

∑M
m=1 fm(x(m)) + ξ, and imposes a spar-

sity on the set of functions {fm}Mm=1, that is, only a few components {fm}m∈I0 are meaningful
and other components are zero or negligibly small. This is more restrictive than the direct nonpara-
metric fitting using the full input space, but the result is more interpretable and, more importantly,
over-fitting can be avoided. One sophisticated approach to estimate the sparse additive model is
Multiple Kernel Learning (MKL, Lanckriet et al. (2004)). MKL was first developed as a method
to “learn a kernel”, but afterward Bach et al. (2004) pointed out that MKL can be interpreted as a
method to learn a sparse additive model. MKL approximates each component fm by an element
of Reproducing Kernel Hilbert Space (RKHS), and imposes L1-mixed-norm regularization to yield
sparsity.

c© 2012 T. Suzuki.



SUZUKI

Our main interest in this paper is to theoretically investigate a Bayesian variant of MKL that
is a mixture of Bayesian sparse learning and Gaussian process estimation. The Gaussian process
modeling is a Bayesian alternation of the kernel-based learning (Gibbs, 1997; Seeger, 2004; Ras-
mussen and Williams, 2006). That has shown nice performances as a non-parametric regression
and classification method. It is a natural strategy to apply the Gaussian process modeling to sparse
additive model where each component fm is estimated by the Gaussian process method. Indeed,
Gaussian process formulations of the multiple kernel learning framework have been proposed by
some authors (Archambeau and Bach, 2010; Tomioka and Suzuki, 2010). In this paper, we analyze
a rather different method from those existing ones.

Our theoretical framework is based on the PAC-Bayesian technique (McAllester, 1998, 1999;
Catoni, 2004). The first PAC-Bayesian bound proposed by McAllester (1998, 1999) was a data-
dependent empirical inequality for Bayesian estimators. Afterward Catoni (2004) proposed to uti-
lize the PAC-Bayesian technique to establish sharp oracle inequalities. Recently it has been shown
that the PAC-Bayesian technique is quite useful to investigate the statistical convergence rates of
Bayesian sparse learning methods. One remarkable insights obtained by PAC-Bayesian bounds
for Bayesian sparse learning methods is that no assumption on the condition of design is needed
(Dalalyan and Tsybakov, 2008; Alquier and Lounici, 2011; Rigollet and Tsybakov, 2011b). In the
theoretical analysis of regularized empirical risk minimization methods such as Lasso and Dantzig
selector, we usually assume a strict condition on the design such as restricted eigenvalue condition
(see Bickel et al. (2009) and the references therein). On the other hand, through the PAC-Bayesian
technique, it has been shown that Bayesian sparse estimation methods achieve the optimal learning
rate without such a strong condition.

As for theories of Gaussian process modeling, substantial developments have been made re-
cently (van der Vaart and van Zanten, 2008a,b, 2011). van der Vaart and van Zanten (2011) in-
vestigated the convergence rate of Gaussian process estimators, and discussed how the estimator
behaves according to the geometric relation between the true function and the RKHS corresponding
to the Gaussian process prior. Our concern is that they investigated only restricted situations such
as Sobolev and Hölder classes.

In this paper, we theoretically investigate a Bayesian variant of MKL, called Bayesian-MKL,
where each component fm is modeled by a Gaussian process prior. Our contributions are (i) to
develop a PAC-Bayesian bound for Gaussian process regressions, and (ii) to derive the convergence
rate of Bayesian-MKL in sparse additive model. More detailed description of our contribution is as
follows.

(i) We develop a new PAC-Bayesian oracle inequality for Gaussian process regressions in fixed
design situations. Thanks to the PAC-Bayesian technique, we obtain a simple proof of the
convergence rate. In our analysis, we relax the normality on the noise unlike the existing
researches. Moreover our PAC-Bayesian technique enables us to analyze general classes of
model spaces utilizing the notion of interpolation spaces and the metric entropy, while the
existing researches are based on the properties specialized to Sobolev and Hölder classes.
Moreover, we show that, by putting a prior on the scale of Gaussian process, the estimator
possesses adaptivity for the smoothness of the true function in a similar spirit to van der Vaart
and van Zanten (2009).

(ii) The convergence rate of Bayesian-MKL is established. Thanks to PAC-Bayesian technique,
our convergence analysis does not require any conditions on the design analogous to the re-
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stricted eigenvalue condition, while conventional convergence analyses of MKL required that
kind of strong assumptions those are sometimes unrealistic (Meier et al., 2009; Koltchinskii
and Yuan, 2010; Raskutti et al., 2012; Suzuki and Sugiyama, 2012). Moreover our analysis
covers the situations where the true function is not contained in the corresponding RKHS.

2. Preliminary

Here we formulate the problem setting and introduce the Bayesian variant of MKL.

2.1. Problem Settings

Suppose we are given n sample input-output pairs {(xi, yi)}ni=1 generated from the following re-
gression model:

yi = fo(xi) + ξi, (i = 1, . . . , n),

where {xi}ni=1 are given non-random elements1 of a set X , {ξi}ni=1 are i.i.d. zero-mean random
variables, and fo is the unknown true function satisfying fo(X) = E[Y |X].

In this article, we consider the situation where X is decomposed intoM spaces X = X1×· · ·×
XM and fo is well approximated by a function f∗ that can be decomposed into M functions each
of which is defined on Xm (m = 1, . . . ,M ), i.e., f∗(x) =

∑M
m=1 f

∗
m(x(m)) where f∗m : Xm → R

and x = (x(1), . . . , x(M)) ∈ X1 × · · · × XM . Basically we suppose that f∗ is “sparse” in a sense
that the number of non-zero components I0 := {m | f∗m 6= 0} is small compared with M . We want
to estimate the function fo so that the empirical L2-norm is minimized:

‖f − fo‖2n := 1
n

∑n
i=1(f(xi)− fo(xi))

2.

We also define the inner product with respect to the empirical L2-norm as 〈f, g〉n :=
1
n

∑n
i=1 f(xi)g(xi). Our strategy is a Bayesian approach where a Gaussian process prior is em-

ployed for each component f∗m. To estimate a sparse model, we put a prior of exponential weight on
the number of components to be used. Let f = (f1, . . . , fM ) be a concatenation of continuous func-
tions f1, . . . , fM each of which is defined on Xm, then we consider the following prior distribution
on the product space df = (df1, . . . ,dfM ):

Π(df) =
∑

J∈P({1,...,M})

πJ ·
∏
m∈J

∫
λm∈R+

GPm(dfm|λm)G(dλm) ·
∏
m/∈J

δ0(dfm), (1)

where P({1, . . . ,M}) is the set of all subsets of {1, . . . ,M} and δ0(dfm) is the Dirac measure
having all its mass at fm = 0; {πJ}J∈P({1,...,M}) is the exponential weight prior on the model that
is given as, for a fixed ζ ∈ (0, 1),

πJ =
ζ |J |∑M
j=0 ζ

j

(
M

|J |

)−1

,

for all J ∈ P({1, . . . ,M}) (this choice of πJ is suggested by Alquier and Lounici (2011)); G(dλm)
is the exponential distribution, G(dλm) = exp(−λm)dλm, that is a conjugate prior for the scale of
Gaussian process priors; GPm(df |λm) is the Gaussian process prior with scale λm that will be
defined in the successive subsection.

1. In this paper, we deal with a fixed design situation, i.e., {xi}ni=1 are fixed and non-random.
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2.2. Gaussian Process Prior and Corresponding RKHS

We put a zero-mean Gaussian process prior GPm with a kernel km to estimate the function f∗m on the
m-th spaceXm. A zero-mean Gaussian processW = (Wx : x ∈ Xm) on the input spaceXm is a set
of random variable Wx indexed by Xm and defined on a common probability space (Ωm,Um, Pm)
such that each finite subset (Wx1 , . . . ,Wxj ) (j = 1, 2, . . . ) possesses a zero-mean multivariate
normal distribution. We assume that every sample path is bounded supx∈Xm |Wx| < ∞, which
induces a map W : Ωm → L∞(Xm). Moreover we assume that the map W : Ωm → L∞(Xm) is
tight and Borel measurable, that is true if there exits a semi-metric ρm on Xm such that (Xm, ρm)
is totally bounded and almost all paths x 7→ Wx are uniformly ρ-continuous (see Section 1.5 of
van der Vaart and Wellner (1996) for the characterization of measurability and tightness). The
kernel function km : Xm ×Xm → R corresponding to GPm is the covariance function defined by

km(x, x′) := E[WxWx′ ].

The kernel function completely determines the finite dimensional distribution of the process. Cor-
responding to the kernel function km, we can define the reproducing kernel Hilbert space (RKHS)
Hm as a completion of the linear space spanned by all functions

z 7→
∑I

i=1 αikm(zi, z), (α1, . . . , αI ∈ R, z1, . . . , zI ∈ Xm, I ∈ N),

relative to the RKHS norm ‖ · ‖Hm induced by the inner product〈∑I
i=1 αikm(zi, ·),

∑J
j=1 α

′
jkm(z′j , ·)

〉
Hm

=
∑I

i=1

∑J
j=1 αiα

′
jkm(zi, z

′
j). (2)

For each element f of Hm, the “function value” at the point x ∈ Xm can be recovered by the
following reproducing formula:

f(x) = 〈f, km(·, x)〉Hm .

One can show that this reproducing formula is well defined through the completion operation, and
compatible with the definition of the inner product Eq. (2). More detailed discussions about the
definition of the RKHS attached with the Gaussian process can be found in van der Vaart and van
Zanten (2008b).

It is known that the RKHS Hm is usually much “smaller” than the support of the Gaussian
process in an infinite dimensional setting. In fact, typically the prior has probability mass 0 on
the infinite dimensional RKHS Hm. That leads to the fact that, under the assumption f∗m ∈ Hm,
estimating the function f∗m through the standard Bayesian procedure with Gaussian process prior
never achieves the optimal rate in some important examples (van der Vaart and van Zanten, 2011).
To overcome this issue, we scale the process by the factor of λm and make the estimator close to the
small spaceHm. The Gaussian process prior GPm(·|λm) with the scale parameter λm is the process
with the kernel function k̃m,λm = km/λm. LetHm,λm be the RKHS corresponding to k̃m,λm . Then
f ∈ Hm can be embedded inHm,λm , and we have√

λm‖f‖Hm = ‖f‖Hm,λm .

This indicates that with large λm the prior GPm(·|λm) imposes a strong regularization, and hence
the Bayesian estimator associated with GPm(·|λm) is forced to be concentrated around Hm. To
choose the scale parameter λm optimally, we put a prior distribution of the exponential distribution
G(dλm) for λm that is conjugate for the scale of Gaussian process priors.
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Example 1 (Matérn Priors) An important class of Gaussian process priors for smooth functions,
such as elements in Sobolev class, is the Matérn priors. Suppose that Xm = [0, 1]d. The Matérn
priors on Xm correspond to the kernel function defined as

km(z, z′) =

∫
Rd
eis
>(z−z′)ψ(s)ds,

where ψ(s) is the spectral density given by ψ(s) = (1+‖s‖2)−(α+d/2), for a smoothness parameter
α > 0. It is known that the RKHSHm corresponding to the Matérn prior is contained in the Sobolev
space (Wα+d/2[0, 1]d) of order α + d/2. Moreover, the Bayesian estimator with the Matérn prior
yields the optimal rates n−

2α
2α+d to estimate a function f∗m in Cα[0, 1]d ∩Wα[0, 1]d of smoothness

order α (van der Vaart and van Zanten, 2011)2. Note that, although f∗m ∈ Cα[0, 1]d ∩Wα[0, 1]d

is not necessarily contained in Wα+d/2[0, 1]d (thus is not contained in Hm), the optimal rate is
achieved. That means the support of the Matérn prior is much larger than Hm. On the other hand,
if f∗m ∈ Hm, the optimal rate is never achieved with fixed scale λm (van der Vaart and van Zanten,
2011).

2.3. Bayesian Multiple Kernel Learning

Based on the prior introduced in Eq. (1), we construct the “posterior distribution” and the corre-
sponding Bayesian estimator. Let Dn := (y1, . . . , yn). For some constant β > 0, the posterior
probability measure is given as

Π(df |Dn) :=
exp(−

∑n
i=1(yi −

∑M
m=1 fm(xi))

2/β)∫
exp(−

∑n
i=1(yi −

∑M
m=1 f̃m(xi))2/β)Π(df̃)

Π(df),

for f = (f1, . . . , fM ). Corresponding to the posterior, we have the Bayesian estimator f̂ , say
Bayesian-MKL estimator, as the expectation of the posterior:

f̂ =

∫ M∑
m=1

fmΠ(df |Dn).

In this paper, we do not pursue the computational aspects of Bayesian-MKL. The Bayesian-MKL
estimator is quite computation demanding because it requires summation over all subsets of the
index set. However one can utilize an efficient MCMC type method (Marin and Robert, 2007) for
this kind of mixture models. In fact, Green (1995) suggested Reversible Jump MCMC method to
compute the posterior distribution that possesses mass on several models of different dimensions,
and, in the PAC-Bayesian contexts, Dalalyan and Tsybakov (2011) and Alquier and Biau (2011)
investigated practical implementations of MCMC for sparse estimation problems.

3. Noise Assumption and PAC-Bayesian Bound

Here we give an assumption on the noise ξi to obtain a PAC-Bayesian bound. There are a lot of
choices of noise conditions to establish PAC-Bayesian bounds. Here we employ a condition with

2. Cα[0, 1]d denotes the Hölder space of smoothness order α (see Section 2.7.1 of van der Vaart and Wellner (1996)
for the definition).
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which we can utilize an extension of Stein’s identity. Now define a function

mξ(z) := −E[ξ11{ξ1 ≤ z}] = −
∫ z
−∞ ydFξ(y) =

∫∞
z ydFξ(y),

where Fξ(z) = P (ξ1 ≤ z) is the cumulative distribution function of the noise, and 1{·} is the
indicator function. Since E[ξ1] = 0, one can check that mξ(z) is non-negative and achieves its
maximum at 0: maxz∈Rmξ(z) = mξ(0) = E[|ξ1|]/2. Then we impose the following assumption
on the noise ξ.

Assumption 1 E[ξ2
1 ] < ∞ and the measure mξ(z)dz is absolutely continuous with respect to the

density function dFξ(z) with a bounded Radon-Nikodym derivative, i.e., there exists a bounded
function gξ : R→ R+ such that∫ b

a mξ(z)dz =
∫ b
a gξ(z)dFξ(z), ∀a, b ∈ R.

This characterization of noise gives an extension of the Gaussian noise. Indeed the following exam-
ples satisfy the assumption:

• If ξ1 obeys the Gaussian N (0, σ2), then gξ(z) = σ2,

• If ξ1 obeys the uniform distribution on [−a, a], then gξ(z) = max(a2 − z2, 0)/2.

Under Assumption 1, Theorem 1 of Dalalyan and Tsybakov (2008) gives the following PAC-
Bayesian bound. For a probability measure ρ that is absolutely continuous with respect to Π, let
K(ρ,Π) be the KL-divergence between ρ and Π, K(ρ,Π) :=

∫
log( dρ

dΠ(f))dρ(f).

Theorem 1 Suppose Assumption 1 is satisfied and β ≥ 4‖gξ‖∞. Then for all probability measure
ρ that is absolutely continuous with respect to Π, we have

EY1:n|x1:n

[
‖f̂ − fo‖2n

]
≤
∫
‖f − fo‖2ndρ(f) +

βK(ρ,Π)

n
. (3)

In the following, we assume that β is chosen so that β ≥ 4‖gξ‖∞ is satisfied.

Remark 2 If we restrict ourselves to Gaussian noise settings, we obtain a different type of bound
such that

P

[∫
‖f − fo‖2ndΠ(f |Y1:n) ≥ C

(∫
‖f − fo‖2ndρ(f) +

β(K(ρ,Π) + log(ε−1))

n

)]
≥ 1− ε,

where exponential tail probability is given and the posterior expectation in the quantity
∫
‖f −

fo‖2ndΠ(f |Y1:n) is taken outside the L2-norm ‖ · −fo‖2n instead of “plugging-in” the estimator as
‖f̂ − fo‖2n. However we don’t go to this direction. Instead, we deal with a more general class of
noise.
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4. Main Results

In this section, we give our main results. The convergence rate of Gaussian process estimators is
determined by how the prior distribution concentrates around the true function. The quantitative
evaluation of the mass around the true function is given by the following concentration function
(van der Vaart and van Zanten, 2011, 2008a):

φ
(m)
f∗m

(ε, λm) := inf
h∈Hm:‖h−f∗m‖∞≤ε

(
‖h‖2Hm,λm ∨ 1

)
− log GPm({f : ‖f‖∞ ≤ ε}|λm), (4)

where a∨ b := max(a, b). It can be shown that φ(m)
f∗m

(ε, λm) equals− log GPm({f : ‖f∗m− f‖∞ ≤
ε}|λm) up to constants (van der Vaart and van Zanten, 2008b). The second term − log GPm({f :
‖f‖∞ ≤ ε}|λm) measures the small ball probability around the origin. There are large amount of
studies for the small probability of Gaussian process measures; see, for example, Kuelbs and Li
(1993) and Li and Shao (2001). The first term measures how the small ball probability decreases by
shifting the center of the small ball away from the origin.

4.1. General Results

Let Ǐ0 := {m ∈ I0 | f∗m /∈ Hm}, and κ := ζ(1 − ζ). The following theorem gives the general
theoretical tool to derive the convergence rate of Bayesian-MKL.

Theorem 3 (Convergence rate of Bayesian-MKL) There exists a constant C1 depending on only
β such that the convergence rate of Bayesian-MKL is bounded as

EY1:n|x1:n

[
‖f̂ − fo‖2n

]
≤ 2‖fo − f∗‖2n

+ C1 inf
εm,λm>0

{ ∑
m∈I0

(
ε2m +

1

n
φ

(m)
f∗m

(εm, λm) +
λm
n
− log(λm)

n

)
+

∑
m,m′∈Ǐ0:

m6=m′

εmεm′

}

+
β|I0|
n

log

(
Me

κ|I0|

)
. (5)

The complete proof is placed in Appendix A. Because of the term
∑

m,m′∈Ǐ0:m6=m′ εmεm′ , the
qualitative behavior of the convergence rate differs depending on how large Ǐ0 is. To see this, we
consider the following two extreme situations:

• (Correctly specified situation) f∗m ∈ Hm (∀m = 1, . . . ,M), i.e., Ǐ0 = ∅,

• (Misspecified situation) f∗m /∈ Hm (∀m = 1, . . . ,M), i.e., Ǐ0 = I0.

Roughly speaking, the term infεm,λm>0

(
ε2m + 1

nφ
(m)
f∗m

(εm, λm) + λm
n −

log(λm)
n

)
gives the conver-

gence rate of Gaussian process estimators for the single kernel learning, say ε̂2m. For simplicity,
suppose ε̂2m is independent of m (denote it by ε̂2), and assume fo = f∗. Then, in the correctly
specified situation, the convergence rate can be evaluated as

EY1:n|x1:n

[
‖f̂ − fo‖2n

]
= O

[
|I0|ε̂2 +

|I0|
n

log

(
Me

κ|I0|

)]
.
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This formulation is identical to well-known minimax optimal learning rate (Raskutti et al., 2012),
that is, if ε̂2 yields the minimax optimal rate for the single kernel learning (that is typically true),
then Bayesian-MKL is also minimax optimal in the MKL setting. Importantly, the theorem does
not require any condition on the design such as the restricted eigenvalue condition (Koltchinskii
and Yuan, 2010) or the incoherence assumption (Meier et al., 2009). On the other hand, in the
misspecified situation, the rate becomes

EY1:n|x1:n

[
‖f̂ − fo‖2n

]
= O

[
|I0|2ε̂2 +

|I0|
n

log

(
Me

κ|I0|

)]
.

Note that dependency of the rate on |I0| differs according to the situation. This discrepancy is
induced by the fact that the cross terms 〈f∗m − f̂m, f∗m′ − f̂m′〉n in the expansion ‖

∑
m∈I0(f∗m −

f̂m)‖2n =
∑

m∈I0 ‖f
∗
m−f̂m‖2n+

∑
m,m′∈I0:m6=m′〈f∗m−f̂m, f∗m′−f̂m′〉n are not negligible because of

the bias (f∗m /∈ Hm). If the “design” is well-conditioned (‖
∑

m∈I0(fm−f∗m)‖2n ≤ C
∑

m∈I0 ‖fm−
f∗m‖2n for all fm on the support of the prior), then the cross terms can be omitted and the first term
|I0|2ε̂2 in the bound is replaced with |I0|ε̂2.

Note that the second term |I0|
n log

(
Me
κ|I0|

)
is better by an amount of |I0|n log(|I0|) than that of the

ever shown rate of the risk minimization type MKL where the corresponding term is |I0|n log (M).

4.2. Convergence Rates on Several Classes

Here we give convergence rates of Bayesian-MKL on several important examples.

4.2.1. MATÉRN PRIORS

Suppose that Xm = [0, 1]dm , and the kernel function associated with GPm is the Matérn prior with
the smoothness parameter αm: The spectral density for km is given as ψ(s) = 1

(1+‖s‖2)αm+dm/2
.

Then the Gaussian process GPm takes its value in Cα
′
m [0, 1]dm for any α′m < αm while the RKHS

Hm is contained in a Sobolev space Wαm+dm/2[0, 1]dm with the smoothness αm + dm/2 (van der
Vaart and van Zanten, 2011).

Correctly specified situation Here suppose that f∗m ∈ Hm for all m ∈ I0, and
maxm∈I0 ‖f∗m‖Hm ≤ R. Then we obtain the following convergence rate.

Theorem 4 (Matérn prior, correctly specified) If f∗m ∈ Hm and maxm∈I0 ‖f∗m‖m∈I0 ≤ R for a
constant R, then there exists a constant C ′1 depending on {dm, αm}m∈I0 , R, β such that

EY1:n|x1:n

[
‖f̂ − fo‖2n

]
≤ 2‖fo − f∗‖2n + C ′1

∑
m∈I0

n
− 1

1+dm/(2αm+dm) +
|I0|
n

log

(
Me

κ|I0|

) .

Note that n−
1

1+dm/(2αm+dm) is the optimal rate to estimate f∗m ∈ Wαm+dm/2[0, 1]dm in single
kernel learning settings (M = |I0| = 1). If we don’t put the exponential prior on the scale λm
(inverse gamma prior on the scale), the Gaussian process estimation never attains the optimal rate
on Hm (van der Vaart and van Zanten, 2011). However our result achieves the optimal rate. This
is because we employed a mixture of Gaussian process priors with various scales that enables the
Bayesian estimator to adaptively fit the appropriate scale.
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Our convergence rate consists of the sum of the optimal learning rates in single kernel settings
and the additional term |I0|

n log
(
Me
κ|I0|

)
. For the situation where all αm, dms are same, ∃α, d such

that αm = α and dm = d (∀m), it has been shown that this rate is optimal (Raskutti et al., 2012) .

Misspecified situation In the above, we have assumed that f∗m possesses the smoothness αm +
dm/2. However, one might want to estimate a less smooth function. Here we assume that f∗m ∈
Cβm [0, 1]dm ∩ W βm [0, 1]dm where βm < αm + dm/2 for all m ∈ I0. Note that, since βm <
αm + dm/2, f∗m is not necessarily contained inHm. Here we denote by ‖fm‖βm|∞ the Besov norm
of regularity βm measured by L∞-L∞ norm (see Section 7.32 of Adams and Fournier (2003) for
the definition). Then we obtain the following bound.

Theorem 5 (Matérn prior, misspecified) If maxm∈I0 ‖f∗m‖βm|∞ ≤ R with some constant R, then
there exists a constant C ′1 depending on {αm, βm, dm}m∈I0 , β, R such that

EY1:n|x1:n

[
‖f̂ − fo‖2n

]
≤ 2‖fo − f∗‖2n + C ′1


∑
m∈I0

n
− βm

2βm+dm

2

+
|I0|
n

log

(
Me

κ|I0|

) .

This result improves that of van der Vaart and van Zanten (2011) in the following three points:

• The Gaussianity is not assumed,

• The situation where M > 1 is covered,

• When M = 1, our rate achieves the optimal rate n−
2βm

2βm+dm for all βm < αm + dm/2 while
the rate in van der Vaart and van Zanten (2011) achieves the optimal rate only when αm = βm.

The third point is due to the adaptivity induced by the scale mixture prior. Without the scale mixture
prior, the optimal rate can not be achieved whenever αm 6= βm (Castillo, 2008). An interesting
observation here is that the choice of αm has no influence on the learning rate. In other word,
any fine tuning of parameters is not needed to achieve the optimal rate. We just need to choose
αm sufficiently large so that βm ≤ αm + dm/2, then the Gaussian process with scale mixture
automatically yields the optimal rate. This kind of adaptivity for the smoothness is also pointed
out in the context of regularized risk minimization procedures in kernel learning (Steinwart et al.,
2009).

4.2.2. KERNELS WITH METRIC ENTROPY OF POLYNOMIAL COMPLEXITY

Here we derive general convergence rate results that are applicable to a general kernel class. We
assume that the kernel is attached with an RKHS the unit ball of which possesses a metric entropy
of polynomial order complexity. More precisely, there exists a real value 0 < sm < 1 such that

logN(BHm , ε, ‖ · ‖∞) = O(ε−2sm), (6)

whereN(B, ε, d) is the ε-covering number of the spaceB with respect to the metric d (van der Vaart
and Wellner, 1996), and BHm is the unit ball of the RKHS Hm. It is known that − log(GPm({f :

‖f‖∞ ≤ ε})) = O(ε−
2sm

1−sm ) under the metric entropy condition (6) (Kuelbs and Li, 1993; Li
and Shao, 2001). Thus, if we can evaluate the bias infh∈Hm:‖h−f∗m‖∞≤ε ‖h‖

2
Hm,λm

in addition

8.9
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to the evaluation of the small ball probability, we obtain a convergence rate also for misspecified
situations f∗m /∈ Hm. Here we consider two situations; (i) f∗m ∈ Hm and (ii) f∗m /∈ Hm as in
previous sections. To derive a convergence rate on an arbitrary augmented space H̃m(⊃ Hm) is a
tough problem. However real interpolation of spaces (Bennett and Sharpley, 1988) gives a clear
characterization of the convergence rate. Suppose that we have a couple of Banach spaces X0 and
X1 such thatX0 ⊃ X1 andX1 is continuously embedded inX0 (denoted byX1 ↪→ X0). We define
the K-functional as

K(f, t) = inf
f1∈X1

{‖f − f1‖X0 + t‖f1‖X1},

for all t > 0 and f ∈ X0. Then the real interpolation space [X0, X1]θ,r with 0 < θ < 1, 1 ≤ r <∞
or 0 ≤ θ ≤ 1, r = ∞ is a space consisting of all functions f ∈ X0 that possess the finite norm
‖f‖θ,r:

‖f‖θ,r = ‖f‖θ,r,[X0,X1] =


[∫ ∞

0
(t−θK(f, t))r

dt

t

]1/r

, (0 < θ < 1, 1 ≤ r <∞),

sup
t>0

t−θK(f, t), (0 ≤ θ ≤ 1, r =∞).
(7)

The real interpolation space [X0, X1]θ,r is an intermediate space between X0 and X1, i.e.,
X1 ↪→ [X0, X1]θ,r ↪→ X0. One can check that, in extreme cases, we have [X0, X1]0,∞ = X0

and [X0, X1]1,∞ = X1. In particular, we are interested in the space [L∞(Xm),Hm]θ,∞ for
which we can give the convergence rate of Bayesian-MKL. To give a concrete example, suppose
Hm = Wαm(Xm), then Theorem 1.12 of Bennett and Sharpley (1988) gives

[L∞(Xm),Hm]θ,∞ = [L∞(Xm),Wαm(Xm)]θ,∞ ↪→ Bθαm
2,∞ (Xm),

where Bθαm
2,∞ (Xm) denotes a Besov space of regularity θαm with L2-L∞ norm3 (see Adams and

Fournier (2003) for the definition). In addition, if Xm = [0, 1]dm , then it is known that sm =
dm

2αm
satisfies the entropy condition (6) for Hm = Wαm(Xm). Now we denote by ‖fm‖(m)

θ,r :=
‖fm‖θ,r,[L∞(Xm),Hm]. Finally we assume that the constant hidden in the small ball probability upper
bound is bounded uniformly for all m = 1, . . . ,M for simplicity: ∃C0 > 0 such that

− log(GPm({f : ‖f‖∞ ≤ ε})) ≤ C0(ε−
2sm

1−sm ) (∀m = 1, . . . ,M).

Then we obtain the following theorem.

Theorem 6 (RKHS with metric entropy condition) If f∗m ∈ Hm for all m ∈ I0 and
maxm∈I0 ‖f∗m‖Hm ≤ R, then there exists a constant C ′1 depending on {sm}m∈I0 , C0, R, β such
that

EY1:n|x1:n

[
‖f̂ − fo‖2n

]
≤ 2‖fo − f∗‖2n + C ′1

∑
m∈I0

n−
1

1+sm +
|I0|
n

log

(
Me

κ|I0|

) .

3. [L2(Xm),Wαm(Xm)]θ,∞ = Bθαm
2,∞ (Xm) by the definition.

8.10
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If f∗m ∈ [L∞(Xm),Hm]θ,∞ with 0 < θ ≤ 1 for all m ∈ I0 and maxm∈I0 ‖f∗m‖
(m)
θ,∞ ≤ R with a

constant R, then there exists a constant C ′1 depending on {sm}m∈I0 , θ, C0, R, β such that

EY1:n|x1:n

[
‖f̂ − fo‖2n

]
≤ 2‖fo − f∗‖2n + C ′1


( ∑
m∈I0

n
− 1

2(1+sm/θ)

)2

+
|I0|
n

log

(
Me

κ|I0|

) .

The proof can be found in Appendix B. Under the metric entropy condition (6), the con-
vergence rate n−

1
1+sm is minimax optimal in typical situations. Moreover, when Xm =

[0, 1]dm , since Bθαm
∞,∞(Xm) ↪→ [L∞(Xm),Wαm(Xm)]θ,∞ ↪→ Bθαm

2,∞ (Xm), the metric entropy of
[L∞(Xm),Wαm(Xm)]θ,∞ satisfies (6) where sm is replaced with s′m = dm

2αmθ
= sm

θ , and that is
tight (see Theorem 2 of Edmunds and Triebel (1996) and A.5.6 of Steinwart (2008)). Thus the
convergence rate n−

1
1+sm/θ is minimax optimal on [L∞(Xm),Wαm(Xm)]θ,∞ as long as sm/θ < 1.

In that sense, Theorem 6 states that Bayesian-MKL achieves the optimal rate (as for the misspec-
ified situation, it is true at least when M = 1). Here we again observe that the Gaussian process
with scale mixture adaptively achieves the optimal rate for all θ such that sm < θ ≤ 1. Thus the
convergence rate is not influenced by oversmooth specification.

Note that Theorem 6 includes the analysis of the Matérn prior as a special case. Because
the RKHS Hm corresponding to the Matérn prior is continuously embedded in the Sobolev space
Wαm+dm/2[0, 1]dm so that the metric entropy condition (6) is satisfied with sm = dm/(2αm+dm).
Moreover the proof of Lemma 4 of van der Vaart and van Zanten (2011) yields that functions
f∗m ∈ Cβm [0, 1]dm ∩W βm [0, 1]dm with ‖f∗m‖βm|∞ ≤ R are included in a ball of the interpolation
space [L∞(Xm),Hm]θ,∞ with θ = βm/(αm + dm/2) ≤ 1. Thus Theorems 4 and 5 are recovered
by Theorem 6 with the parameter setting sm = dm

2αm+dm
and θ = βm

αm+dm/2
.

Group Lasso Finally we investigate the situation where each Hm is finite dimensional. This
situation corresponds to Group Lasso (Yuan and Lin, 2006). Suppose Xm is a compact subset of
Rdm and the Gaussian process prior GPm is as follows:

fm(x) = µ>x, µ ∼ N (0, Idm),

where Idm is the dm × dm identity matrix. Then the corresponding kernel function is km(x, x′) =
x>x′. In this setting, the convergence rate of the Bayesian-MKL is given by the following theorem.

Theorem 7 (Group Lasso) Suppose that f∗m(x) = µ>mx for some µm ∈ Rdm and
maxm∈I0 ‖fm‖Hm = maxm∈I0 ‖µm‖ ≤ R, supx(m)∈Xm ‖x

(m)‖ ≤ R for some constant R, then
there exits a constant C ′1 depending on β,R such that,

EY1:n|x1:n

[
‖f̂ − fo‖2n

]
≤ 2‖fo − f∗‖2n + C ′1

{∑
m∈I0 dm log(n)

n
+
|I0|
n

log

(
Me

κ|I0|

)}
.

The proof can be found in Appendix C. This is rate optimal up to log(n) order because the
optimal rate of the estimation problem on

∑
m∈I0 dm dimensional parameter space (µm)m∈I0 is∑

m∈I0
dm

n , and |I0|n log
(
Me
|I0|κ

)
is the optimal rate for sparse linear regression with |I0| non-zeros

components (Rigollet and Tsybakov, 2011a).
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5. Conclusion and Discussion

In this paper, we developed a PAC-Bayesian bound for Gaussian process model and generalized it to
sparse additive model. Important notion was that the optimal rate is achieved without any conditions
on the design. Interpolations of spaces gave a nice characterization of the convergence rate on the
misspecified situation. We have observed that Gaussian processes with scale mixture adaptively
achieve the minimax optimal rate on both correctly-specified and misspecified situations.

We bounded the empiricalL2-norm ‖·‖n in this paper. However, the evaluation of the population
L2-norm, ‖f‖2L2(PX) =

∫
f(X)2dPX , between the estimator and the true function is also of interest

from the view point of generalization error. For the analysis of the population L2-norm, the L∞-
norm in the metric entropy condition (6) and the definition (4) of φ(m)

f∗m
could be replaced with the

population L2-morm ‖·‖L2(PX). To bound the population L2-norm, we would need to impose some
smoothness condition on the prior (see Theorem 2 and the following discussions in van der Vaart
and van Zanten (2011)). Our future work includes developing a PAC-Bayesian bound that is also
applicable to the population L2-norm.

Another interesting topic is to compare Bayesian-MKL with a model selection type method that
minimizes a penalized risk like the BIC estimator. Rigollet and Tsybakov (2011a) discussed benefits
of a model averaging type estimator comparing to a BIC type estimator in a finite dimensional linear
model. It is interesting to argue an analogous thing also in a nonparametric regression situation.
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Appendix A. Proof of Theorem 3

Fix εm, λm > 0. To prove the theorem, we substitute some “dummy” posterior distribution into
ρ in Eq. (3) of Theorem 1 (the PAC-Bayes bound). If f∗m ∈ Hm, then we take h̃m as h̃m = f∗m.
Otherwise, we take h̃m ∈ Hm,λm such that

‖h̃m‖2Hm,λm ≤ 2 inf
h∈Hm:‖h−f∗m‖∞≤εm

‖h‖2Hm,λm .

The process (Wx + h̃m(x) : x ∈ Xm) induces the “shifted” Gaussian process GPW+h̃m
m (dfm|λ̃m)

such that GPW+h̃m
m (A|λ̃m) := GPm(A− h̃m|λ̃m) for a measurable set A. Now our choice of ρ is

given as follows:

ρ(df) =
∏
m∈I0

∫
λm
2
≤λ̃m≤λm

GPW+h̃m
m (dfm|λ̃m)1{‖fm − h̃m‖∞ ≤ εm}
GPm({∆fm : ‖∆fm‖∞ ≤ εm}|λ̃m)

G(dλ̃m)

G({λ̃m : λm2 ≤ λ̃m ≤ λm})
·
∏
m/∈I0

δ0(dfm),

We can show that ρ is absolutely continuous with respect to the prior Π as follows. First notice that

Π(df)

≥πI0 ·
∏
m∈I0

∫
λ̃m∈R+

GPm(dfm|λ̃m)G(dλ̃m) ·
∏
m/∈I0

δ0(dfm)

≥πI0 ·
∏
m∈I0

∫
λm
2
≤λ̃m≤λm

GPm(dfm|λ̃m)1{‖fm − h̃m‖∞ ≤ εm}G(dλ̃m) ·
∏
m/∈I0

δ0(dfm). (8)

Here we define a linear map U
(λ̃m)
fm

: Hm,λ̃m → R by setting U
(λ̃m)
fm

k̃m,λ̃m(x, ·) = fm(x)
and extending linearly and continuously to an arbitrary h ∈ Hm. This induces an isometry

U
(λ̃m)
· : Hm,λ̃m → L2(GPm(·|λ̃m)) because

∫
[U

(λ̃m)
fm

(
∑J

j=1 αj k̃m,λ̃m(zj , ·))]2GPm(dfm|λ̃m) =∑J
j=1

∑J
j′=1 αjαj′

∫
fm(zj)fm(zj′)GPm(dfm|λ̃m) =

∑J
j=1

∑J
j′=1 αjαj′ k̃m,λ̃m(zj , zj′). Ac-

cording to Lemma 3.1 of van der Vaart and van Zanten (2008a), GPm(·|λ̃m) and GPW+h̃m
m (·|λ̃m)

are equivalent, and moreover, for fm such that ‖fm − h̃m‖∞ ≤ εm, we have∫
λm
2
≤λ̃m≤λm

GPW+h̃m
m (dfm|λ̃m)

GPm({∆fm : ‖∆fm‖∞ ≤ εm}|λ̃m)
G(dλ̃m)∫

λm
2
≤λ̃m≤λm GPm(dfm|λ̃m)G(dλ̃m)

≤ sup
λ̃m:λm

2
≤λ̃m≤λm

GPW+h̃m
m (dfm|λ̃m)

GPm(dfm|λ̃m) ·GPm({∆fm : ‖∆fm‖∞ ≤ εm}|λ̃m)
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≤ sup
λ̃m:λm

2
≤λ̃m≤λm

exp

(
U

(λ̃m)
fm

h̃m −
1

2
‖h̃m‖2Hm,λ̃m

)
1

GPm({∆fm : ‖∆fm‖∞ ≤ εm}|λ̃m)

(∵ Lemma 3.1 of van der Vaart and van Zanten (2008a))

≤ sup
λ̃m:λm

2
≤λ̃m≤λm

exp

[
(U

(λ̃m)

fm−h̃m
+ U

(λ̃m)

h̃m
)h̃m −

1

2
‖h̃m‖2Hm,λ̃m

]
1

GPm({∆fm : ‖∆fm‖∞ ≤ εm}|λ̃m)

≤ exp

[
|U (λm)

fm−h̃m
h̃m|+

1

2
‖h̃m‖2Hm,λm

]
1

GPm({∆fm : ‖∆fm‖∞ ≤ εm}|λm/2)
(9)

<∞, (a.s.). (10)

Therefore combining Eq. (8) and Eq. (10), we have that ρ is absolutely continuous with respect to
Π. Using the bound (9), we obtain that K(ρ,Π) is bounded from above as

K(ρ,Π)

≤
∫

log

 1

πI0

∏
m∈I0

exp
[
|U (λm)

fm−h̃m
h̃m|+ 1

2‖h̃m‖
2
Hm,λm

]
GPm({∆fm : ‖∆fm‖∞ ≤ εm}|λm/2)G({λ̃m : λm2 ≤ λ̃m ≤ λm})

 ρ(df)

=

∫ ∑
m∈I0

(
|U (λm)

fm−h̃m
h̃m|+

1

2
‖h̃m‖2Hm,λm

)
ρ(df)

−
M∑
m=1

log

(
GPm

(
{∆fm : ‖∆fm‖∞ ≤ εm} |

λm
2

))

−
M∑
m=1

log

(
G
(
{λ̃m :

λm
2
≤ λ̃m ≤ λm}

))
− log(πI0). (11)

Here we have the following bounds for each term. By Lemma 8, the first term is bounded as∫ ∑
m∈I0

(
|U (λm)

fm−h̃m
h̃m|+

1

2
‖h̃m‖2Hm,λm

)
ρ(df)

≤C
∑
m∈I0

(
‖h̃m‖Hm,λm + ‖h̃m‖2Hm,λm

)
≤ 2C

∑
m∈I0

(
‖h̃m‖2Hm,λm ∨ 1

)
, (12)

where C is a universal constant. The third term is bounded as

− log

(
G
(
{λ̃m :

λm
2
≤ λ̃m ≤ λm}

))
= − log

(∫
λ̃m:λm

2
≤λ̃m≤λm

exp(−λ̃m)dλ̃m

)

≤− log

(
λm
2

exp(−λm)

)
= − log

(
λm
2

)
+ λm. (13)

The fourth term is bounded as

− log(πI0) = − log

(
ζ |I0|∑M
j=0 ζ

j

(
M

|I0|

)−1
)

≤|I0| log

(
1

ζ

)
+ log

(
1

1− ζ

)
+ |I0| log

(
Me

|I0|

)
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≤|I0| log

(
Me

|I0|ζ(1− ζ)

)
. (14)

Substituting Eqs. (12),(13),(14) into Eq. (11), the KL-divergence between the “dummy” posterior ρ
and the prior distribution Π is bounded as

1

n
K(ρ,Π)

≤ C ′1
∑
m∈I0

(
1

n
φ

(m)
f∗m

(εm, λm/2) +
1

n
λm −

1

n
log

(
λm
2

))
+
|I0|
n

log

(
Me

|I0|ζ(1− ζ)

)
, (15)

where C ′1 is a universal constant.
Finally we bound

∫
‖f−fo‖2ndρ(f). Notice that

∫
‖f−fo‖2ndρ(f) ≤ 2‖fo−f∗‖2n+2

∫
‖f−

f∗‖2ndρ(f). Thus we only need to bound
∫
‖f − f∗‖2ndρ(f). By the definition of ρ, we have that∫

‖f − f∗‖2ndρ(f) =

∫ ∥∥∥∥ ∑
m∈I0

(fm − f∗m)

∥∥∥∥2

n

dρ(f)

=

∫ ∑
m∈I0

‖fm − f∗m‖2ndρ(f) +

∫ ∑
m6=m′∈I0

〈fm − f∗m, fm′ − f∗m′〉ndρ(f). (16)

Since the mean of fm with respect to ρ is h̃m, ‖fm − h̃m‖∞ is bounded by εm on the support of ρ
and ‖h̃m − f∗m‖∞ ≤ εm by the definition, we have∫

‖fm − f∗m‖2ndρ(f) ≤ 2

∫
‖fm − h̃m‖2ndρ(f) + 2

∫
‖h̃m − f∗m‖2ndρ(f) ≤ 4ε2m,

and ∫
〈fm − f∗m, fm′ − f∗m′〉ndρ(f) = 〈h̃m − f∗m, h̃m′ − f∗m′〉n

{
≤ εmεm′ , (m,m′ ∈ Ǐ0),

= 0, (otherwise).

These bounds and Eq. (15) give the assertion by resetting λm ← λm/2.

Appendix B. Proof of Theorem 6

We show only the second assertion where f∗m /∈ Hm. The first assertion can be shown in the same
line. We utilize Theorem 3.

By the definition, we have ‖f∗m‖
(m)
θ,∞ = supt>0 infhm∈Hm{t−θ‖f∗m − hm‖∞ + t1−θ‖hm‖Hm}.

If infhm∈Hm ‖f∗m − hm‖∞ > 0, then the term t−θ‖f∗m − hm‖∞ can be arbitrary large. Therefore
the assumptionR ≥ ‖f∗m‖

(m)
θ,∞ ensures that there exists hm ∈ Hm such that ‖f∗m−hm‖∞ ≤ ε for all

ε > 0. Now we evaluate the quantity infh∈Hm:‖h−f∗m‖∞≤εm ‖h‖
2
Hm by the assumption ‖f∗m‖

(m)
θ,∞ <

∞. For all t > 0, there exists h(t)
m ∈ Hm such that 2‖f∗m‖

(m)
θ,∞ ≥ t

−θ‖f∗m−h
(t)
m ‖∞+ t1−θ‖h(t)

m ‖Hm .

This gives 2‖f∗m‖
(m)
θ,∞ ≥ t

−θ‖f∗m − h
(t)
m ‖∞ so that we have t ≥ 2−

1
θ ‖f∗m‖

(m)
θ,∞
− 1
θ ‖f∗m − h

(t)
m ‖

1
θ∞, and

hence 2‖f∗m‖
(m)
θ,∞ ≥ t

1−θ‖h(t)
m ‖Hm yields

‖h(t)
m ‖Hm ≤ t−(1−θ)2‖f∗m‖

(m)
θ,∞ ≤ 2

1
θ ‖f∗m‖

(m)
θ,∞

1
θ ‖f∗m − h(t)

m ‖
− 1−θ

θ∞ .

8.17



SUZUKI

Therefore we have that

inf
h∈Hm:‖h−f∗m‖∞≤εm

‖h‖2Hm ≤ 2
2
θ ‖f∗m‖

(m)
θ,∞

2
θ ε
− 2(1−θ)

θ
m ≤ (2R)

2
θ ε
− 2(1−θ)

θ
m ,

because for all ε > 0 there exists t such that ‖f∗m − h
(t)
m ‖∞ ≤ ε. This and the evaluation

− log(GPm({f : ‖f‖∞ ≤ ε})) ≤ C0ε
− 2sm

1−sm

gives that

φ
(m)
f∗m

(εm, λm) ≤ (2R)
2
θλmε

− 2(1−θ)
θ

m + C0(
√
λmεm)−

2sm
1−sm , (17)

where we used − log(GPm({f : ‖f‖∞ ≤ ε}|λm)) = − log(GPm({f : ‖f‖∞ ≤
√
λmε})). Now

λm = ε
1−θ−sm

2θ
m balances the two terms in the right hand side of the above display up to constants.

With this λm, we have that

ε2m +
1

n
φ

(m)
f∗m

(εm, λm) +
λm
n
− log(λm)

n

≤ε2m +
((2R)

2
θ + C0)

n
ε
− 2sm

θ
m +

ε
1−θ−sm

θ
m

n
− log(ε

1−θ−sm
θ

m )

n
. (18)

Here we take εm = n
− θ

2(θ+sm) that balances the first two terms of the RHS of the above display (up
to constants). Then the RHS of Eq. (18) is further bounded by

[1 + (2R)
2
θ + C0]n

− 1
1+sm/θ + n

− 1+θ+sm
2(θ+sm) +

1− θ − sm
2(θ + sm)

log(n)

n

≤Cn−
1

1+sm/θ ,

whereC is a constant depending on sm, R, C0, θ. Substituting this bound into Theorem 3, we obtain
the assertion.

Appendix C. Proof of Theorem 7

We utilize Theorem 3. Since {f : ‖f‖∞ ≤ ε} ⊇ {f(x) = β>x : ‖β‖ ≤ ε/R}, − log GPm({f :
‖f‖∞ ≤ ε}|λm) is bounded as

− log GPm({f : ‖f‖∞ ≤ ε}|λm) ≤ − logN ({β ∈ Rdm : ‖β‖ ≤ ε/R} | 0, Idm/λm)

≤− log

[
exp(− (

√
λmε/R)2

2 )

(2πλ−1
m )dm/2

πdm/2

Γ(dm/2 + 1)
(ε/R)dm

]

≤(
√
λmε)

2

2R2
+

(
dm
2

+ 1

)
log(2)− dm

2
log(λm) +

dm
2

log

(
dm
2

)
− dm log

( ε
R

)
,

where we used Γ(dm/2 + 1) ≤ 2
(
dm
2

) dm
2 . Here set λm = 1 and εm =

√
dm
n , then we have

− log GPm({f : ‖f‖∞ ≤ εm}|λm)
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≤ dm
2R2n

+

(
dm
2

+ 1

)
log(2) +

dm
2

log

(
dm
2

)
+ dm log(R) +

dm
2

log

(
n

dm

)
≤
(

1

2R2
+ 2 log(2) + log(R)

)
dm +

dm
2

log(n) ≤ Cdm log(n),

where C is a constant depending on R. This gives the following evaluation of φ(m)
f∗m

:

φ
(m)
f∗m

(εm, λm) ≤ C ′dm log(n),

where C ′ is a constant depending on R. Therefore there exits a constant C ′′ depending on R such
that

ε2m +
1

n
φ

(m)
f∗m

(εm, λm) +
λm
n
− log(λm)

n
≤ C ′′dm

n
log(n), (19)

which gives the assertion.

Appendix D. Auxiliary Lemma

Lemma 8 We have that∫
|U (λm)
f h̃m|1{f : ‖f‖∞ ≤ ε}GPm(df |λm)

GPm({f : ‖f‖∞ ≤ ε}|λm)
≤ ‖h̃m‖Hm,λm .

Proof Since the Gaussian process W : Ω → L∞(Xm) with the law GPm(·|λm) is measurable,
the norm ‖ · ‖∞ is a measurable function, that is also true in the sense of Definition 3.1 of Hargé
(2004) due to Corollaries 4.5 and 5.2 of Gross (1962). Here we utilize Theorem 3.4 of Hargé (2004)
that is a particular infinite dimensional extension of Brascamp-Lieb inequality (Brascamp and Lieb,
1976). That gives∫

|U (λm)
f h̃m|1{f : ‖f‖∞ ≤ ε}GPm(df |λm)

GPm({f : ‖f‖∞ ≤ ε}|λm)
≤
∫
|U (λm)
f h̃m|GPm(df |λm).

The RHS is further bounded by√∫
|U (λm)
f h̃m|2GPm(df |λm) = ‖h̃m‖Hm,λm , (20)

because U (λm)
· is an isometry fromHm,λm to L2(GPm(·|λm)).

Remark 9 The key proposition in the proof of Lemma 8 is Theorem 3.4 of Hargé (2004). As we have
mentioned, the theorem is an infinite dimensional extension of Brascamp-Lieb inequality (Theorem
5.1 of Brascamp and Lieb (1976)). One big motivation of this line of researches is to prove the
Gaussian correlation conjecture:

µ(A ∩B) ≥ µ(A)µ(B)
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where µ is any centered Gaussian measure on a separable Banach space and A and B are any two
symmetric convex sets. There is a long history about this conjecture. Brascamp-Lieb inequality can
be seen as an application of a particular case of the Gaussian correlation conjecture (see Hargé
(1999)). See the survey by Li and Shao (2001) for details of the Gaussian correlation conjecture.
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