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Abstract

We consider the problem of learning high-performance Exploration/Exploitation (E/E)
strategies for finite Markov Decision Processes (MDPs) when the MDP to be controlled
is supposed to be drawn from a known probability distribution pM(·). The performance
criterion is the sum of discounted rewards collected by the E/E strategy over an infi-
nite length trajectory. We propose an approach for solving this problem that works by
considering a rich set of candidate E/E strategies and by looking for the one that gives
the best average performances on MDPs drawn according to pM(·). As candidate E/E
strategies, we consider index-based strategies parametrized by small formulas combining
variables that include the estimated reward function, the number of times each transition
has occurred and the optimal value functions V̂ and Q̂ of the estimated MDP (obtained
through value iteration). The search for the best formula is formalized as a multi-armed
bandit problem, each arm being associated with a formula. We experimentally compare
the performances of the approach with R-max as well as with ǫ-Greedy strategies and
the results are promising.

Keywords: Reinforcement Learning, Exploration/Exploitation dilemma, Formula discov-
ery

1. Introduction

Most Reinforcement Learning (RL) techniques focus on determining high-performance poli-
cies maximizing the expected discounted sum of rewards to come using several episodes.
The quality of such a learning process is often evaluated through the performances of the
final policy regardless of rewards that have been gathered during learning. Some approaches
have been proposed to take these rewards into account by minimizing the undiscounted re-
gret (Kearns and Singh (2002); Brafman and Tennenholtz (2002); Auer and Ortner (2007);
Jaksch et al. (2010)), but RL algorithms have troubles solving the original RL problem
of maximizing the expected discounted return over a single trajectory. This problem is
almost intractable in the general case because the discounted nature of the regret makes
early mistakes - often due to hazardous exploration - almost impossible to recover from.
Roughly speaking, the agent needs to learn very fast in one pass. One of the best solutions
to face this Exploration/Exploitation (E/E) dilemma is the R-max algorithm (Brafman
and Tennenholtz (2002)) which combines model learning and dynamic programming with
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the “optimism in the face of uncertainty” principle. However, except in the case where the
underlying Markov Decision Problem (MDP) comes with a small number of states and a
discount factor very close to 1 (which corresponds to giving more chance to recover from
bad initial decisions), the performance of R-max is still very far from the optimal (more
details in Section 5).

In this paper, we assume some prior knowledge about the targeted class of MDPs, ex-
pressed in the form of a probability distribution over a set of MDPs. We propose a scheme
for learning E/E strategies that makes use of this probability distribution to sample training
MDPs. Note that this assumption is quite realistic, since before truly interacting with the
MDP, it is often possible to have some prior knowledge concerning the number of states and
actions of the MDP and/or the way rewards and transitions are distributed.

To instantiate our learning approach, we consider a rich set of candidate E/E strategies
built around parametrized index-functions. Given the current state, such index-functions
rely on all transitions observed so far to compute E/E scores associated to each possible
action. The corresponding E/E strategies work by selecting actions that maximize these
scores. Since most previous RL algorithms make use of small formulas to solve the E/E
dilemma, we focus on the class of index-functions that can be described by a large set of
such small formulas. We construct our E/E formulas with variables including the estimated
reward function of the MDP (obtained from observations), the number of times each tran-
sition has occurred and the estimated optimal value functions V̂ and Q̂ (computed through
off-line value iteration) associated with the estimated MDP. We then formalize the search
for an optimal formula within that space as a multi-armed bandit problem, each formula
being associated to an arm.

Since it assumes some prior knowledge given in the form of a probability distribution
over possible underlying MDPs, our approach is related to Bayesian RL (BRL) approaches
(Poupart et al. (2006); Asmuth et al. (2009)) that address the E/E trade-off by (i) assuming
a prior over possible MDP models and (ii) maintaining - from observations - a posterior
probability distribution (i.e., “refining the prior”). In other words, the prior is used to
reduce the number of samples required to construct a good estimate of the underlying MDP
and the E/E strategy itself is chosen a priori following Bayesian principles and does not
depend on the targeted class of MDPs. Our approach is specific in the sense that the prior
is not used for better estimating the underlying MDP but rather for identifying the best
E/E strategy for a given class of targeted MDPs, among a large class of diverse strategies.
We therefore follow the work of Maes et al. (2012), which already proposed to learn E/E
strategies in the context of multi-armed bandit problems, which can be seen as state-less
MDPs.

This paper is organized as follows. Section 2 formalizes the E/E strategy learning prob-
lem. Section 3 describes the space of formula-based E/E strategies that we consider in this
paper. Section 4 details our algorithm for efficiently learning formula-based E/E strategies.
Our approach is illustrated and empirically compared with R-max as well as with ǫ-Greedy
strategies in Section 5. Finally, Section 6 concludes.
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2. Background

LetM = (S,A, pM,f (·), ρM , pM,0(·), γ) be a MDP. S =
{
s(1), . . . , s(nS)

}
is its state space and

A =
{
a(1), . . . , a(nA)

}
its action space. When the MDP is in state st at time t and action

at is selected, the MDP moves to a next state st+1 drawn according to the probability
distribution pM,f (·|st, at). A deterministic instantaneous scalar reward rt = ρM (st, at, st+1)
is associated with the stochastic transition (st, at, st+1).

Ht = [s0, a0, r0, . . . , st, at, rt] is a vector that gathers the history over the first t steps and
we denote by H the set of all possible histories of any length. An exploration / exploitation
(E/E) strategy is a stochastic algorithm π that, given the current state st, processes at
time t the vector Ht−1 to select an action at ∈ A: at ∼ π(Ht−1, st). Given the probability
distribution over initial states pM,0(·), the performance/return of a given E/E strategy π
with respect to the MDP M can be defined as: JπM = E

pM,0(·),pM,f (·)
[RπM (s0)] where RπM (s0)

is the stochastic discounted return of the E/E strategy π when starting from the state s0.
This return is defined as:

RπM (s0) =
∞∑

t=0

γtrt ,

where rt = ρM (st, π(Ht−1, st), st+1) and st+1 ∼ pM,f (.|st, π(Ht−1, st)) ∀t ∈ N and where
the discount factor γ belongs to [0, 1). Let pM(·) be a probability distribution over MDPs,
from which we assume that the actual underlying MDP M is drawn. Our goal is to learn
a high performance finite E/E strategy π given the prior pM(·), i.e. an E/E strategy that
maximizes the following criterion:

Jπ = E
M ′∼pM(·)

[JπM ′ ] . (1)

3. Formula-based E/E strategies

In this section, we describe the set of E/E strategies that are considered in this paper.

3.1. Index-based E/E strategies

Index-based E/E strategies are implicitly defined by maximizing history-dependent state-
action index functions. Formally, we call a history-dependent state-action index function
any mapping I : H × S × A → R. Given such an index function I, a decision can
be taken at time t in the state st ∈ S by drawing an optimal action according to I:
π(Ht−1, st) ∈ argmax

a∈A
I(Ht−1, st, a)

1. Such a procedure has already been vastly used

in the particular case where the index function is an estimate of the action-value func-
tion, eventually randomized using ǫ−greedy or Boltzmann exploration, as in Q-Learning
(Watkins and Dayan (1992)).

1. Ties are broken randomly in our experiments.
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3.2. Formula-based E/E strategies

We consider in this paper index functions that are given in the form of small, closed-form
formulas. This leads to a very rich set of candidate E/E strategies that have the advantage
of being easily interpretable by humans. Formally, a formula F ∈ F is:
• either a binary expression F = B(F ′, F ′′), where B belongs to a set of binary operators

B and F ′ and F ′′ are also formulas from F,
• or a unary expression F = U(F ′) where U belongs to a set of unary operators U and

F ′ ∈ F,
• or an atomic variable F = V , where V belongs to a set of variables V depending on

the history Ht−1, the state st and the action a,
• or a constant F = C, where C belongs to a set of constants C.

Since it is high dimensional data of variable length, the history Ht−1 is non-trivial to
use directly inside E/E index-functions. We proceed as follows to transform the information
contained in Ht−1 into a small set of relevant variables. We first compute an estimated
model of the MDP M̂ that differs from the original M due to the fact that the transition
probabilities and the reward function are not known and need to be learned from the history
Ht−1. Let P̂ (s, a, s′) and ρ̂(s, a) be the transition probabilities and the reward function of
this estimated model. P̂ (s, a, s′) is learned by computing the empirical frequency of jumping
to state s′ when taking action a in state s and ρ̂(s, a) is learned by computing the empirical
mean reward associated to all transitions originating from (s, a)2. Given the estimated MDP,
we run a value iteration algorithm to compute the estimated optimal value functions V̂ (·) and

Q̂(·, ·). Our set of variables is then defined as: V =
{
ρ̂(st, a), N(st, a), Q̂(st, a), V̂ (st), t, γ

t
}

where N(s, a) is the number of times a transition starting from (s, a) has been observed in
Ht−1.

We consider a set of operators and constants that provides a good compromise be-
tween high expressiveness and low cardinality of F. The set of binary operators B in-
cludes the four elementary mathematical operations and the min and max operators: B =
{+,−,×,÷,min,max}. The set of unary operators U contains the square root, the logarithm
and the absolute value: U =

{√·, ln(·), | · |
}
. The set of constants is: C = {1, 2, 3, 5, 7}.

In the following, we denote by πF the E/E strategy induced by formula F :

πF (Ht−1, st) ∈ argmax
a∈A

F

(
ρ̂(st, a), N(st, a), Q̂(st, a), V̂ (st), t, γ

t

)

We denote by |F | the description length of the formula F , i.e. the total number of operators,
constants and variables occurring in F . Let K be a maximal formula length. We denote by
FK the set of formulas whose length is not greater than K. This defines our so-called set of
small formulas.

2. If a pair (s, a) has not been visited, we consider the following default values: ρ̂(s, a) = 0, P̂ (s, a, s) = 1
and P̂ (s, a, s′) = 0, ∀s′ 6= s.
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4. Finding a high-performance formula-based E/E strategy for a given
class of MDPs

We look for a formula F ∗ whose corresponding E/E strategy is specifically efficient for the
subclass of MDPs implicitly defined by the probability distribution pM(·). We first describe
a procedure for accelerating the search in the space FK by eliminating equivalent formulas
in Section 4.1. We then describe our optimization scheme for finding a high-performance
E/E strategy in Section 4.2.

4.1. Reducing FK

Notice first that several formulas FK can lead to the same policy. All formulas that rank all
state-action pairs (s, a) ∈ S ×A in the same order define the same policy. We partition the
set FK into equivalence classes, two formulas being equivalent if and only if they lead to the
same policy. For each equivalence class, we then consider one member of minimal length,
and we gather all those minimal members into a set F̄K .

Computing the set F̄K is not trivial: given a formula, equivalent formulas can be ob-
tained through commutativity, associativity, operator-specific rules and through any increas-
ing transformation. We thus propose to approximately discriminate between formulas by
comparing how they rank (in terms of values returned by the formula) a set of d random
samples of the variables ρ̂(·, ·), N(·, ·), Q̂(·, ·), V̂ (·), t, γt. More formally, the procedure is the
following:
• we first build FK , the space of all formulas such that |F | ≤ K;
• for i = 1 . . . d, we uniformly draw (within their respective domains) some random

realizations of the variables ρ̂(·, ·), N(·, ·), Q̂(·, ·), V̂ (·), t, γt that we concatenate into a vector
Θi;
• we cluster all formulas from FK according to the following rule: two formulas F and

F ′ belong to the same cluster if and only if they rank all the Θi points in the same order,
i.e.: ∀i, j ∈ {1, . . . , d}, i 6= j, F (Θi) ≥ F (Θj) ⇐⇒ F ′(Θi) ≥ F ′(Θj). Formulas leading
to invalid index functions (caused for instance by division by zero or logarithm of negative
values) are discarded;
• among each cluster, we select one formula of minimal length;
• we gather all the selected minimal length formulas into an approximated reduced set

of formulas F̃K .
In the following, we denote by N the cardinality of the approximate set of formulas

F̃K = {F1, . . . , FN}.

4.2. Finding a high-performance formula

A naive approach for determining a high-performance formula F ∗ ∈ F̃K would be to perform
Monte-Carlo simulations for all candidate formulas in F̃K . Such an approach could reveal
itself to be time-inefficient in case of spaces F̃K of large cardinality.

We propose instead to formalize the problem of finding a high-performance formula-
based E/E strategy in F̃K as a N−armed bandit problem. To each formula Fn ∈ F̃K

(n ∈ {1, . . . , N}), we associate an arm. Pulling the arm n consists first in randomly drawing
a MDP M according to pM(·) and an initial state s0 for this MDP according to pM,0(·).
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Afterwards, an episode starting from this initial state is generated with the E/E strategy πFn

until a truncated time horizon T . This leads to a reward associated to arm n whose value
is the discounted return RπM (s0) observed during the episode. The purpose of multi-armed
bandit algorithms is here to process the sequence of such observed rewards to select in a
smart way the next arm to be played so that when the budget of pulls has been exhausted,
one (or several) high-quality formula(s) can be identified.

Multi-armed bandit problems have been vastly studied, and several algorithms have been
proposed, such as for instance all UCB-type algorithms (Auer et al. (2002); Audibert et al.
(2007)). New approaches have also recently been proposed for identifying automatically
empirically efficient algorithms for playing multi-armed bandit problems (Maes et al. (2011)).

5. Experimental results

In this section, we empirically analyze our approach on a specific class of random MDPs
defined hereafter.

Random MDPs. MDPs generated by our prior pM(·) have nS = 20 states and nA = 5
actions. When drawing a MDP according to this prior, the following procedure is called for
generating pM,f (·) and ρM (·, ·, ·). For every state-action pair (s, a) : (i) it randomly selects
10% of the states to form a set of successor states Succ(s, a) ⊂ S (ii) it sets pM,f (s

′|s, a) = 0
for each s′ ∈ S \ Succ(s, a) (iii) for each s′ ∈ Succ(s, a), it draws a number N(s′) at

random in [0, 1] and sets pM,f (s
′|s, a) = N(s′)

∑

s′′∈Succ(s,a)N(s′′) (iv) for each s′ ∈ Succ(s, a), it

sets ρM (s, a, s′) equal to a number chosen at random in [0, 1] with a 0.1 probability and to
zero otherwise. The distribution pM,0(·) of initial states is chosen uniform over S. The value
of γ is equal to 0.995.

Learning protocol. In our experiments, we consider a maximal formula length of K = 5
and use d = 1000 samples to discriminate between formulas, which leads to a total number of
candidate E/E strategies N = 3834. For solving the multi-armed bandit problem described
in Section 4.2, we use an Upper Confidence Bound (UCB) algorithm (Auer et al. (2002)).
The total budget allocated to the search of a high-performance policy is set to Tb = 106.
We use a truncated optimization horizon T = logγ ((1− γ)δ) for estimating the stochastic
discounted return of an E/E strategy where δ = 0.001 is the chosen precision (which is also
used as stopping condition in the off-line value iteration algorithm for computing Q̂ and V̂ ).
At the end of the Tb plays, the five E/E strategies that have the highest empirical return
mean are returned.

Baselines. Our first baseline, the Optimal strategy, consists in using for each test MDP,
a corresponding optimal policy. The next baselines, the Random and Greedy strate-
gies perform pure exploration and pure exploitation, respectively. The Greedy strategy
is equivalent to an index-based E/E strategy with formula Q̂(s, a). The last two baselines
are classical E/E strategies whose parameters have been tuned so as to give the best per-
formances on MDPs drawn from pM(·): ǫ-Greedy and R-max. For ǫ-Greedy, the best
value we found was ǫ = 0 in which case it behaves as the Greedy strategy. This confirms
that hazardous exploration is particularly harmful in the context of single trajectory RL
with discounted return. Consistently with this result, we observed that R-max works at its
best when it performs the least exploration (m = 1).
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Baselines Learned strategies
Name Jπ Formula Jπ

Optimal 65.3 (N(s, a) × Q̂(s, a)) − N(s, a) 30.3

Random 10.1 max(1, (N(s, a) × Q̂(s, a))) 22.6

Greedy 20.0 Q̂(s, a) (= Greedy) 20.0

ǫ-Greedy(ǫ = 0) 20.0 min(γt, (Q̂(s, a) − V̂ (s))) 19.4

R-max (m = 1) 27.7 min(ρ̂(s, a), (Q̂(s, a) − V̂ (s))) 19.4

Table 1: Performance of the top-5 learned strategies with respect to baseline strategies.
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Figure 1: Performances of the learned and the baseline strategies for different distributions
of MDPs that differ by the size of the MDPs belonging to their support.

Results. Table 1 reports the mean empirical returns obtained by the E/E strategies on
a set of 2000 test MDPs drawn from pM(·). Note that these MDPs are different from
those used during learning and tuning. As we can see, the best E/E strategy that has been
learned performs better than all baselines (except the Optimal), including the state-of-the-
art approach R-max.

We may wonder to what extent the E/E strategies found by our learning procedure
would perform well on MDPs which are not generated by pM(·). As a preliminary step
to answer this question, we have evaluated the mean return of our policies on sets of 2000
MDPs drawn from slightly different distributions as the one used for learning: we changed
the number of states nS to different values in {10, 20, . . . , 50}. The results are reported in
Figure 1. We observe that, except in the case nS = 10, our best E/E strategy still performs
better than the R-max and the ǫ-Greedy strategies tuned on the original distribution
pM(·) that generates MDPs with 20 states. We also observe that for larger values of nS , the
performances of R-max become very close to those of Greedy, whereas the performances
of our best E/E strategy remain clearly above. Investigating why this formula performs
well is left for future work, but we notice that it is analog to the formula tk(rk − C) that
was automatically discovered as being well-performing in the context of multi-armed bandit
problems (Maes et al. (2011)).
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6. Conclusions

In this paper, we have proposed an approach for learning E/E strategies for MDPs when
the MDP to be controlled is supposed to be drawn from a known probability distribution
pM(·). The strategies are learned from a set of training MDPs (drawn from pM(·)) whose
size depends on the computational budget allocated to the learning phase. Our results
show that the learned strategies perform very well on test problems generated from the
same distribution. In particular, they outperform on these problems R-max and ǫ-Greedy
policies. Interestingly, the strategies also generalize well to MDPs that do not belong to the
support of pM(·). This is demonstrated by the good results obtained on MDPs having a
larger number of states than those belonging to pM(·)’s support.

These encouraging results suggest several future research direction. First, it would be
interesting to better study the generalization performances of our approach either theo-
retically or empirically. Second, we believe that our approach could still be improved by
considering richer sets of formulas w.r.t. the length of the formulas and the number of vari-
ables extracted from the history. Finally, it would be worth investigating ways to improve
the optimization procedure upon which our learning approach is based so as to be able to
deal with spaces of candidate E/E strategies that are so large that even running once every
strategy on a single training problem would be impossible.
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