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Abstract

Temporal-difference (TD) networks (Sutton and Tanner, 2004) are a predictive represen-
tation of state in which each node is an answer to a question about future observations
or questions. Unfortunately, existing algorithms for learning TD networks are known to
diverge, even in very simple problems. In this paper we present the first sound learning rule
for TD networks. Our approach is to develop a true gradient descent algorithm that takes
account of all three roles performed by each node in the network: as state, as an answer,
and as a target for other questions. Our algorithm combines gradient temporal-difference
learning (Maei et al., 2009) with real-time recurrent learning (Williams and Zipser, 1994).
We provide a generalisation of the Bellman equation that corresponds to the semantics of
the TD network, and prove that our algorithm converges to a fixed point of this equation.

1. Introduction

Representation learning is a major challenge faced by machine learning and artificial in-
telligence. The goal is to automatically identify a representation of state that can be up-
dated from the agent’s sequence of observations and actions. Predictive state representations
(PSRs) provide a promising approach to representation learning. Every state variable is ob-
servable rather than latent, and represents a specific prediction about future observations.
The agent maintains its state by updating its predictions after each interaction with its en-
vironment. It has been shown that a small number of carefully chosen predictions provide a
sufficient statistic for predicting all future experience; in other words that those predictions
summarise all useful information from the agent’s previous interactions [Singh et al., 2004].
The intuition is that an agent which can effectively predict the future will be able to act
effectively within its environment, for example to maximise long-term reward.

Temporal-difference networks (TD networks) are a type of PSR that may ask compo-
sitional predictions, not just about future observations, but about future state variables
(i.e. predictions of predictions). This enables TD networks to operate at a more abstract
level than traditional PSRs. However, temporal-difference networks suffer from a major
drawback: the learning algorithm may diverge, even in simple environments.

The main contribution of this paper is to provide a sound and non-divergent learning
rule for TD networks and related architectures. Unlike previous TD network learning rules,
our approach is based on a true gradient descent algorithm. It uses gradient temporal-
difference (GTD) learning to account for the compositions of predictions into the future;
and backpropagation through time (BPTT) [Rumelhart et al., 1986] or real-time recurrent
learning (RTRL) [Williams and Zipser, 1989] to correctly account for the full history of
previous state variables.
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2. Gradient Temporal-Difference Learning

A key problem in reinforcement learning is to estimate the total discounted reward from
a given state, so as to evaluate the quality of a fixed policy. In this section we consider a
Markov reward process with state space S, transition dynamics from state s to s′ given by
Ts,s′ = P [s′|s], reward r given by Rs = E [r|s], and discount factor 0 < γ < 1. The return
counts the total discounted reward from time t, Rt =

∑∞
k=0 γ

krt+k, and the value function
is the expected return from state s, Vs = E [Rt | st = s]. The Bellman equation defines a
recursive relationship, V = R+γT V . This equation has a unique fixed point corresponding
to the true value function.

In general, the transition dynamics T and reward functionR are unknown. Furthermore,
the number of states |S| is often large, and therefore it is necessary to approximate the true
value function Vs using a function approximator Vs = f(s, θ) with parameters θ. These
parameters can be updated by stochastic gradient descent, so as to minimise the mean
squared error between the value function and the return, ∆θt = α(Rt−V θ

st)∇θV θ
st , where α is

a scalar step-size parameter. However, the return is high variance and also unknown at time
t. The idea of temporal-difference (TD) learning is to substitute the return Rt with a lower
variance, one-step estimate of value, called the TD target : rt+γV θ

st+1
. This idea is known as

bootstrapping [Sutton, 1988], and leads to the TD learning update, ∆θt = αδt∇θV θ
st , where

δt is the TD error δt = rt+γV
θ
st+1
−V θ

st . Temporal-difference learning is particularly effective
with a linear function approximator V θ

s = φ(s)⊤θ. Unfortunately, for non-linear function
approximation, or for off-policy learning, TD learning is known to diverge [Tsitsiklis and
Van Roy, 1997; Sutton et al., 2009].

Temporal-difference learning is not a true gradient descent algorithm, because it ignores
the derivative of the TD target. Gradient temporal-difference (GTD) learning addresses
this issue, by minimising an objective function corresponding to the error in the Bellman
equation, by stochastic gradient descent. This objective measures the error between value
function V θ and the corresponding target given by the Bellman equation R+ γT V θ. How-
ever, the Bellman target typically lies outside the space of value functions that can be
represented by function approximator f . It is therefore projected back into this space
using a projection Πθ. This gives the mean squared projected Bellman error (MSPBE),
J(θ) = ||V θ − Πθ(R + γT V θ)||2ρ, where the squared norm || · ||2ρ is weighted by the sta-
tionary distribution ρ(s) of the Markov reward process. To ensure tractable computation
when using a non-linear function approximator f , the projection operator Πθ is a linear
projection onto the tangent space of V θ, Πθ = Φθ(Φ

⊤
θ DΦθ)

−1Φ⊤
θ D, where D is the diagonal

matrix D = diag(ρ); and Φθ is the tangent space of V θ, where each row is a value gradient
φ(s) = (Φθ)s,· = ∇θV θ

s .

The GTD2 algorithm minimises the MSPBE by stochastic gradient descent. The MSPBE
can be rewritten as a product of three expectations,

J(θ) = E [φ(s)δ]⊤ E

[
φ(s)φ(s)⊤

]−1
E [φ(s)δ] (1)

which can be written as J(θ) = E [φ(s)δ]⊤wθ where wθ = E
[
φ(s)φ(s)⊤

]−1
E [φ(s)δ]. The

GTD2 algorithm simultaneously estimates w ≈ wθ by stochastic gradient descent; and also
minimises J(θ) by stochastic gradient descent, assuming that the current estimate is correct,
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Figure 3.1: A TD network with 3 predictions and 1 observation. The question network
gives the semantics of the predictions: v∗1 is the expected observation at the
next time-step; v∗2 is the expected observation after two time-steps; and v∗3 is
the expected sum of future observations. The structure of the question network
is specified by weight matrices P,Q; black edges have weight 1 and grey edges
have weight 0. The answer network specifies the mechanism by which answers
to these questions are updated over time. Its weight matrices A,B are adjusted
so that v ≈ v∗.

i.e. that w = wθ. This gives the following updates, applied at every time-step t with step-size
parameters α and β,

ψt = (δt − φ(st)⊤w)∇2
θVsw (2)

∆θt = α
(
φ(st)− γφ(st+1))(φ(st)

⊤w
)
− ψt (3)

∆wt = βφ(st)
(
δt − φ(st)⊤w

)
(4)

The GTD2 algorithm converges to a local minimum of J(θ), even when using non-linear
function approximation [Maei et al., 2009] or off-policy learning [Sutton et al., 2009]. The
TDC algorithm minimises the same objective but using a slightly different derivation,

∆θt = α
(
φ(st)δ − γφ(st+1)(φ(st)

⊤w)
)
− ψt (5)

3. Temporal Difference Networks

We focus now on the uncontrolled case in which an agent simply receives a time series of
m-dimensional observations ot at each time-step t. A history ht is a length t sequence of
observations, ht = o1...ot. We assume that histories are generated by a Markov chain with
a probability 1− γ of terminating after every transition, to give a history of length τ . The
Markov chain has (unknown) transition probabilities Th,ho = γP [ot+1 = o | ht = h, τ > t],
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with zero probability for all other transitions. This Markov chain has a well-defined distri-
bution d(h) over the set H of all histories, d(ht) = P [τ = t, o1...ot = ht].

A state representation is a function v(h) mapping histories to a vector of state variables
vi(h). For a state representation to be usable online, it must be incremental – i.e. the state
can be updated from one observation to the next, v(ht+1) = f(v(ht), ot+1). A predictive state
representation (PSR) is a state representation in which all state variables are predictions
of future events. The target of a prediction is a function of future observations, zt =
g(ot+1, ot+2, ...). The true answer for a prediction is the expected value of the target, given
a history of observations h, v∗(h) = E [zt | ht = h]. The PSR learns an estimated answer
v(h, θ) ≈ v∗(h) to each prediction, by adjusting parameters θ. The answer vector v(ht, θ) is
the state representation used by the agent at time-step t. For example, in the original PSR,
g was a vector of indicator functions over future observations, and f was a linear function
[Singh et al., 2004].

A temporal-difference (TD) network is comprised of a question network and an answer
network. The question network defines the semantics of the compositional predictions, i.e.
how a target depends on subsequent targets. We focus here on linear question networks,
where the target is a linear combination of the subsequent target and observation, zt =
Pot+1 +Qzt+1. Linear question networks satisfy a Bellman network equation,

v∗(ht) = E [zt | ht] = E [Pot+1 +Qzt+1 | ht] = E [Pot+1 +Qv∗(ht+1) | ht] (6)

The simplest predictions are grounded directly in observations, for example the target might
be the observation at the next time-step, v∗1(h) = E [ot+1 | ht = h]. A compositional predic-
tion might be the expected value at time-step t+1 of the expected observation at time-step
t+ 2, v∗2(h) = E [v∗1(ht+1) | ht = h]. Compositional questions can also be recursive, so that
questions can be asked about temporally distant observations. For example, a value function
can be represented by a prediction of the form v∗3(h) = E [ot + v∗3(ht+1) | ht = h], where ot
can be viewed as a reward, and v∗3 is the value function for this reward.

The answer network is a non-linear representation of state containing n state variables.
Each state variable vi(h) represents the estimated answer to the ith prediction. The answers
are updated incrementally by combining the state v(ht−1) at the last time-step – the previous
answers – with the new observation ot. In the original TD network paper, the answers were
represented by a recurrent neural network, although other architectures are possible. In
this case, v(ht, θ) = σ(Aot + Bv(ht−1)) where σ(x) is a non-linear activation function with
derivative σ′(x); θ = [A,B] is an n× (m+ n) weight matrix; and v(h0) := 0 by definition.

The key idea of temporal-difference networks is to train the parameters of the answer
network, so that the estimated answers approximate the true answers as closely as possible.
One way to measure the quality of our answers is using the Bellman network equation,
i.e. to seek answers v(h, θ) that (approximately) satisfy this equation. One approach to
solving the Bellman network equation is by bootstrapping, i.e. by using the right hand side
of the equation, Pot+1 +Qv(ht+1, θ), as a surrogate for the true value function v∗(ht). The
parameters of the answer network can then be adjusted online by gradient descent, so as to
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minimise the mean squared error, MSE(θ) = E

[∑n
i=1 (v

∗
i (ht)− vi(ht, θ))2

]
,

−1

2
∇θMSE(θ) = E

[
n∑

i=1

(v∗i (ht)− vi(ht, θ))∇θvi(ht, θ)
]

= E [φ(ht, θ) (v
∗(ht)− v(ht, θ))] (7)

where φ(h, θ) is a matrix combining the gradients for each answer,

φ(h, θ) = [∇θv1(h, θ), ...,∇θvn(h, θ)] (8)

Sampling the gradient gives a stochastic gradient descent algorithm,

∆θ = αφ(ht, θ) (v
∗(ht)− v(ht, θ))

≈ αφ(ht, θ) (Pot+1 +Qv(ht+1, θ)− v(ht, θ))
= αφ(ht, θ)δ(ht+1, θ) (9)

where α is a scalar step-size; and δ(ht+1, θ) is the TD error,

δ(ht+1, θ) := Pot+1 +Qv(ht+1, θ)− v(ht, θ) (10)

However, Sutton et al. did not in fact follow the full recurrent gradient, but rather a
computationally expedient one-step approximation to this gradient,

∇θvi(ht) = ∇θσ(Ai,:o(ht) +Bi,:v(ht−1))i

∂vi(ht)

∂Aj,k
≈
{
ok(ht)σ

′(vi(ht)) if i = j
0 otherwise

∆Ai,k = αδi(ht+1, θ)ok(ht)σ
′(vi(ht))

∂vi(ht)

∂Bj,k
≈
{
vk(ht−1)σ

′(vi(ht)) if i = j
0 otherwise

∆Bi,k = αδi(ht+1, θ)vk(ht−1)σ
′(vi(ht))

(11)

Like simple recurrent networks [Elman, 1991], this simple TD network learning rule only
considers direct connections from previous state variables v(ht−1) to current state variables
v(ht), ignoring indirect contributions from previous state variables v(h1), ..., v(ht−2).

Simple temporal-difference networks have been extended to incorporate histories [Tanner
and Sutton, 2005a]; to learn over longer time-scales using a TD(λ)-like algorithm [Tanner
and Sutton, 2005b]; to use action-conditional or option-conditional questions [Sutton et al.,
2005]; to automatically discover question networks [Makino and Takagi, 2008] and to use
hidden nodes [Makino, 2009].

Unfortunately, it is well known that the simple TD network learning rule may lead to
divergence, even in seemingly trivial problems such as a 6-state “cycle world" [Tanner, 2005].
This is because each node in a TD network may perform up to three different roles. First, a
node may act as state, i.e. the state variable vi(ht−1) at the previous time-step t− 1 is used
to construct answers vj(ht) at the current time-step t. Second, a node may act as an answer,
i.e. vj(ht) provides the current answer for the jth prediction at time t. Third, a node may
act as a target, i.e. vk(ht+1) may be predicted by a predecessor answer vj(ht). The simple
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TD network learning rule only follows the gradient with respect to the first of these three
roles, and is therefore not a true gradient descent algorithm. Specifically, if an answer is
selfishly updated to reduce its error with respect to its own question, this will also change
the state representation, which could result in greater overall error. It will also change the
TD-targets, which could again result in greater overall error. This last issue is well-known
in the context of value function learning, causing TD learning to diverge when using a non-
linear value function approximator [Tsitsiklis and Van Roy, 1997]. In the remainder of this
paper, we develop a sound TD network learning rule that correctly takes account of all three
roles.

4. Bellman Network Equation

The standard Bellman equation provides a recursive one-step relationship for one single
prediction: the value function. The main contribution of this paper is to generalise the
Bellman equation to linear question networks (see equation 6). We can then find answer
network parameters θ that solve, as effectively as possible, the Bellman network equation.
We now make this notion precise.

In our Markov chain, there is one “state” for each distinct history. The Bellman network
equation provides a recursive relationship between the answers vi(h) for every prediction i
and every history h. To represent all of these values, we define an answer matrix V θ

h,i =
vi(h, θ), which is the ∞× n matrix of all answers given parameters θ = [A,B].

Each prediction is weighted by a non-negative prediction weight ci indicating the relative
importance of question i. Each history h is weighted by its probability d(h). We define a
weighted squared norm ||.||c,d that is weighted both by the prediction weight ci and by the
history distribution d(h),

||V ||2c,d =
∑

h∈H
d(h)

n∑

i=1

ciV
2
h,i (12)

We define Π(V ) to be the non-linear projection function that finds the closest answer matrix
V θ to the given matrix V , using the weighted squared norm ||.||2c,d,

Π(V ) = argmin
θ
||V θ − V ||2c,d (13)

The question network represents the relationship between true answers. However, the true
expectations will not typically be representable by any parameter vector θ, and therefore we
must project them back into the representable space of answer networks,

V θ = Π(T (OP⊤ + V θQ⊤)) (14)

where O is the ∞×m matrix of last observations, Oht,i = ot; P and Q are the parameters
of the question network; and T is the history transition matrix. In practice, the non-linear
projection Π is intractable to compute. We therefore use a local linear approximation Πθ
that finds the closest point in the tangent space to the current answer matrix V θ. The
tangent space is represented by an∞× (m+n)n matrix Φθ of partial derivatives. Each row
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of the tangent space corresponds to a particular combination of history h and prediction i,
with a row index that we denote by h ◦ i. Each column j corresponds to a parameter θj of

the answer network, (Φθ)h◦i,j =
∂V θ

h,i

∂θj
. The linear projection operator Πθ projects an answer

matrix V onto tangent space Φθ,

ΠθV = Φθ(Φ
⊤
θ GΦθ)

−1Φ⊤
θ GV (15)

where the operator V represents a reshaping of an ∞× n matrix V into a ∞× 1 column
vector with one row for each combined history and prediction h ◦ i. G is a diagonal matrix
that gives the combined history distribution and prediction weight for each history and
prediction h ◦ i, Gh◦i,h◦i = cid(h). This linear projection leads to the projected Bellman
network equation,

V θ = ΠθT (OP⊤ + V θQ⊤) (16)

5. Gradient Temporal-Difference Network Learning Rule

Our approach to solving the linear TD network equation is based on the nonlinear gradient
TD learning algorithm of Maei et al. (2009). Like this prior work, we solve our Bellman-like
equation by minimising a mean squared projected error by gradient descent. However, we
must extend Maei et al. in three ways. First, TD networks include multiple value functions,
and therefore we generalise the mean-squared error to use the projection operator Πθ defined
in the previous section. Second, each answer in a TD networks may depend on multiple
interrelated targets, whereas TD learning only considers a single TD target rt + γV θ

st+1
.

Third, we must generalise from a finite state space to an infinite space of histories. We
proceed by defining the mean squared projected Bellman network error (MSPBNE), J(θ),
for answer network parameters A. This objective measures the difference between the answer
matrix and the expected TD-targets at the next time-step, projected onto the tangent space,

J(θ) = ||ΠθT (OP⊤ + V θQ⊤)− V θ||2G = ||Πθ∆θ||2G = ∆⊤
θ Π

⊤
θ GΠθ∆θ = ∆⊤

θ G
⊤Πθ∆θ

= ∆⊤
θ G

⊤Φθ(Φ
⊤
θ GΦθ)

−1Φ⊤
θ G∆θ =

(
Φ⊤
θ G∆θ

)⊤ (
Φ⊤
θ GΦθ

)−1 (
Φ⊤
θ G∆θ

)
(17)

where ∆θ := T (OP⊤ + V θQ⊤)− V θ is the TD network error, a column vector giving the
expected one-step error for each combined history and prediction h ◦ i. Each of these three
terms can be rewritten as an expectation over histories,

Φ⊤
θ GΦθ =

∑

h∈G

n∑

i=1

φi(h, θ)cid(h)φi(h, θ)
⊤

= E

[
φ(h, θ)Cφ(h, θ)⊤

]
(18)

Φ⊤
θ G∆θ = Φ⊤

θ G
(
T (OP⊤ + V θQ⊤)− V θ

)

=
∑

h∈G

n∑

i=1

φi(h, θ)cid(h)

(
∑

h′∈G
Th,h′δi(h

′, θ)

)

= E
[
φ(h, θ)Cδ(h′, θ)

]
(19)
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where C is the diagonal prediction weight matrix Cii = ci. The MSPBNE can now be
written as a product of expectations,

wθ = E

[
φ(h, θ)Cφ(h, θ)⊤

]−1
E
[
φ(h, θ)Cδ(h′, θ)

]

J(θ) = E
[
φ(h, θ)Cδ(h′, θ)

]⊤
wθ (20)

The GTD network learning rule updates the parameters by gradient descent, so as to min-
imise the MSPBNE. In the appendix we derive the gradient of the MSPBNE,

ψ(θ, wθ) =
n∑

i=1

ci

(
δi(h

′, θ)− φi(h, θ)⊤wθ
)
∇2
θVh,iwθ (21)

−1

2
∇θJ(θ) = E

[
−∇θδ(h′, θ)Cφ(h, θ)⊤wθ − ψ(θ, wθ)

]
(22)

From Equation 10 we see the derivative of the TD error is a linear combination of gradients,

−∇θδ(h′, θ) = φ(h, θ)− φ(h′, θ)Q⊤ (23)

As in GTD2, we separate the algorithm into an online linear estimator for w ≈ wθ, and an
online stochastic gradient descent update that minimises J(θ) assuming that w = wθ,

∆θ = α
[(
φ(h, θ)− φ(h′, θ)Q⊤

)
C(φ(h, θ)⊤w)− ψ(θ, w)

]
(24)

∆w = βφ(h, θ)C(δ(h′, θ)− φ(h, θ)⊤w) (25)

This recurrent GTD network learning rule is very similar to the GTD2 update rule for
non-linear function approximators (Equations 1 to 3), where states have been replaced by
histories, and where we sum the GTD2 updates over all predictions i, weighted by the
prediction weight ci.

We can also rearrange the gradient of the MSPBNE into an alternative form,

−1

2
∇θJ(θ) = E

[
φ(h, θ)Cφ(h, θ)⊤wθ − φ(h′, θ)Q⊤Cφ(h, θ)⊤wθ − ψ(θ, wθ)

]

= E

[
φ(h, θ)Cδ(h′, θ)− φ(h′, θ)Q⊤Cφ(h, θ)⊤wθ − ψ(θ, wθ)

]
(26)

This gives an alternative update for θ, which we call the recurrent TDC network learning
rule, by analogy to the non-linear TDC update [Maei et al., 2009].

∆θ = α
[
φ(h, θ)Cδ(h′, θ)− φ(h′, θ)Q⊤C(φ(h, θ)⊤w)− ψ(θ, w)

]
(27)

The first term is identical to recurrent TD network learning when ci = 1, ∀i (see equation
9); the remaining two terms provide a correction that ensures the true gradient is followed.

Finally, we note that the components of the gradient matrix φ(h, θ) are sensitivites of the
form ∂vi(h)

∂Aj,k
and ∂vi(h)

∂Bj,k
, which can be calculated online using the real-time recurrent learning

algorithm (RTRL) [Williams and Zipser, 1989]; or offline by backpropagation through time
[Rumelhart et al., 1986]. Furthermore, the Hessian-vector product required by ψ(θ, w)
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can be calculated efficiently by Pearlmutter’s method [Pearlmutter, 1994]. As a result, if
RTRL is used, then the computational complexity of the recurrent GTD (or TDC) network
learning is equal to the RTRL algorithm, i.e. O(n2(m + n)2) per time-step. If BTPP is
used, then the computational complexity of recurrent GTD (or TDC) network learning is
O(T (m+n)n2) over T time-steps, which is n times greater than BPTT because the gradient
must be computed separately for every prediction. In practice, automatic differentiation
(AD) provides a convenient method for tracking the first and second derivatives of the
state representation. Forward accumulation AD performs a similar computation, online, to
real-time recurrent learning [Williams and Zipser, 1989]; whereas reverse accumulation AD
performs a similar computation, offline, to backpropagation through time [Werbos, 2006].

6. Outline Proof of Convergence

We now outline a proof of convergence for the GTD network learning rule, closely following
Theorem 2 of [Maei et al., 2009]. For convergence analysis, we augment the above GTD
network learning algorithm with an additional step to project the parameters back into a
compact set C ⊂ R(m+n)n with a smooth boundary, using a projection Γ(θ). Let K be the
set of asymptotically stable equilibria of the ODE (17) in [Maei et al., 2009], i.e. the local
minima of J(θ) modified by Γ.

Theorem 1 Let (hk, h
′
k)k≥0 be a sequence of transitions drawn i.i.d. from the history dis-

tribution, hk ∼ d(h), and transition dynamics, h′k ∼ Ph,· | hk. Consider the augmented
GTD network learning algorithm, with a positive sequence of step-sizes αk and βk such that∑∞

k=0 αk = ∞,∑∞
k=0 βk = ∞,∑∞

k=0 α
2
k < ∞,

∑∞
k=0 β

2
k < ∞ and αk

βk
→ 0 as k → ∞. As-

sume that for each θ ∈ C, E(
∑n

i=1 φi(h, θ)φi(h, θ)
⊤) is nonsingular. Then θk → K, with

probability 1, as k →∞.

The proof of this theorem follows closely along the lines of Theorem 2 in [Maei et al., 2009],
using martingale difference sequences based on the recurrent GTD network learning rule,
rather than the GTD2 learning rule. Since the answer network is a three times differentiable
function approximator, the conditions of the proof are met.1

7. Network Architecture

A wide variety of state representations based on recurrent neural network architectures have
been considered in the past. However, these architectures have enforced constraints on the
roles that each node can perform, at least in part to avoid problems during learning. For
example, simple recurrent (SR) networks [Elman, 1991] have two types of nodes: hidden
nodes are purely state variables, and output nodes are purely answers; no nodes are allowed
to be targets. TD networks [Sutton and Tanner, 2004] have one type of node, representing
both state variables and answers; no nodes are allowed to be purely a state variable (hidden)
or purely an answer (output). Like SR networks, SR-TD networks [Makino, 2009] have
both hidden nodes and output nodes, but only hidden nodes are allowed to be targets.

1. We have omitted some additional technical details due to using an infinite state space.
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Clearly there are a large number of network architectures which do not follow any of these
constraints, but which may potentially have desirable properties.

By defining a sound learning rule for arbitrary question networks, we remove these
constraints from previous architectures. Recurrent GTD networks can be applied to any
architecture in which nodes take on any or all of the three roles: state, answer and target.
To make node i a hidden node, the corresponding prediction weight ci is set to zero. To
make node i an output node, the outgoing edges of the answer network Ai,j should be set
to zero for all j. Recurrent GTD networks also enable many intermediate variants, not
corresponding to prior architectures, to be explored.

8. Empirical Results

We consider a simple cycle world, corresponding to a cyclic 6-state Markov chain with
observation o = 1 generated in state s1 and observation o = 0 generated in the five other
states. We used a simple depth 6 “chain" question network containing M -step predictions
of the observation: v∗1(ht) = E [ot+1 | ht], v∗i+1(ht) = E [v∗i (ht+1) | ht] for i ∈ [1, 6]; and a
fully connected recurrent answer network with logistic activation functions. This domain
has been cited as a counter-example to TD network learning, due to divergence issues in
previous experiments [Tanner, 2005].

We used forward accumulation AD [Rump, 1999] to estimate the sensitivity of the an-
swers to weight parameters. We used a grid search to identify the best constant values for α
and β. Weights in θ = [A,B] were initialised to small random values, and w was initialised
to zero. On each domain, we compared the simple TD network learning rule (Equation
11) [Sutton and Tanner, 2004], with the recurrent GTD and TDC network learning rule
(Equations 25). 10 learning curves were generated over 50,000 steps, starting from random
initial weights; performance was measured by the mean squared observation error (MSOE)
in predicting observations at the next time-step. The results are shown in Figure 8.1. The
simple TD network learning rule performs well initially, but is attracted into an unstable
divergence pattern after around 25,000 steps; whereas GTD and TDC network learning
converge robustly on all runs.

9. Conclusion

TD networks are a promising approach to representation learning that combines ideas from
both predictive representations and recurrent neural networks. We have presented the first
convergent learning rule for TD networks. This should enable the full promise of TD net-
works to be realised. Furthermore, a sound learning rule enables a wide variety of new
architectures to be considered, spanning the full spectrum between recurrent neural net-
works and predictive state representations.
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Figure 8.1: Empirical convergence of TD network learning rules on a 6 state cycle world. 10
learning curves are shown for each algorithm, starting from random weights.
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Appendix A. Gradient of the MSPBNE

The gradient of the MSPBNE can be derived by an extension of Maei et al. (2009), making
an equivalent assumption that E [P ]φ(h)Cφ(h)⊤ is non-singular in a neighbourhood around
A. We recall the definition of the MSPBNE Jθ), and formulate the derivative in terms of
the term wθ,
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