
JMLR: Workshop and Conference Proceedings 25:17–32, 2012 Asian Conference on Machine Learning

Multiresolution Mixture Modeling using Merging of Mixture
Components

Prem Raj Adhikari prem.adhikari@aalto.fi

Jaakko Hollmén jaakko.hollmen@aalto.fi

Helsinki Institute for Information Technology and Department of Information and Computer Science

Aalto University School of Science, PO Box 15400, FI-00076 Aalto, Espoo, Finland

Editor: Steven C.H. Hoi and Wray Buntine

Abstract

Observing natural phenomena at several levels of detail results in multiresolution data.
Extending models and algorithms to cope with multiresolution data is a prerequisite for
wide-spread exploitation of the data represented in the multiple resolutions. Mixture mod-
els are widely used probabilistic models, however, the mixture models in their standard
form can be used to analyze the data represented in a single resolution. In this paper,
we propose a multiresolution mixture model based on merging of the mixture components
across models represented in different resolutions. Result of such an analysis scenario is
to have multiple mixture models, one mixture model for each resolution of data. Our
proposed solution is based on the idea on the interaction between mixture models. More
specifically, we repeatedly merge component distributions of mixture models across differ-
ent resolutions. We experiment our proposed algorithm on the two real-world chromosomal
aberration datasets represented in two different resolutions. Results show an improvement
on the compared multiresolution settings.
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1. Introduction

Multiresolution data arise when an object or a phenomenon is described at several levels
of detail. Multiresolution data are prevalent in several application domains such as image
processing, hydrology, telecommunications, time series analysis, and astronomy (Willsky,
2002). The notion of multiresolution models is also related with the notion of multi-scale
modelling (Cristini and Lowengrub, 2010; Ferreira and Lee, 2007) and wavelets (Mallat,
1989), thus widening the perspective of research on the multiresolution analysis.

Finite mixture models, or shortly mixture models, are probabilistic models widely used
in the several analysis tasks such as clustering, density estimation, handling missing data,
and modelling heterogeneity (Bishop, 2006; McLachlan and Peel, 2000). Mixture models are
one of the most popular probabilistic modelling techniques due to their relative simplicity
and flexibility to model more complex distributions based on a superposition of simple,
parametric component distributions. In their standard form, however, the mixture models
can be used to analyze the data in a single resolution.

A straightforward extension to handle data in the multiple resolutions is to model the
data represented in different resolutions separately and to compare or combine the obtained
results. Another option is to ignore one source of data and model only one of the available
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data sets, which is represented in a single resolution. This effort results in less data and less
representative data. The improvement on this method is to transform the data in different
resolutions to a single resolution, integrate the data sets, and then apply the mixture models
on the integrated data in the same resolution. This improves the performance over single
analysis on the data in the different resolutions separately which has been shown in our
previous work (Adhikari and Hollmén, 2010a,b).

All the previously mentioned solutions generate models in a single resolution. A more
natural setting would be to have a separate model for each of the resolution, each of the
models reflecting the properties of the data sets jointly. Our problem scenario is such that
there are two or more datasets describing the same domain and which are expected to have
the same distribution, but they have a different data dimensionality, or resolution. We
learn the mixture models for each resolution so that we also model the interaction across
different resolutions. Authors have tried to use the mixture models for the multiresolution
data especially in the image processing domain (Wilson, 2000). However, the mixture
of trees used in image compression and reconstruction in (Wilson, 2000) are not directly
applicable in the other applications because the pyramid structure and the scale space in
other applications are not as smooth as the one in the image processing. Furthermore, the
data (features) in biology are often irregular thus necessitating a specialized approach to
analyze the multiresolution data. In this paper, we propose a multiresolution mixture model
based on the idea of merging of the mixture components across the different resolutions.

The concept of splitting and merging of the mixture components keeping their number
fixed is used in (Ueda et al., 2000) and (Zhang et al., 2003) to ameliorate the problem of the
local minima in the EM algorithm. Similarly, the authors in (Li and Li, 2009) and (Adhikari
and Hollmén, 2012) use the split and merge strategy combined with a model selection
criterion such as the Minimum Description Length (MDL) and the cross-validation (CV) to
determine the optimal number of the mixture components in a mixture model (i.e. for model
selection) varying the number of mixture components to search for the optimal number of
the mixture components. The authors used the components within the same mixture model
and only the two components are merged at any instant. In our proposed multiresolution
mixture model, in contrast, we often merge more than the two mixture components from
more than the two different mixture models. Similarly, in all of these studies, the authors
do not consider the mixture models for the data in the multiple resolutions.

We train the mixture model separately in the different resolutions and merge the mix-
ture components in the different resolutions thereby producing the mixture models in the
multiple resolutions. We use the data driven fast approximation of the KL divergence to
compute the similarity between the mixture components.

Our proposed algorithm of the multiresolution modelling is similar to clustering aggre-
gation (Gionis et al., 2007), which for a given many clusterings generates a single clustering
that agrees as much as possible with the initial, input clusterings. Here, we can view
the mixture model in different resolutions as the different input clusterings and the mul-
tiresolution mixture model as the model that aggregates (agrees as much as possible) the
information on the mixture models in the different resolutions. Our proposed algorithm
produces the multiple mixture models in the different resolutions whereas the clustering
aggregation produces only a single clustering result. Furthermore, clustering aggregation
works in data-space where as our proposed algorithm works in model-space.
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A single clustering algorithm can not be the best clustering algorithm for every situation
and every dataset. Similar to the clustering aggregation, several clustering ensemble algo-
rithms have been proposed with an aim to combine the different partitions obtained by the
different clustering algorithms into a single clustering solution (Ghaemi et al., 2009; Vega-
Pons and Ruiz-Shulcloper, 2011). Clustering ensemble improves the clustering solution with
respect to the robustness, novelty, stability and confidence estimation, and parallelization
and scalability (Topchy et al., 2004; Ghaemi et al., 2009). However, these clustering en-
semble methods use the consensus functions such as relabeling, voting, mutual information,
and co-association which are not directly usable neither in the mixture models nor in the
multiple resolutions.

Topchy et al. (2004) used the mixture models for clustering ensembles but the results
of multiple clustering methods are used as input features to the finite mixture models. The
limitation of the method is that it is suitable for the data in a single resolution and the
final models are also available only in a single resolution. Furthermore, the mixture models
used in (Topchy et al., 2004) are not valid for patterns in the original space. However,
we can reap the benefits of generative property of the mixture models only if the model
is valid for the data in the original space. Additionally, the information while modelling
the multiresolution phenomenon is best preserved while modelling in multiple resolutions
simultaneously. Therefore, instead of modelling each resolution separately, we absorb the
information contained in different resolutions in a single model and generate the models in
multiple resolutions. We experiment the proposed algorithm on the chromosomal aberra-
tions data in the multiple resolutions.

The rest of the paper is organized as follows. Section 2 briefly reviews the mixture
models of the multivariate Bernoulli distributions. Section 3 discusses and derives the KL
Divergence to compare the mixture components in the different mixture models in the mul-
tiple resolutions. Section 4 discusses the process of transforming the parameters of the
mixture models of different dimensionality across different resolutions. Section 5 presents
our proposed multiresolution mixture modelling algorithm. Section 6 contains the descrip-
tion of the experiments performed on the real-world dataset describing the chromosomal
aberrations in two different resolutions. Section 7 summarizes the paper.

2. Mixture Models for 0-1 Data

Finite mixture models of multivariate Bernoulli distributions (Wolfe, 1970), composed as a
sum of J component distributions are defined as

p(x|Θ) =

J∑
j=1

πj

d∏
i=1

θxiji (1− θji)
1−xi . (1)

The data vector x = (x1, x2, . . . , xd) consists of d elements, and xi ∈ {0, 1}. The mixture
proportions πj satisfy the properties πj ≥ 0, ∀j = 1, . . . J and

∑J
j=1 πj = 1. The component

distributions are parametrized with the Bernoulli parameters θji containing parameters for
each component distribution j and for each data vector element i. We can collect the
mixture coefficients to a vector π = (π1, . . . , πj), and the parameters of the component
distributions to a matrix Θ = (θji). The parameters of the mixture model of multivariate
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Bernoulli distributions are now {J,π,Θ}. Learning the mixture model requires estimation
of the number of the mixture components, J , the mixing proportions, π, and the parameters
of the component distributions, Θ. If the number of mixture components J is assumed to
be known, the EM algorithm (Dempster et al., 1977) can be used to learn the maximum
likelihood estimates for the parameters of the mixture model.

Model selection in the context of mixture models refers to the problem of selecting an
appropriate number of the component distributions. Several model selection algorithms
have been proposed in the literature to learn the number of the mixture components in
the mixture model (Smyth, 2000; Figueiredo and Jain, 2002). In our previous work, we
have demonstrated the use of the model selection algorithms in the mixture models of the
multivariate Bernoulli distributions (Tikka et al., 2007; Hollmén and Tikka, 2007; Adhikari
and Hollmén, 2010a,b; Adhikari and Hollmén, 2012). In this paper, we are not concentrated
on the problem of model selection but the proposed algorithm uses the trained models in the
multiple resolutions and absorbs the information in multiple resolutions thereby generating
models in the multiple resolutions.

3. Kullback-Leibler Divergence

Kullback-Leibler (KL) divergence is a non-symmetric measure of the difference between
the two probability distributions (Kullback and Leibler, 1951; Kullback, 1959). Given two
probability distributions P and Q, the KL divergence can be symmetrized by averaging the
KL divergence from P to Q and from Q to P (Dagan et al., 1997). Mathematically, the
symmetric KL divergence between the two probability distributions P and Q is given by:

DKL(P ||Q) +DKL(Q||P ) =
∑
i

P (i)log
P (i)

Q(i)
+
∑
i

Q(i)log
Q(i)

P (i)

=
∑
i

[
{P (i)−Q(i)}logP (i)

Q(i)

]
(2)

where i indexes all the possible combinations of data elements.
The KL divergence between the two components in a mixture model to compare the two

component distributions from a mixture model of the multivariate Bernoulli distributions
has been derived in (Adhikari and Hollmén, 2012) as:

KLαβ =
∑
i∈X∗

{
d∏

k=1

(
α
X∗ik
k (1− αk)(1−X∗ik)

)
−

d∏
k=1

(
β
X∗ik
k (1− βk)(1−X∗ik)

)}
. (3)

Here, i indexes the unique samples denoted by X∗ such that X∗ = {x∗ : x∗ ∈ X}
where X denotes the dataset. The two component distributions in a mixture model are
denoted by α and β. Similarly, d denotes the dimensionality of data indexed by k. The
Equation (3) constraints that both the component distributions should have the same di-
mensionality and should be indexed by the same dataset. We can extend this comparison to
the multiresolution scenario under the simple and realistic assumption that the difference
in the dimensionality contributes very less to the difference in the KL divergence as:

20



Multiresolution Mixture Models

KL =
∑
i∈X∗

πα

d∏
m=1

(
α
X∗im
m (1− αm)(1−X∗im)

)
−
∑
i′∈Y ∗

πβ

d′∏
n=1

(
β
Y ∗i′n
n (1− βn)(1−Y ∗i′n)

)
(4)

Here, i and i′ indexes the unique samples in the two different datasets in two resolutions
denoted by X and Y such that X∗ = {x∗ : x∗ ∈ X} and Y ∗ = {y∗ : y∗ ∈ Y } are the set
of all the unique data samples present in each dataset, respectively. Additionally, m and
n indexes the dimensionality of datasets in the coarse and the fine resolution denoted by d
and d′, respectively. Here, α and β denote the component distributions in the two different
mixture models in two different resolutions. Since Equation (4) approximates the symmet-
ric KL divergence, the two terms in the equation can be interchanged. Furthermore, the
Equation (4) is also suitable for cases when the number of data samples in the two different
resolutions are different. In addition to the approximations, we weigh the KL divergence
with their respective mixing proportions denoted by πα and πβ in the Equation (4). When
the KL divergence is weighted with the mixing proportions, it also considers the similarity
of the mixing proportions which adds more suitability to comparing the component dis-
tributions from the different mixture models. Additionally, it is more desirable to merge
the mixture components having the higher mixing proportions or having the lower mixing
proportions as the mixing proportions also carries the information about similarity of the
two mixture components in the context of the two different mixture models.

4. Sampling of Model Parameters

Merging the mixture components in the different models in the different resolutions is not
straightforward because of the difference in the number of parameters (i.e. dimensionality
d of the model parameters, Θ) of the component distributions. Therefore, we upsample
the model parameters of the component distributions of the mixture models in the coarse
resolution and downsample the parameters of the component distributions in the fine reso-
lution to ensure that the dimensionality of the model parameters are the same. The concept
of upsampling and downsampling is similar to that in the multiresolution data proposed
in (Adhikari and Hollmén, 2010b) so that data in the different resolutions could be in-
tegrated. However, this paper proposes the upsampling and downsampling of the model
parameters which allows seamless and simultaneous modelling of the multiresolution data.
The model parameters are probabilities, not the 0-1 data as in (Adhikari and Hollmén,
2010b), therefore the upsampling and downsampling methods differs from the ones pro-
posed in (Adhikari and Hollmén, 2010b). Furthermore, the sampling is performed in the
model-space and not data-space thus providing simultaneous and seamless modelling of the
multiresolution data.

4.1. Upsampling the model parameters

Upsampling transforms the model parameters of the component distributions from the
coarse resolution to the fine resolution. In this case, one model parameter in the coarse
resolution should produce multiple parameters in the fine resolution. We upsample the
single model parameter by re-sampling the number of chromosomal regions required in
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Figure 1: Illustration of the upsampling and the downsampling procedure for the model
parameters in the two mixture models in the two resolutions. This is an example
case in chromosome 21. The model parameters denote the regions of chromosome
21 and some of the chromosomal regions are unchanged across different resolu-
tions as shown in (Shaffer and Tommerup, 2005). These unchanged chromosomal
regions are not altered during sampling. However, other regions are upsampled
from the coarse resolution and downsampled from the fine resolution according
to the division of the chromosomal regions across different resolutions.

the fine resolution from a Normal distribution where the value of the model parameter
in the coarse resolution is the mean and standard deviation is a small value (0.01 in our
experiments). Since the model parameters are probabilities, we restrict the values of the
model parameters θ between 0 and 1 {0 ≤ θ ≤ 1 } by replacing the values that violate this
constraint with the value of the model parameter in coarse resolution. Nevertheless, such
deviations are rare because the value of standard deviation is small.

4.2. Downsampling the model parameters

Downsampling transforms the model parameters of the component distributions from the
fine resolution to the coarse resolution combining the multiple parameters in the fine res-
olution to form a single parameter in the coarse resolution. We estimate the mean and
standard deviation from the model parameters of the component distributions that are to
be combined to downsample the model parameters. We then re-sample one model parame-
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ter from a Normal distribution with estimated mean and the standard deviation. Similar to
the upsampling, any value deviating from the probability range of {0 ≤ θ ≤ 1 } is replaced
with the mean of the model parameters in the fine resolution.

Figure 1 shows the upsampling and downsampling of the model parameters between
the two different mixture models having two mixture components each. One detached
block in the left in all the four rows visualizes the mixture components. The eight and
fourteen adjoining blocks to the right shows the parameters of the component distributions.
Darker color represents higher value for the mixture components and the model parameters
while the lighter color denotes the smaller value for the mixture components and the model
parameters. The mixing proportions are not changed while downsampling and upsampling.
The solid arrows between the components across the different model parameters denotes
the upsampling and downsampling procedures. The downward pointing arrows represent
upsampling while the upward pointing arrows represent downsampling. The dotted arrows
depict the two mixture models in two different resolutions.

4.3. Merging of Mixture Components

We select the components to be merged using the minimum weight bipartite matching (West,
1996) from the calculated symmetric KL divergence between the different components in
the different mixture models. The updates are made in all the component distributions
in all the mixture models initially by averaging all mixing proportions to be merged from
the different mixture models as in the Equation (5) and subsequently to all the mixture
components in a single mixture model during the normalization as in the Equation (6).

πmerged =
πklmin,1 + πklmin,2 + . . .+ πklmin,n

n
(5)

Equation (5) averages the selected mixing proportions in the different mixture models.
Here, πklmin,1, πklmin,2, . . . , πklmin,n indexes the mixture components having the minimum
KL divergence merged together to form πmerged in the merged model. The update by
the Equation (5) could violate the constraints in the mixture model such as the convex
combination and the sum of probabilities as discussed in Section (2). Hence, the mixing
proportions in each mixture model are finally normalized according to the Equation (6).

πj =
πj∑J
j=1 πj

(6)

where j = 1 . . . J indexes all the components in the mixture model.

Θmerged =
πklmin,1 × Θklmin,1 + πklmin,2 × Θklmin,2 + . . .+ πklmin,n × Θklmin,n

πklmin,n + πklmin,2 + . . .+ πklmin,n
(7)

The parameters can be merged according to the weight of the component distributions as
given by the Equation 7. However, since the dimensionality of parameters of the component
distributions are different, we upsample the parameters in the coarse resolution and down-
sample the parameters in the fine resolution. Secondly, we separately merge the mixture
components in coarse resolution and the fine resolution using the Equation (7) producing
merged model in each resolution.
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5. Multiresolution Mixture Modelling Algorithm

Algorithm 1 provides the listings of the proposed algorithm to learn the multiresolution
mixture model. The algorithm presents a simplified case of the multiresolution modelling
which consists of the data in the two resolutions. The algorithm is scalable and expandable
toN resolutions requiring J(N−1) bipartite matching where J is the number of components.
We do not need more than one comparison for any mixture model as we can move forward
after selecting the similarity between the components in the first two mixture models. Given
that a component a in the mixture model 1 is similar to a component b in the mixture model
2. If component c in mixture model 3 is similar to the component b in mixture model 2, then
we can infer that the component a in the mixture model 1 is similar to the component c in
the mixture model 3 without comparison. However, the parameters of the mixture model
must be resampled (upsampled or downsampled) in all the different available resolutions.

Algorithm 1 Multiresolution Modelling using Merging of Mixture Components

Input: Two Datasets Dc, Df , two mixture models Mc and Mf in coarse and fine resolution
and a Threshold TG for difference in KL divergence.

Output: Mixture Models mmc and mmf in coarse and fine resolution respectively that
incorporates multiresolution data

1: klprev, indx ← 0
2: T ← argmax

k,l
D{p(x ∈ D1; Πk,Θk); p(x ∈ D2; Πl,Θl)}

3: while TG ≤ T do
4: mergec ,mergef ← ∅
5: for i to min(Number of Components in mc (Jc) and mf (Jf ) ) do
6: (k∗, l∗)← argmin

k,l
D{p(x ∈ D1; Πk,Θk); p(x ∈ D2; Πl,Θl)}

where k ∈ (1 . . .Jc), l ∈ (1 . . .Jf ) k 6∈ mergedc , and l 6∈ mergedf
7: mergec, mergef ← insert k∗, l∗

8: mc2f , mf2c ← upsample(mc), downsample(mf )
9: mmc, mmf ← merge πk∗ and πl∗ in mc2f and mc, and in mf2c and mf

10: indx = indx +1
11: end for
12: if mod(indx, 1000) == 0 then
13: mmc, mmf ← Trained model on Dc, Df initialized using mmc, mmf

14: end if
15: T ←| klprev − argmin

k,l
|

16: klprev ← argmin
k,l

17: end while
18: mmc, mmf ← Trained model on Dc, Df initialized using mmc, mmf

19: return mmc and mmf

The input to the algorithm is the two datasets and the two trained mixture models
in the coarse and the fine resolution and a threshold to stop the iterations for minimizing
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the KL divergence. First, we calculate the symmetric KL Divergence between the different
components of the mixture models in the different resolutions. Secondly, we upsample
and downsample the model parameters so that they can be merged. We then match the
components in the two different models using the minimum weight bipartite matching (West,
1996) and merge the components having the minimum KL Divergence. We retrain the
mixture model via the EM algorithm initialized using the merged mixture model. We
finally calculate the difference in the KL divergence between the two iterations. If the
difference is less than the threshold, the algorithm ends by retraining the mixture models
whereas if the change is not less than the threshold, we move on to the next iteration to
minimize the KL divergence.

6. Experiments and Results

Figure 2: Multiresolution mixture modelling by merging of similar mixture components in
different resolutions.

We experiment our proposed algorithm on the two chromosomal aberration patterns
dataset in cancer genomics. One of the two datasets available from (Myllykangas et al., 2008;
Hollmén and Tikka, 2007) was 393 dimensional (Coarse Resolution). In contrast, the other
dataset available from (Baudis, 2007) was 862 dimensional (Fine Resolution). However,
both the datasets explain the same phenomenon of chromosomal aberration and measure
the similar chromosomal regions albeit in the different resolutions as explained in (Shaffer
and Tommerup, 2005). The available datasets were converted to 0-1 matrix where each row
denotes a cancer patient and each column denotes a region in the genome (a chromosome
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band). Since the chromosomal aberrations data had small number of samples (≈4500) and
high dimensionality, we experimented chromosome-wise on the data as in (Tikka et al.,
2007). When the data for each chromosome is extracted from the genome, the different
chromosomes will have the different dimensionality and some rows contain only zeros. Such
rows with only zeros were removed because they contain no information with respect to the
aberration pattern in the cancer patient in that chromosome.

Figure 2 summarizes the experimental procedure showing that the mixture models in two
different resolutions are learned separately using the EM algorithm (Dempster et al., 1977).
We then calculate the symmetric KL divergence between the different components in the
two mixture models and match the components that have the minimum KL divergence using
the minimum weight bipartite matching (West, 1996). The similar components are merged
using the Equations (5) and (6). Similarly, the parameters of the component distributions
are merged using the Equation (7). The merging of the mixture components are performed
repeatedly until the changes in the KL divergence between the two mixture models in any
two iterations is small (e.g. less than 10−3 in our experiments).

The estimated the time to compute our approximation of the KL divergence and also
that of the full KL divergence to show the performance improvement gained by our approxi-
mation of the KL divergence in (Adhikari and Hollmén, 2012) shows that our approximation
is considerably faster than the full KL divergence.

Figure 3: Changes in the KL divergence with increasing iterations.

Figure 3 shows the decrease in the KL divergence with the increasing iterations of
minimizing the KL divergence. The Figure 3 is similar to convergence analysis as the KL
divergence decreases with increasing number of iterations. Note in this case, the mixture
model is not retrained. The decrease in the KL divergence is as expected not smooth
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as some merging of components in the two resolutions will make differences in both the
models at different resolutions in the different iterations. The KL divergence between the
two models will approach to zero when both the models are similar to each other after
repeated merging. However, it is not exactly zero in our case because of the upsampling
and downsampling of the parameters makes the two models not exactly equal.

We used the upsampling and downsampling of the model parameters as discussed in
Section (4) to merge mixture components in two different resolutions (having different
dimensionality). The merged mixture model can be optionally trained on the combined data
via the EM algorithm (Dempster et al., 1977) initialized using the merged mixture model.
However, retraining the mixture model in each iteration of minimizing the KL divergence is
computationally inefficient and the initialization model does not considerably vary in each
iteration thus producing final model that is not different from the original model. Therefore,
we can optionally retrain the mixture model in every thousandth iteration.

Figure 4: Likelihood of the multiresolution mixture model trained in a 10-fold cross-
validation setting compared to the mixture model model in a single resolution.
The result is an example case in the chromosome 17. Since the Y-axis shows the
negative log-likelihood values, the shorter the bar the better the result.

We trained the multiresolution model and also the model in a single resolution in a ten-
fold cross-validation setting via the EM algorithm. Here, the EM algorithm was initialized
using the merged model in case of the multiresolution model and the single resolution
models are initialized at random. Both the models were then trained to convergence via
the EM algorithm. The multiresolution model is trained on the combined data obtained
after integrating the data in two different resolution by transforming the data to the same
resolutions as in Adhikari and Hollmén (2010b). However, the single resolution model were
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trained with data in only one resolution ignoring the data in other resolution which is the
current state-of-the-art.

The results in the Figure 4 show that the likelihood of the multiresolution models are
better than that of the models trained on the data in the single resolution. Since the Y-axis
in the figure shows the negative log-likelihood, the shorter the bar better the result. The
Figure 4 shows three different cases of the likelihood: single resolution model on the coarse
and the fine data, multiresolution model on the coarse and the fine data; and finally average
of likelihood in the coarse and the fine data by multiresolution and single resolution model.
The performance of the multiresolution model is markedly better in the coarse resolution
and only slightly better in the fine resolution because the number of samples in the dataset
is very small in the coarse resolution to add more information to the model in the fine
resolution. Nevertheless, the average likelihood by the multiresolution shows noticeably
improved performance of the multiresolution mixture models in both the resolutions.

Since the ten-fold cross-validation produces only ten values of the likelihoods which are
very small to perform statistical significance testing on the result, we performed hundred-
fold cross-validation producing 100 different training and validation likelihood values each.
With the 100 different likelihood values, we performed the the two-tailed t-test to ascertain
the statistical significance of our result. The results show that both the validation and the
training likelihoods are statistically significant when the significance level, α, is 0.1. Training
likelihoods in both the coarse and the fine resolution as well as the training likelihood in
coarse resolution is statistically significant when the significance level, α, is 0.05. The
validation likelihood in fine resolution is not significant when the significance level, α, is
0.05. The p-value of the validation likelihood in fine resolution is 0.09. This result in fine
resolution can be attributed to the fact that the number of samples that have been added
to the combined data by upsampling from the coarse data is small (342 samples have been
added compared to 2716 samples in the fine resolution in the chromosome 17). which is
considerably less to substantially improve the performance of the multiresolution model.

In order to show that our strategy of merging the mixture components positively facili-
tates the training of the mixture model via the EM algorithm, we calculated the iterations
required by the EM algorithm to converge when initialized using the merged model. The
left panel in the Figure 5 shows the number of iterations required as an average over five
different runs of merging and retraining the models to converge to the final model via the
EM algorithm. From the figure, we can see that the number of iterations required for the
EM algorithm to converge decreases as we increase the iterations for minimizing the KL
divergence. The decrease in the number of iterations shows that merging the mixture com-
ponents moves the mixture model closer to the final model with regards to training via the
EM algorithm. For each number of iterations, we restart the minimization of KL divergence
such that the EM algorithm is used to train the final mixture model only once.

6.1. Illustration using models in same resolution

We experimented our algorithm on the two models in the same resolution to ascertain
the improvements in the performance of the proposed multiresolution mixture modelling
algorithm. As shown in in the right panel of the Figure 5, we selected two models such
that the one fits the data poorly (solid line with the circles) while the another model fits
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Figure 5: The left panel shows the number of iterations in the EM algorithm required to
converge when the EM algorithm is initialized using the merged model after the
minimization of KL is converged. The right panel shows the trajectory of the
log likelihood values for two models in same resolution: a better fitted (solid line
without the circles and the triangles) and a poorly fitted model (a solid line with
the circles). The solid line with the triangles denotes the likelihood of the best
of the 100 models trained on the combined data. The fifteenth iteration is the
model retrained on the original data using the model after the 14th iteration as
the initialized model. This is an example case in chromosome 21.

the data better (solid line without the circles and the triangles). We run our algorithm on
the two models without upsampling and downsampling of model parameters as the number
of model parameters are the same. The results obtained are visualized in the right panel
of the Figure 5 showing that when the model converges, the likelihood on the combined
data is better than the average likelihood of two models. However, the average likelihood
is lesser than the best of randomly trained 100 models to convergence (solid line with
triangles). Nevertheless, the likelihood obtained by merging the mixture components can
be considered the validation likelihood as models are trained on the downsampled data and
not on the combined data.

If we train the merged mixture model to convergence where the model obtained after the
fourteenth iteration of merging is used to initialize the EM algorithm, we get the mixture
model which produces better likelihood than the best of the randomly trained mixture model
as shown in the fifteenth iteration in the right panel of the Figure 5. The improvement shows
that our model is better than the best of the randomly trained model and also explains the
importance of retraining the mixture model after every thousandth iteration. Furthermore,
the fact that the merged mixture model producing better results experimentally verifies
that our algorithm may be useful in avoiding local optima by making the little changes to
the mixture models in the coarse and the fine resolution and also modelling the interactions
across different resolutions. However, this result is neither mathematically proved and nor
experimentally verified to work in every repeat of the experiment.
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7. Summary and Conclusions

Multiresolution data arise when an object or a phenomenon is described at several levels of
detail. In order to cope with the multiresolution data, standard data analysis methods need
to be extended to include capabilities to model data in several resolutions simultaneously. In
this paper, we proposed an algorithm for the multiresolution mixture modelling by merging
the mixture components across the different resolutions. Given datasets in different reso-
lutions from the same domain having similar distribution, our algorithm takes the models
in different resolutions and repeatedly merges the mixture components minimizing the KL
divergence thus producing a better mixture model. We performed experiments with our
proposed algorithm on the two real-world chromosomal aberration datasets. The experi-
ments show that our algorithm improves on the results of the competing multiresolution
methods by involving the model interaction between the models in different resolutions.
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