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Abstract

Identification of latent variables that govern a problem and the relationships among them
given measurements in the observed world are important for causal discovery. This identi-
fication can be made by analyzing constraints imposed by the latents in the measurements.
We introduce the concept of pairwise cluster comparison PCC to identify causal relation-
ships from clusters and a two-stage algorithm, called LPCC, that learns a latent variable
model (LVM) using PCC. First, LPCC learns the exogenous and the collider latents, as well
as their observed descendants, by utilizing pairwise comparisons between clusters in the
measurement space that may explain latent causes. Second, LPCC learns the non-collider
endogenous latents and their children by splitting these latents from their previously learned
latent ancestors. LPCC is not limited to linear or latent-tree models and does not make
assumptions about the distribution. Using simulated and real-world datasets, we show that
LPCC improves accuracy with the sample size, can learn large LVMs, and is accurate in
learning compared to state-of-the-art algorithms.
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1. Introduction

Statistical methods, such as factor analysis, are most commonly used to reveal the existence
and influence of latent variables. While these methods accomplish effective dimensionality
reduction and may fit the data reasonably well, the resulting models might not have any
correspondence to real causal mechanisms (Silva et al., 2006). On the other hand, the focus
of learning Bayesian networks (BNs) is on relations among observed variables, while the
detection of latent variables and their interrelations has received little attention. Learning
latent variable models (LVMs) using Inductive Causation* (IC*) (Pearl, 2000) and Fast
Causal Inference (FCI) (Spirtes et al., 2000) returns partial ancestral graphs, which indicate
for each link whether it is a (potential) manifestation of a hidden common cause for the two
linked variables. The structural EM algorithm (Friedman, 1998) learns a structure using a
fixed set of previously given latents. By searching for “structural signatures” of latents,
substructures that suggest the presence of latents (in the form of dense sub-networks)
can be detected (Elidan et al., 2000). Also, the recovery of latent trees of binary and
Gaussian variables has been suggested (Pearl, 2000). Hierarchical latent class (HLC) models
of discrete variables, where observed variables are mutually independent given the latents,
are learned for clustering (Zhang, 2004).

However, for models that are not tree-constrained, e.g., models where multiple latents
may have multiple indicators (observed children), i.e., multiple indicator models (MIM),
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most of these algorithms may lead to unsatisfactory results. MIM are a subclass of structural
equation models (SEM) that are widely used in applied and social sciences together with
BN to analyze causal relations (Shimizu et al., 2011). An attempt to fill the gap between
latent-tree models and MIM has recently been made (Silva et al., 2006), but it was limited
to linear models of continuous variables. In this study, we make another attempt in this
direction and target the goal of Silva et al. (2006), but concentrate on the discrete case
and dispense with the linearity assumption. We propose a concept and an algorithm that
combine learning causal graphical models with clustering. The concept and algorithm learn
a causal LVM by comparing clusters of data representing the observed variables.

2. Preliminaries

The goal of our study is to reconstruct an LVM from i.i.d. data sampled from the observed
variables in the unknown model. To accomplish this, we propose learning pairwise cluster
comparison (LPCC) that assumes: 1) The underlying model is BN = 〈G,Θ〉 encoding a
discrete joint probability distribution P for the set of random variables V = L ∪O, where
G is a DAG whose nodes correspond to the latents L and observed variables O. Θ is the
set of parameters, i.e., conditional probabilities of variables in V given their latent parents.
2) The underlying model is MIM, in which each latent has at least two observed children
and may have latent parents (e.g., G3 in Figure 1). Notice that the model is not limited
to a tree as in Zhang (2004), since latent variables may also be colliders (e.g., G2), but
latent tree models are a sub-class of MIM. 3) The measurement model (Silva, 2005) of G
is pure, i.e., each observed variable has only one latent parent and no observed parent.
Silva (2005) focuses on such models as a principled way of testing conditional independence
among latents. If G is not pure, LPCC learns a pure sub-model of G, if one exist, similar to
Silva (2005), but Silva (2005) requires that each latent has at least three indicators, whereas
LPCC requires only two. Based on assumptions 2 and 3, the observed variables in G are
d-separated given the latents.

Figure 1: Four basic example LVMs (G1-G4) and two larger graphs combining all types of
links between the latents (G5 and G6) that are learned by LPCC.

We distinguish between observed and latent variables and between exogenous (EX) and
endogenous (EN) variables. EX have zero in-degree, are autonomous and unaffected by the
values of the other variables (e.g., L1 in G3), whereas EN are all non-exogenous variables
in G (e.g., L2/X1 in G3). We identify three types of variables: 1) Exogenous latents,
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EX ⊂ L (all exogenous variables are latents); 2) Endogenous latents, EL ⊂ (L ∩EN), that
are divided into collider latents (e.g., L2 in G2) and non-collider latents (e.g., L2/L3 in G3
and L1/L3 in G4); and 3) Observed variables, O ⊂ EN, which are always endogenous and
childless. We denote value configurations of EX, EL, O and EN (when we do not know
whether the endogenous variables are latent or observed) by ex, el, o and en respectively.

The joint probability distribution over V that is represented by a BN, which is assumed
to encode the distribution is:

P (V) =
∏

Vi∈V

P (Vi = |Pai) (1)

where Pai are the parents of Vi in G. It can be factorized under our assumptions as:

P (V) = P (EX,EL,O) =
∏

EXi∈EX

P (EXi)
∏

ELj∈EL

P (ELj |Lj)
∏

Ok∈O

P (Ok|Lk) (2)

where Lj, Lk ⊂ (EX∪EL) and Lj are the latent parents of the endogenous latent ELj , and
Lk is the latent parent of the observed Ok.

Proposition 1 The joint probability over V due to an exogenous value assignment ex to
EX is determined only by this assignment and BN.

Proof: The first product in (2) for assignment ex depends on the priors for EX, and the
other two products depend only on ex and the BN probabilities:

P (V|EX = ex) = P (EX,EL,O|EX = ex) =
∏

EXi∈EX

P (EXi = exi)
∏

ELj∈EL

P (ELj = elj |Lj = lex
j )

∏

Ok∈O

P (Ok = ok|Lk = lex
k ) (3)

where lex
j and lex

k are configurations of Lj and Lk, respectively due to ex.

Proposition 1 is a keystone in our analysis because it shows a path of hierarchical
influence of latents on observed variables - from exogenous latents through endogenous
latents to observed variables. Recognition and use of this path of influence guides LPCC
in learning LVMs. To formalize our ideas, we introduce several concepts. First, we define
local influence on a single EN of its direct parents. Second, we use local influences and the
BN Markov property to generalize to the influence of EX on EN. Analysis of the influence
of all configurations exs on all ens enables learning the structure and parameters of the
model and causal discovery. Finally, we show how these concepts can be analyzed and an
LVM be learned from the result of clustering the data.
Definition 1 A local effect on an endogenous variable EN is the influence of a configuration
of EN ’s direct latent parents on any of EN values. Following, we define a major local effect
as the largest local effect on EN . A major local effect on ENi is identified by the maximal
conditional probability of a specific eni given a configuration li of its latent parents Li, i.e.,
MAEi(li) = maxen′iP (ENi = en′i|Li = li). All probabilities of ENi’s values conditioned on
li that are smaller than MAEi(li) identify the minor local effects set, MIESi(li). Similarly,
the major value is the eni corresponding to MAEi(li), i.e., the most probable value of

35



Asbeh Lerner

ENi due to li, MAVi(li) = argmaxen′iP (ENi = en′i|Li = li). A minor value is an eni
corresponding to a minor local effect, and MIV Si(li) is the set of minor values correspond
to MIESi(li). When ENi = Oi and for a value li of its single latent parent Li, MAEi(li) =
maxo′iP (Oi = o′i|Li = li) and MAVi(li) = argmaxo′iP (Oi = o′i|Li = li) for the major local
effect and value, respectively.

By aggregation over all local influences, we can generalize these concepts, through the
BN parameters and Markov property, from local influences on specific endogenous variables
to influence on all endogenous variables in the graph.
Definition 2 An effect on EN is the influence of a configuration ex of EX on EN. Follow-
ing, we define a major effect (MAE) as the largest effect of ex on EN and a minor effect
(MIE) as any non-MAE effect of ex on EN. A major value configuration (MAV) is the
en of EN corresponding to MAE, i.e., the most probable en due to ex and minor value
configuration is an en corresponding to any MIE.

Based on Proposition 1, we can quantify the effect of ex on en. For example, a major
effect of ex can be factorized according to the (weighted by the product of priors, P (EXi =
exi)) product of major local effects on EN:

MAE(ex) =
∏

EXi∈EX

P (EXi = exi)
∏

ELj∈EL

MAEj(l
ex
j )

∏

Ok∈O

MAEk(l
ex
k ). (4)

Any effect in which at least one EN takes on a minor local effect is minor, and any
configuration in which at least one EN takes on a minor value is minor. Consequently, a
configuration in which each variable takes on the major value is major, i.e., MAV. We denote
the set of all minor effects for ex with MIES(ex) and the set of all minor configurations
with MIV S(ex).

Practically, we use observational data generated from an LVM and measured over the
observed variables, where each configuration of observed variables is a result of an assign-
ment of a configuration ex to the exogenous variables EX. We define:
Definition 3 An observed value configuration and an observed major value configuration
due to ex are the parts in en and MAV, respectively, that correspond to the observed vari-
ables.

Proposition 2 Only a single observed value configuration due to ex is major.

Proof: Due to the probabilistic nature of BN, ex creates several observed value configura-
tions, but the maximization operations in (4) ensure that only one of them is major.

Due to the probabilistic nature of BN, each observed value configuration due to ex is
represented by several data patterns. Clustering the data produces several clusters per
each ex, where each cluster corresponds to another observed value configuration. Based on
Proposition 2, only one of the clusters corresponds to an observed major value configura-
tion, whereas the other clusters correspond to observed minor value configurations, and we
distinguish them using Definition 4:
Definition 4 For each configuration ex, there is only a single cluster that corresponds to the
observed major value configuration and thus represents the major effect MAE(ex). This
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cluster is the major cluster, and the clusters that represent the minor effects in MIES(ex)
are minor clusters.

To resolve between different minor effects/clusters, we make two definitions:
Definition 5 A k-order minor effect is a minor effect in which exactly k ENs have minor
local effects. We call each en corresponding to a k-order minor effect a k-order minor
configuration.
Definition 6 Minor clusters that correspond to k-order minor effects are k-order minor
clusters.

The set of all major clusters reflects the effect of all possible exs, and thus the number
of major clusters is expected to be equal to the number of exs. It is easier to identify major
clusters than minor clusters because the former reflect the major effects of EX on EN and
therefore are considerably more populated than the latter. Also, we can use the clusters’
centroids to represent the clusters.

Finally, to discover causal relationships between the variables in the model using clus-
ters, we introduce the concept of pairwise cluster comparison (PCC). PCC measures the
differences between clusters, each represents the response of LVM to another ex.
Definition 7 A PCC is a comparison between pairs of clusters through a comparison of
vectorial representations of the clusters’ centroids. The result of PCC is a binary vector
in which each element is 1 if there is a difference between the compared centroids, or 0, if
there is no difference.

When PCC is between clusters that represent observed major value configurations (i.e.,
PCC between major clusters), a PCC element of 1 identifies an observed variable that
changes its value between the compared clusters due to a change in ex. Thus, the 1’s
in a PCC provide evidence of causal relationships between EX and O. However, due
to the probabilistic nature of BN and the existence of endogenous latents (mediating the
connection from EX to O), some of the clusters are k-order minor clusters (in different
orders), representing k-order minor configurations. Thus, when PCC is between a major
and a minor clusters, an observed variable in two compared clusters may not necessarily
change its value as a result of a change in ex. Because the major cluster has zero minor
values, a PCC in such a case shows (through the number of 1’s) the number of minor values
in the centroid of the minor cluster. That is, PCC between major clusters can be the main
source to identify causal relationships and that between a major and a minor clusters can
account for the secondary impact of EN on O.

3. Overview of the LPCC Concept

To start our overview of LPCC, we demonstrate through an example the relations between
clustering results and learning an LVM. G1 in Figure 1 shows a model having two exogenous
variables L1 and L2 that are binary latents, each having three binary children X1, X2,
X3 and X4, X5, X6, respectively. L1 and L2 have four possible exs (L1L2= 00, 01, 10,
11). First, we synthetically generated a random data set of 1,000 patterns from G1 over
the six observed variables. We used a uniform distribution over L1 and L2 and set the
probabilities of an observed child Xi, i = 1, ..., 6, given its latent parent Lk, k = 1, 2, to be
P (Xi = v|Lk = v) = 0.8, v = 0, 1. Second, we clustered the data set and found sixteen
clusters, of which four were major (see Section 3.3). This meets our expectation of four
major clusters corresponding to the four possible exs. These clusters are presented in
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Table 1a by their centroids, which are the most prevalent patterns in the clusters, and in
Table 1b by their PCCs. For example, PCC1,2 compares clusters C1 and C2, showing that
when moving from C1 to C2 only the values corresponding to variables X1, X2, and X3 are
changed (δX1 = δX2 = δX3 = 1). This requires that the three variables are descendants of
the same EX that changed its value between two exs represented by C1 and C2. PCC1,4,
PCC2,3, and PCC3,4 enforce this conclusion. We know from G1 that this EX is the latent
L1. A similar conclusion can be deduced about X4, X5, and X6 and L2. LPCC learns LVMs
in two phases. In the first phase, LPCC identifies EX and their corresponding observed
descendants (Section 3.1), identifies collider latents and their corresponding latent parents
(Section 3.2), and iteratively updating the selection of the major clusters (Section 3.3). In
the second phase, LPCC identifies non-collider endogenous latents and splits them (together
with their children) from their previously learned latent ancestors (Section 3.4).

3.1. Identification of latent variables

Table 1b shows that PCC1,2 provides evidence that X1, X2, and X3 may be descendants of
the same exogenous latent (L1, as we know) that has changed its value between the two exs
represented by C1 and C2. Relying only on one PCC may be inadequate when concluding
that these variables are descendants of the same latent because there may be other latents
that have changed their values too. Table 1b shows that PCC2,3 provides the same evidence
about X1, X2, and X3. But, PCC2,3 also shows that the values corresponding to X4,
X5, and X6 have been changed together too, while these values have not been changed in
PCC1,2. Does it mean that X4, X5, and X6 are also descendants of the same latent parent of
X1, X2, and X3? If we combine the two pieces of evidence provided by PCC1,2 and PCC2,3
we can answer this question by ”no”. This is because X4, X5, and X6 have changed their
values only in PCC2,3 but not in PCC1,2 and thus they cannot be descendants of L1. This
insight strengthens the evidence that X1, X2, and X3 are descendants of L1 and they are
the only descendants it has. A similar analysis using PCC1,3 and PCC2,4 will identify
that X4, X5, and X6 are descendants of another latent variable (L2 as we know). Similarly,
LPCC considers all PCCs during learning. LPCC hypothesizes that the maximal set of
observed variables (MSO), which always change their values together in all of the PCCs
that show a change between major clusters, are descendants of the same latent variable L.
Then, LPCC introduces L to the learned graph and adds MSO as its children. Thereby,
LPCC identifies latent variables and their observed descendants (all are joined as children
of L).

Centroid X1 X2 X3 X4 X5 X6

C1 0 0 0 1 1 1
C2 1 1 1 1 1 1
C3 0 0 0 0 0 0
C4 1 1 1 0 0 0

PCC δX1 δX2 δX3 δX4 δX5 δX6

PCC1,2 1 1 1 0 0 0
PCC1,3 0 0 0 1 1 1
PCC1,4 1 1 1 1 1 1
PCC2,3 1 1 1 1 1 1
PCC2,4 0 0 0 1 1 1
PCC3,4 1 1 1 0 0 0

(a) (b)

Table 1: (a) Centroids of major clusters for G1. (b) PCCs between the major clusters.

3.2. Identification of collider latent variables

G2 in Figure 1 shows two exogenous latent variables, L1 and L3. For example, both may
be binary variables each having two binary observed children X1 and X2 and X5 and X6,
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respectively. L1 and L3 also collide on a single endogenous latent variable L2 that has two
binary children X3 and X4. We expect to find four major clusters in the data generated
from G2. Each cluster will correspond to one of the four possible exs (L1L3= 00, 01, 10,
11). In this case, as before, we expect the values of X1 and X2 to be changed together in
all the PCCs in which the value of L1 changes, and the values of X5 and X6 to be changed
together in all the PCCs in which the value of L3 is changed. However, the values of X3
and X4 will be changed together with those of X1 and X2 in part of the PCCs and together
with those of X5 and X6 in the remaining PCCs, but always together in all of the PCCs.
This will be evidence that X3 and X4 are descendants of the same latent variable (L2) that
is a collider of L1 and L3. To learning that a latent variable L is a collider of a set of other
latent parent variables LP, LPCC requires that: 1) The values of the descendants of L are
changed with the values of the descendants of different latent variables in LP (which were
already identified in the first phase) in different parts of PCCs between major clusters; and
2) The values of the descendants of L are not changed in any PCC unless the values of the
descendants of either of the variables in LP are changed too. This insures that L does not
change independently of latents in LP that are its parents.

3.3. Strategy for choosing major clusters

In this unsupervised problem of identification the existence of latent variables given only
observational data, LPCC has to deal with lack of prior information regarding the distri-
bution over the latent variables. Therefore, in its first iteration, LPCC assumes a uniform
distribution over the latents and selects the major clusters based only on the cluster size.
Clusters that are larger than the average cluster size are selected as majors. However, this
initial selection may generate false negative errors (i.e., deciding a major cluster is minor).
This may happen when a latent variable L has a skewed distribution over its values, due to
a low probability of L to take on any of its rare values v. The ex for which L = v will be
represented only by small clusters that could not be chosen as majors, although at least one
of them should be major. In addition, the initial selection may perform a false positive error
(i.e., deciding a minor cluster is major) as a result of a very weak correlation between L and
any of its childrenXi. This weak correlation can be represented in the discrete case as almost
equal conditional probabilities of an observed child to take on two different values v1 6= v2

given the same value of its latent parent v, i.e., P (Xi = v1|L = v) ≈ P (Xi = v2|L = v).
This may lead to splitting a cluster that represents a configuration in which L = v into two
clusters with almost the same size, and accepting both as major clusters instead of only
one. LPCC adapts an iterative approach to avoiding these possible errors due to inaccurate
assumptions. Following learning the initial graph based on cluster sizes, learning the car-
dinalities of the latent variables and consequently finding all possible exs is made possible
(Section 4.1). Then, for each ex, we can select the most probable cluster given ex and
using the data to be the major cluster that represents this ex. That is, the set of major
clusters can be updated iteratively and probabilistically and augment LPCC to learn more
accurate graphs. This process can be repeated until convergence to a final graph. Since the
final graph depends on the initial graph, the iterative approach cannot guarantee finding
the optimal model, but to improve the initial graph.
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3.4. Identification of non-collider latent variables

G3 in Figure 1 is an example model of three latent variables L1, L2, and L3 in a serial
connection. Say, each of the latents is binary having three binary observed children. L1 is
the only EX with two possible exs (L1= 0, 1) and L2 and L3 are ENs; L2 is a child of L1
and a parent of L3. We synthetically generated a random data set of 1,000 patterns from
G3 over the nine observed variables. We used a uniform distribution over L1 and set the
probabilities of an observed child, Xi, i = 1, ..., 9, given its latent parent Lk, k = 1, 2, 3, to
be P (Xi = v|Lk = v) = 0.8, v = 0, 1, and of an endogenous latent Lj , j = 2, 3, given its
latent parent Lk, k = 1, 2, to be P (Lj = v|Lk = v) = 0.8, v = 0, 1. Table 2 presents the
six largest clusters using their centroids and sizes, from which C1 and C2 were selected as
major clusters (following Section 3.3). This meets our expectation of two major clusters
corresponding to the two possible exs of L1. However, the model learned in the first
phase (G0) has only one latent variable (L1), and all of the nine observed descendants are
learned as L1’s direct children. Thus, in the second phase, LPCC tests the assumption
that G0 is true (after learning the model parameters using EM (Dempster et al., 1977);
Section 4.2). If the assumption is not true (details to follow), LPCC infers that L1 has non-
collider latent children and hence should split L1 to represent these latents. Then, LPCC
recursively identifies possible higher order splits of the latents. Following, we demonstrate
this procedure to a first order split and generalize it to k-order splits.

Centroid X1 X2 X3 X4 X5 X6 X7 X8 X9 size #MSOs

C1 1 1 1 1 1 1 1 1 1 49 0
C2 0 0 0 0 0 0 0 0 0 47 0
C3 1 1 1 1 1 1 1 1 0 28 0
C4 0 0 0 0 0 0 0 1 0 24 0
C5 0 1 0 0 0 0 0 0 0 22 0
C6 1 1 1 1 1 1 0 0 0 22 2

Table 2: Largest six clusters represented by their centroids, sizes, and numbers of MSOs.

To identify a possible first order split, and thereby reject the assumption about the
correctness of G0, LPCC calculates a threshold on the maximal size of 2-order minor clusters
(Definition 6). This threshold represents the maximal size of a cluster that has at least two
minor values, and it is derived from an approximation of the maximal probability of having
two minor values (Appendix A). All clusters with sizes between this threshold and the size
of the minimal major cluster, i.e., the smallest cluster having zero minor values (e.g., C2
in Table 2), are expected to represent 1-order minor clusters. We check if there is a PCC
between any of these clusters and any major cluster that shows a group of two or more
observed variables that change simultaneously between the clusters (MSO; Section 3.1)
and thus represents more than the single minor value that is expected. If there is such
PCC, we infer that the observed variables are descendants of a latent that is other than L1,
and split L1 to express the other latent. C6 (Table 2) is a cluster that when compared with
C1 or C2 shows such a pattern and calls LPCC to split L1 to two latents (one for each of the
two MSOs) making the new latent a parent of X7, X8, and X9, and leaving the remaining
variables as L1’s children. LPCC recursively performs this procedure to identify higher
order splits for each of the new latents until there are no splits. Where in the recursive call
of depth k (k order split), LPCC assumes that the latent should not be split, then it selects
a threshold for the maximal k + 1 order clusters and selects the clusters that represent at
most k-order clusters. If the PCCs between any selected cluster and the major clusters
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show more than one MSO of the latent’s children, each with size of at least k, LPCC splits
the latent into new latents that each represent one MSO. In our example, both L1 and the
new latent (L3) are considered for splitting, and L1 is indeed split again to form L2, which
is the parent of X4, X5, and X6. Then, LPCC stops since no higher order splits occurred
for any of the new latents. The directions of the links between the latents are determined
so latents that have been split in depth k are children of latents that have been split in
depth k + 1. This is also correct for the latent diverging connection (G4 in Figure 1).

4. The LPCC algorithm

We introduce a two-stage algorithm that implements the LPCC concept. The algorithm
gets a data set D over the observed variables O and learns an LVM. In the first stage,
LPCC learns the exogenous and the collider latents (LEXC) as well as their descendants
(Algorithm 1). In the second stage, LPCC augments the graph learned by LEXC by learning
the non-collider endogenous latents (LNC) and their children.

4.1. Learning exogenous and collider latents (LEXC)

LEXC adapts an iterative approach and learns the initial graph in six steps. The first step
is clustering D using the self-organizing map (SOM) (Kohonen, 1997). We chose SOM
because it does not require prior knowledge about the expected number of clusters, which
is essential when targeting uncertainty in the number of latent variables in the model, but
any other clustering algorithm that preserves this property can replace SOM. The result
of the first step is a cluster set C in which each cluster is represented by its centroid.
In the second step, LEXC performs an initial selection of the major clusters set, where a
cluster in C whose size (measured by the number of clustered patterns) is larger than the
average cluster size in C is selected as a major cluster (Section 3.3). MC = {MCi}ni=1 is a
matrix that holds information about the major clusters, where each matrix row represents
a centroid of one of the n major clusters.

In the third step, LEXC creates a matrix that represents all PCCs derived from MC.
This matrix is PCCM = {PCCij}n,ni=1,j>i, where PCCij is a Boolean vector representing
the result of PCC between major clusters Ci and Cj having centroids MCi and MCj in
MC, respectively. The kth element of PCCij represents a change in value, if one exists,
in the observed variable Ok ∈ O when comparing MCi and MCj . We use the notation
PCCij → δOk if the value has been changed and PCCij → ¬δOk otherwise.

In the fourth step, LEXC identifies latents and their descendants (Section 3.1) using a
matrix MSOS that holds all maximal sets of observed (MSO) variables that always change
their corresponding values together in all of the PCCs in PCCM. For each MSO, LEXC
adds a latent L to both G and latent set L and edges from L to each observed variable
O ∈MSO. The observed children of latent Li ∈ L in G are Chi.

In the fifth step, LEXC identifies, in two phases, the latent variables that are collider
nodes in the graph along with their latent parents (Section 3.2). In the first phase, LEXC
considers for each latent variable Li ∈ L a set of potential parents from the other latents in
L. To simplify the notation, we represent the latent as an object and the set of potential
parents as a field of this object, called PPS (for potential parent set), e.g., Li.PPS. In
addition, we use the notation PCCij → δLi if all of the variables in Chi change their
values in PCCij and PCCij → ¬δLi otherwise. The algorithm identifies for each latent
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Algorithm 1 LEXC
1: {Input: A data set D over the observed variables O.

Output: An initial leaned graph G of the exogenous and the collider latents and their descendants in LVM.}
2: Initialize: Create an empty graph G over O, C = φ,MC = φ,PCCM = φ,L = φ,OLP = φ
3: {First step: perform clustering.}
4: C ← perform clustering on D and represent each cluster by its centroid.
5: {Third step: select initial major clusters set.}
6: for all Ci ∈ C: if the size of Ci is larger than the average cluster size in C, then add Ci to MC.
7: {Third step: create the PCCM matrix.}
8: for all MCi ∈MC,MCj ∈MC, j > i: compute PCCij and add it to PCCM
9: {Fourth step: identify latent variables and their observed children}

10: MSOS← using the PCC matrix find all possible MSOs
11: for all MSOi ∈MSOS :
12: add a new latent variable L to G and to L.
13: for all observed variable O ∈MSOi: add a new edge L→ O to G.
14: {Fifth step: identify collider latent variables and their parents}
15: for all Li ∈ L
16: {first phase}
17: Li.PPS = φ.
18: for all Lj ∈ L, Lj 6= Li
19: if ∃PCC ∈ PCCM : (PCC→ δLi ∧ PCC→ δLj ∧ PCC→ ¬δLk, ∀Lk ∈ L, k 6= i, j) then
20: add Lj to Li.PPS
21: {Second phase}
22: if∀(PCC ∈ PCCM : PCC→ δLi), ∃(PSS ∈ Li.PSS : PCC→ δPSS) then
23: ∀(PSS ∈ Li.PSS), add a new edge PSS → Li to G.
24: {Sixth step: select a new major clusters set}
25: NMC = φ
26: find the cardinality for each Li ∈ L, then create exs
27: for allex ∈ exs
28: find the largest cluster that represents ex, and add it to NMC
29: if NMC = MC then
30: return G
31: else
32: MC = NMC, PCCM = φ, L = φ, OLP = φ , G← empty graph over O
33: Go to ”Third step”.

Li its Li.PPS. The first phase checks for each pair Li, Lj ∈ L whether there exists a
vector PCCij ∈ PCCM in which both Li and Lj have been changed while the other
variables in L have not, and if so it adds Lj to Li.PPS. In the beginning of the second
phase, the set Li.PPS contains all of the variables in L that have been changed with Li in
PCCM. Still, this is not enough to decide that Li is a collider of the variables in Li.PPS;
therefore, an additional condition must be fulfilled: Li should have never changed in any
PCCij ∈ PCCM unless at least one of the variables in Li.PPS has also changed in this
PCCij (Section 3.2). The second phase checks this condition, and if fulfilled, it adds an
edge from each variable in Li.PPS to Li.

In the last step, LEXC selects a new set of major clusters NMC based on the learned
graph (Section 3.3). First, it learns the cardinality of each latent Li ∈ L, which is the
number of different value configurations corresponding to Chi in D, as checked by PCC.
Each represents a different value li of Li, that we denote the by li → chi. Then, LEXC finds
exs- the set of all possible ex, and for each one it finds the most probable cluster given ex.
The centroid of this cluster is c∗ = argmaxCi∈CP (Ci|ex), and is added to NMC (Definition
4). Practically, we approximate P (Ci|ex) by the ratio between the size of this cluster and
the size of D. Thus, the largest cluster, where in its centroid, the values corresponding to
the children of each Li ∈ EX are according to the value of Li in ex, is selected to represent
this ex. Then if NMC is equal to the current MC, using NMC will not produce a different
graph, thus LEXC stops and returns the learned graph G. Otherwise LEXC initializes MC
to hold the new set NMC and performs the next iteration to learn a new graph.

4.2. Learning non-collider latents (LNC)

Using the graph G learned by LEXC and the data set D, LNC creates an incomplete data
set IND by adding |L| elements to the end of each vector in D. The value of the added
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element that corresponds to Li ∈ L in each vector in IND is determined based on the value
configuration of Chi in this vector, if this value configuration is equal to any li → chi,
otherwise it is a missing value. Second, LNC assumes that G is true, and based on this
assumption it learns the parameters of the LVM using EM (Dempster et al., 1977) and
IND. We denote this learned model by G0 (Section 3.4). For each latent Li ∈ L, LNC
assumes that Li should not be split and tests this assumption recursively (Section 3.4).
First, it marginalizes the effects over all other latents Lj ∈ L, j 6= i, by selecting only the
clusters in which all Chj have major values, i.e., the value configuration corresponding to
Chj is equal to any lj → chj for any value lj of Lj . Denote this sub-set of the clusters by Ci.
This marginalization is essential to ensure that all MSOs to be identified will be found only
in among the children of Li. Then, LNC calculates a threshold MTk on the maximal size of
k-order minor clusters (Appendix A) to identify a possible k order split of Li. We denote
the clusters in Ci having sizes that are greater than MTk by Cik. LNC checks if the PCCs
between any cluster in Cik and the major clusters demonstrate at least two MSOs, where
each has a size of at least k. If so, LNC splits Li into two latents. Then, LNC recursively
tries to find further splits to the new latents of order k + 1. If no such split exists, it stops
and returns the new latents. After identifying all possible splits, the directions of the links
between the latents are determined so latents split in order k are children of latents split in
order k + 1.

Algorithm 2 LNC
1: {A data set D over the observed variables O and the resulting graph G from LEXC.

Output: The final learned LVM G.}
2: Initialize: L2 = φ {will hold the new set of latents after the splits.}
3: Create IND and learn the parameters of M0 using EM(G, IND)
4: for all Li ∈ L in M0 do
5: find Ci

6: L2 = L2 ∪RecSplit(Ci, 1)
7: end for
8: Direct the links between the new latents, set L2 and return the final graph G.
9: {sub Procedure RecSplit(Ci, k)}

10: Find MTk and Cik

11: if all PCCs between any cluster in Cik and MC don’t show at least two MSOs then
12: return Li
13: else
14: Split Li: foreach MSO found create new latent as a parent of the observeds in MSO and add it to L′

15: R = φ {will hold the new set of latents after the split of Li.}
16: for all Li′ ∈ L′ : find Ci′ , R = R ∪RecSplit(Ci′ , k + 1)
17: return R

18: end if

5. Evaluation

We evaluated LPCC using simulated data sets (Section 5.1) and two real-world data sets:
the political action survey (PAS) and HIV (Section 5.2). In the latter case, we did not
have an objective measure for evaluation. Therefore, we compared the LPCC outputs to
hypothesized, theoretical models from the literature and to the outputs of four state-of-the-
art learning algorithms: FCI (Spirtes et al., 2000) (only for PAS), Zhang (2004) (only for
HIV), and BuildPureClusters (BPC) and BuildSinglePureClusters (BSPC) of Silva (2005),
which are especially suitable for MIM models, similar to LPCC. BPC assumes that the
observed variables are continuous and normally distributed, whereas BSPC is a variant of
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BPC for discrete observed variables. We ran BPC using its implementation in TETRAD
IV 1. BPC learns LVM by testing tetrad constraints at a given significance level (alpha).
We used Wishart’s tetrad test (Silva, 2005; Spirtes et al., 2000) and three levels of 0.01,
0.05 (TETRAD’s default), and 0.1. BSPC is not implemented in TETRAD IV, so we used
the results described in Silva (2005) for this algorithm and PAS.

5.1. Simulated data sets

We used Tetrad IV to construct the Graphs G1,G2,G3 and G4 of Figure 1, once with binary
and once with ternary variables. The priors of the exogenous latents were always distributed
uniformly. We compared performances for two parameterization schemes that differ by the
conditional probabilities between a latent Lk and each of its children ENi, i.e., pj = 0.75 and
0.8. For all graphs in the binary case, except L2 in G2, P (ENi = v|Lk = v) = pj , v = 0or1.
For all graphs in the ternary case, except L2 in G2, P (ENi = v|Lk = v) = pj , P (ENi 6=
v|Lk = v) = (1− pj)/2, v = 0, 1or2. Concerning L2 in G2 , P (L2 = 0|L1L3 = 00, 01, 10) =
P (L2 = 1|L1L3 = 11) = pj in the binary case and P (L2 = v|max(L1, L3) = v) = pj and
P (L2 6= v|max(L1, L3) = v) = (1− pj)/2 in the ternary case. Each such scheme imposes a
different ”parametric complexity” on the model and thereby affects the task of learning the
latent model and the causal relations. That is, pj = 0.75 undermines learning more than
pj = 0.8. For example for G3 and the binary case, the correlations between any latent and
any of its children for the parametric settings pj = 0.75 and 0.8 are 0.5 and 0.6, respectively.
Tetrad IV was also used to draw data sets of 125, 250, 500, 750, and 1,000 samples for each
test. Overall, we evaluated the LPCC algorithm using 80 synthetic data sets for 4 graphs
(G1-G4), 2 types of variables, two parameterization schemes, and 5 data set sizes). In
addition, we evaluated LPCC using two larger graphs: G5 and G6 of Figure 1 that combine
all types of links between the latents, i.e., collider, serial, and diverging. Each such graph
has five latents with three observed children each. Tetrad IV was used to draw data sets of
250, 500, 1000, and 2,000 samples, where all variables are binary and the parametric setting
is pj = 0.8. In Figure 2, we report on the structural hamming distance (SHD) (Tsamardinos
et al., 2006) as a performance measure of learning LVM for increasing sample sizes. SHD
is a global structural measure that accounts for all the possible learning errors. Figure 2
shows learning curves for SHD and increasing sample sizes for LPCC as compared to BPC of
Silva (2005). The graphs demonstrate LPCC sensitivity to the parametric complexity; the
lower is the complexity, the faster is learning and the sooner the error vanishes. In addition,
all plots show improvement in LPCC accuracy with the sample size and better results for
LPCC than for BPC. Especially, LPCC demonstrates a better asymptotic behavior. For
example, in G3-G6, BPC missed for the largest data sets the correct directions of the serial
links between the latents. We also note that unlike LPCC, BPC is not suitable for learning
models such as G1, where the latents are independent and each has less than four observed
children. This is because BPC requires the variables in a tetrad constraint to be all mutually
dependent, where in the case of G1, there are at most three mutually dependent variables,
so no tetrad constraint can be tested and no graph is learned.

1. Available at http://www.phil.cmu.edu/projects/tetrad
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Figure 2: SHD for LPCC and BPC for all graphs of Figure 1 for increasing sample sizes.
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5.2. Real-world data sets

We evaluated LPCC using PAS data over the six variables: NOSAY (NS), VOTING (V),
COMPLEX (C), NOCARE (NC), TOUCH (T), and INTEREST (I) that are described by
Joreskog (2004). These six variables correspond to questions to which the respondent has
to give their degree of agreement on a discrete ordinal scale of four values. This data set
includes a sample of 1,076 United States respondents. A model consisting of two latents that
correspond to a previously established theoretical trait of Efficacy (E) and Responsiveness
(R) based on Joreskog (2004) is given (Figure 3a). V is discarded by Joreskog for this
particular data set based on the argument that the question for V is not clearly phrased.
Similar to the theoretical model (Figure 3a), LPCC finds two latents (Figure 3b): One

Figure 3: The political action survey: (a) A theoretical model and five outputs of (b) LPCC;
(c) BSPC; (d) BPC for alpha=0.01 or 0.05; (e) BPC for alpha=0.1; and (f) FCI
for alpha=0.05.

corresponds to NS and V and the other corresponds to NC, T, and I. Compared with the
theoretical model, LPCC misses the edge between E and NC (and the edge between the
latents, which is not identifiable by the current implementation of LPCC). Nevertheless,
LPCC makes no use of prior knowledge. BSPC output (Figure 3c) is very similar to LPCC
output, except for NC, which was not identified by BSPC as a measure of R, making the
output obtained by LPCC closer to the theoretical model than that of BSPC. In addition,
both algorithms identify V as a child of E, and thereby challenge the decision made in
Joreskog (2004) to discard V from the model. The outputs of the BPC algorithm (Figure 3d)
for both alpha=0.01 and alpha=0.05 are poorer than those of LPCC and BSPC. BPC finds
two latents. The first latent corresponds to NS, V and C with partial resemblance to the
theoretical model and to the outputs of LPCC and BSPC. However, the second latent found
by BPC corresponds only to T and misses I (identified in the theoretical model and by LPCC
and BSPC as an indicator of R) and NC (identified in the theoretical model and by LPCC
as an indicator of R). The output of the BPC algorithm using alpha=0.1 (Figure 3e) gives
very little information about the problem as it finds only one latent that corresponds only
to NC. These two last figures show the sensitivity of BPC to the significance level, which
is a parameter whose value should be determined beforehand. Moreover, the success of the
LPCC and BSPC algorithms emphasizes the importance of such algorithms that can learn
discrete data. The outputs of the FCI algorithm using any of the significance levels were
not sufficient. For example, the FCI output for alpha=0.05 (Figure 3f) shows that NS and
I potentially have a latent common cause. However, these two variables are indicators of
different latents in the theoretical model. We also evaluated LPCC using the HIV test data
(Zhang, 2004). This data set consists of results on 428 subjects of four diagnostic tests for the
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human HIV virus: “radioimmu-noassay of antigen ag121” (X1); “radioimmunoassay of HIV
p24” (X2); “radioimmu-noassay of HIV gp120” (X3); and “enzyme-linked immunosorbent
assay” (X4). A negative result is represented by 0 and a positive result by 1. LPCC learned
a similar model to that in Zhang (2004) (Figure 4), where L1 and L2 are both binary latent
variables, but unlike the algorithm in Zhang (2004), LPCC is not limited to tree latent
models. BPC returned an empty model for any conventional alpha.

Figure 4: Model learned for HIV using LPCC.

6. Discussion and related work

We introduce the LPCC concept and algorithm for learning LVMs. Using simulated and
real-world data sets, we show that LPCC improves accuracy with the sample size, can
learn large LVMs, and has consistently good results compared to models that are expert-
based or learned by state-of-the-art algorithms. Contrary to other algorithms (Pearl, 2000;
Zhang, 2004), LPCC is suitable for learning MIM models and not just latent-tree models.
This LPCC quality is shared by BPC (Silva, 2005). Compared to BPC and FCI (Spirtes
et al., 2000), LPCC does not rely on statistical tests and pre-setting of a significance level for
learning LVM. FCI is not comparable to LPCC in learning MIM models. Unlike BPC, LPCC
concentrates on the discrete case and dispenses with the linearity assumption. Further
research will focus on: 1) extending LPCC to identify observed variables that are effects
of other observed variables; 2) providing a formal analysis for the model identification
conditions and its sensitivity to parameterization; and 3) extending the LPCC evaluation
using more complex simulated and real-world data sets.
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Appendix A. Setting a threshold for Section 4.2

In this appendix, we provide a detailed description of the calculation of the threshold MTk
on the maximal size of k-order minor clusters from Section 4.2. First we define:
Definition 8 A maximal major local effect on an observed child Ot of a latent parent Li is
the maximal major effect on Ot over all values l′i of Li, i.e., MaxMAEt = maxl′iMAEt(l

′
i).

Similarly, a maximal minor local effect is the maximal minor effect over all values l′i of Li,
i.e., MaxMIEt = maxl′iMIEi(l

′
i).

In the recursive call of order k, LNC finds an approximation of the threshold for a maxi-
mal cluster size in Ci of k+1 minor values corresponding to Chi. First, it finds MaxMAEVi
and MaxMIEVi, which are the sorted vectors of MaxMAEt and MaxMIEt (Defintion 8)
of all Ot ∈ Chi, respectively. Second, it approximates the effect of the other marginalized
latents (margLat) by computing the product of all maximal major local effects on their
observed children, margLat =

∏
Lj∈L,j 6=i

∏
ot∈Chj

MaxMAEt. Then, LNC approximates
the existence of exactly k minor values of the children of Li by taking k MaxMIEs and

|Chi| − k MaxMAEs, kMin =
∏k
t=1MaxMIEVi(t)

∏|Chi|−k)
t=1 MaxMAEVi(t). It uses the

approximations along with the maximal priors of the exogenous latents and the data size N
to compute the kth threshold, MTk = margLat ·kMin ·N ·∏EXi∈EX max

ex
′
i
P (EXi = ex

′
i).
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