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Abstract

Selecting features is an important step of any machine learning task, though most of the
focus has been to choose features relevant for classification and regression. In this work,
we present a novel non-parametric evaluation criterion for filter-based feature selection
which enhances outlier detection. Our proposed method seeks the subset of features that
represents the inherent characteristics of the normal dataset while forcing outliers to stand
out, making them more easily distinguished by outlier detection algorithms. Experimental
results on real datasets show the advantage of this feature selection algorithm compared to
popular and state-of-the-art methods. We also show that the proposed algorithm is able to
overcome the small sample space problem and perform well on highly imbalanced datasets.
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1. Introduction

An integral part of any machine learning task is having a good set of features that can
be used to accurately model the inherent characteristics of the data. In practice, the
best set of features is not known in advance. Therefore, a pool of candidate features are
collected and processed to removed irrelevant and redundant features. This can improve
both the memory and computational cost of the machine learning algorithm, as well as
the accuracy of the learner. Reducing the space of possible features is done in two ways:
feature transformation and feature (subset) selection. In the former, the original space of
features is transformed into a new, typically lower-dimensional, feature space. Examples
include Principal Components Analysis (PCA), Kernel PCA (Schölkopf et al., 1998), and
Kernel Dimensionality Reduction (Fukumizu et al., 2004).

In the latter approach to reducing the size of the feature space, the original set of
features remain unchanged and a subset of those features are selected. A simple way to
perform feature selection is to use a feature evaluation function, such as relevance (Kira
and Rendell, 1992), to rank the features on an individual basis. Then, a subset of the
features are selected by taking the top-ranked features (for example, the top m features).
Another feature selection methodology is to search the space of feature subsets and select
the subset that optimizes a criterion function. For a dataset with d features, there are 2d

possible subsets of features. For even a moderate value of d, an exhaustive search would
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be too computationally expensive, so it is common to use a greedy search strategy such as
sequential forward selection or backward elimination (Liu and Motoda, 1998).

In addition to the search strategy, the other important component of feature selection
is the criterion to be optimized. A brute force way to evaluate features is to utilize the
classifier that will ultimately be used. Such a method is called a wrapper approach (Kohavi
and John, 1997). Another, less computationally expensive, way is to evaluate features
based on some criterion function. This is referred to as a filter method. Existing criteria
include measures based on distance, information, dependency, and consistency (Dash and
Liu, 1997). A third approach is to perform feature selection as part of the learning task,
known as an embedded method, such as a decision tree.

In this work, we present a novel optimization criterion inspired by outlier detection
problems where the data is highly imbalanced and outliers comprise a small portion of the
dataset. The criterion tries to find the set of features that maximizes the density1 of normal
data points while minimizing the density of outliers. In other words, it seeks feature subsets
wherein normal data points fall in high-density regions and outliers fall in low-density regions
of the feature space. The goal is to make outliers stand out more prominently from normal
data points, which allows outlier detection algorithms to more easily identify them.

Most of the work on dimensionality reduction for outlier detection have tackled the
problem using a feature transformation approach. In these methods, a projection of the
feature space is sought which can be used to detect outliers. While this approach subsumes
feature selection (i.e., projecting onto the original feature axes is equivalent to selecting
a subset of the features), there is a case to be made for the understandability that comes
with feature subset selection as opposed to linear or non-linear combinations of the features.
Retaining a subset of the original features goes a long way towards understanding the nature
of the underlying data and the features that contribute to an outlier’s deviant behavior.
This can be advantageous in domains such as fraud detection and intrusion detection, in
which case anomalous activity can be narrowed down to a subset of the collected features.

The remainder of the paper is organized as follows. In section 2, we discuss related work
and in section 3, we describe the details of our proposed local kernel density ratio feature
selection algorithm. In section 4, we present the results of our feature selection algorithm
on several real-word datasets. Finally, section 5 concludes the paper and presents directions
for future work.

2. Related Work

Feature selection is a very important and well-studied problem in machine learning. Most of
the work have focused on the area of feature selection for classification and regression (Dash
and Liu, 1997; Kohavi and John, 1997; Guyon and Elisseeff, 2003; Tibshirani, 1994; Song
et al., 2007), and little has been done to create feature selection algorithms that cater
to outlier detection problems. Chen and Wasikowski (2008) developed a ranking-based
feature selection algorithm for classification of high-dimensional datasets that suffer from
the “small sample space” problem and whose class labels are highly imbalanced, the latter
being a characteristic inherent in outlier detection.

1. Here, the term density refers to how dense and closely situated the data points are in the feature space,
not to be confused with the probability density function.

50



Local Kernel Density Ratio-Based Feature Selection for Outlier Detection

Recent work that look for outliers in high-dimensional datasets deal with the issue of
high dimensionality in different ways. Aggarwal and Yu (2005) use an evolutionary search
technique to find multiple lower dimensional projections of the data which are locally sparse
in order to detect outliers. Other methods perform feature transformation, rather than
feature selection, for outlier detection (Nguyen and Gopalkrishnan, 2010).

There has also been some work done that use the idea of “a ratio of densities” to directly
perform outlier detection. Hido et al. (2011) use the ratio of the density of a data point
in the training set to its density in the test set as a measure of the degree to which the
point is an inlier, as opposed to an outlier. Their training set consists of only normal points
and the test set consists of both normal points and outliers. To deal with high-dimensional
data, Sugiyama et al. (2011) use a projection matrix to find the low-dimensional subspace
in which the two densities are significantly different from each other. In (Smola et al., 2009),
the novelty of data points in one distribution are assessed relative to another distribution
based on the log-likelihood ratio of the two distributions. In our work, we use a ratio of
densities to perform feature selection, with the distinction that our method uses the notion
of local neighborhoods to measure densities. In the denominator, we utilize the density
of only outliers. This ensures that we pick features in which outliers become even more
conspicuous as they will be represented in low-density regions of the feature space. For
the outlier detection, we take a one-class learning approach and distinguish outliers using
well-established methods. In this regard, once features are chosen by our feature selection
technique, the outlier detection algorithms proposed in (Sugiyama et al., 2011) and (Smola
et al., 2009) can be used as alternative methods of identifying outliers. In the next section,
we present the details of our feature selection algorithm.

3. Local Kernel Density Ratio Feature Selection

The inspiration for our feature selection algorithm came from an approach taken to solve
the outlier (or anomaly) detection problem. Hawkins (1980) describes an outlier as “an
observation that deviates so much from other observations as to arouse suspicion that it
was generated by a different mechanism.” In outlier detection problems, outliers typically
comprise a small portion of the dataset. Examples include intrusion detection data, where
malicious attacks are less frequent than normal activity, and certain tumor datasets where
patients with a particular type of cancer are few compared to the number of healthy patients.
In some cases, obtaining samples from the outlier class may be difficult or expensive, such
as a fault detection system where it can be expensive to obtain outlier data representing the
faulty situations of a machine. Therefore in the outlier detection domain, learners must deal
with highly imbalanced data. Next, we describe our criterion function for feature selection
which caters to outlier detection problems and is insensitive to the degree of imbalance in
the data as it is based on a ratio of average normal to outlier densities.

3.1. Local Kernel Density Ratio Criterion

In this work, we propose a novel feature selection criterion for outlier detection which tries
to find the set of features that best describes the normal class while ensuring that outliers
“stand out”. While most outlier detection techniques take an unsupervised approach, it is
not uncommon to have samples that belong to the outlier class. For example, in intrusion
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detection there may be many instances of malware attacks and malicious executions that
can provide guidance as to how normal executions differ from malicious ones. In our case,
we utilize the supervised information to select features which are intrinsically suitable for
outlier detection. Normal data points come from the same distribution while outliers can
be any point, from a completely different distribution. Taking advantage of information
from both normal and outlier points (if available) is more powerful than normal alone. The
aim is to have something to compare the normal distribution against and find out what
separates outliers from the normal data. Let X = [x1,x2, ...,xn] represent a dataset with
n data points where each data point x ∈ Rd has d features and is associated with a class
label y ∈ {−1,+1}, where −1 denotes the normal class and +1 denotes an outlier.

The Local Outlier Factor (LOF) algorithm (Breunig et al., 2000) solves the outlier
detection problem using a ratio of densities. In the LOF algorithm, the density of a data
point is compared to that of its neighbors and based on this, the point is assigned a degree of
being an outlier, known as its local outlier factor. The LOF of a data point is calculated as
the average density of data points within its neighborhood divided by its own density. When
a data point has a low density compared to points in its neighborhood, it is more likely to
be an outlier. Conversely, outliers should have a lower density compared to its neighbors.
Therefore, it stands to reason that a feature set which emphasizes this phenomenon would
facilitate the detection of outliers.

To test this hypothesis, we developed a criterion that measures the quality of features
based on the density induced for normal and outlier data points. More specifically, to maxi-
mize the density of normal data points while minimizing the density of outliers, the criterion
function takes the ratio of the two, with a focus on the local neighborhood density of each
data point. To measure density, we make no assumptions about the form of the underlying
distribution of the data. Instead, we take a non-parametric approach and calculate the
kernel density estimate of the data points with a Gaussian kernel. The objective is to find
the optimal set of features w∗ that maximizes the described criterion function J (w):

w∗ = argmaxw∈{0,1}dJ (w) (1)

We formally define the criterion function as:

J (w) =

1
|X−|

∑
x−∈X−

1
|Nk(x−)|

∑
x∈Nk(x−)

K(w ◦ x−,w ◦ x)

1
|X+|

∑
x+∈X+

1
|Nk(x+)|

∑
x∈Nk(x+)

K(w ◦ x+,w ◦ x)
(2)

In the above equation, K is a kernel function. In our experiments, we use the Gaussian
(or Radial Basis Function) kernel:

K(x,x′) = exp

(
−‖ x− x′ ‖2

2σ2

)
(3)

The vector w = (w1, w2, ..., wd) is a binary vector signifying which features are selected;
for (j = 1, ..., d), wj = 1 denotes the presence of feature j and wj = 0 denotes its absence.
We use x− ∈ X− and x+ ∈ X+ to represent data points from the normal and outlier
class, respectively. The parameter k determines the size of the local neighborhood of a data
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point, σ is the width of the Gaussian kernel, and the symbol ◦ represents the Hadamard
product (Horn and Johnson, 1985). The Hadamard (or Schur) product of two matrices is
their element-wise product.

The size of the local neighborhood of a data point x is determined by the distance to
its kth-nearest neighbor, referred to as its k-distance. All of the data points whose distance
to x is less than this distance comprise its k-distance neighborhood, Nk(x). The number
of data points in the k-distance neighborhood of a point may exceed k, due to possible
ties in distance. Therefore in the criterion function, once we sum up the contributions to
the density by the k-distance neighbors, we divide it by the number of points in the k-
distance neighborhood, |Nk(x)|. The local neighborhood density of a data point x can be
thought of as a measure of the similarity of points within that neighborhood to x. Since a
kernel function can be used as a measure of the similarity between two data points (Balcan
and Blum, 2006), in Equation 2 other kernel functions can be used in place of the Gaussian
kernel. We use the Gaussian kernel and effectively perform kernel density estimation (KDE),
also referred to as the Parzen-Rosenblatt Window method (Parzen, 1962; Rosenblatt, 1956).
This provides a standard, non-parametric notion of density for the data points.2

Our criterion function tries to optimize the ratio of local kernel density estimates for
normal and abnormal points (outliers). In the numerator, we sum the local kernel density
of all normal data points and in the denominator, we sum the local kernel density of all
outliers. By maximizing the ratio of the two, the goal is to find the subset of features that
maximizes the density of normal data points and simultaneously minimizes the density of
outliers. Intuitively, we would like to find a lower dimensional subspace that corresponds
to a subset of the features wherein normal data points are in closely compacted regions
of the space while outliers are dispersed, allowing them to be more easily distinguished as
anomalous with respect to the normal data. By using a local density approach, our criterion
can aid outlier detection algorithms in detecting local, as well as global, outliers (cf. Breunig
et al., 2000). In particular, we are already thinking in terms of local neighborhoods, as
reflected in the KDE calculations. This notion can be carried over to the outlier detection
phase, especially in the case of a local density-based outlier detection algorithm such as
LOF which calculates the density of each point within a local neighborhood. This allows
the detection of data points that seem to be outlying when considered within the scope of
its local neighborhood, not just on a global scale.

To illustrate the advantage of using our proposed criterion function, we show a simple
two-dimensional example in Figure 1. Assume we have a dataset with two features and we
would like to select the single best feature for outlier detection. In the figure, we use × to
represent normal points, + for outliers, and we show the projections of the data points onto
each of the feature axes. In Figure 1(b), for each data point we use a bell-shaped curve to
indicate the magnitude of its density. By projecting onto Feature 1, the two classes will
have high separability, yet the outliers will have high density which makes it difficult for an
outlier detection algorithm to identify them. Projection along Feature 2 gives the normal
points high density and the outliers low density, facilitating their detection. A method
that tries to best separate the classes, such as Linear Discriminant Analysis (LDA) which
maximizes the trace of the between-class to within-class scatter ratio, would fail to select

2. We use a single density estimator for the entire data, rather than having one per class.
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Feature 2 over Feature 1. Our criterion will correctly select Feature 2 as it maximizes the
density ratio of normal points to outliers.
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(a) Example dataset and projections onto the two features
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(b) Density of the data points

Figure 1: Example of feature selection for outlier detection
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3.2. Forward Search Strategy

Using the described criterion function to evaluate features, the next component of our fea-
ture selection algorithm is its search strategy. There are many approaches to searching the
space of possible feature subsets, from the näıve exhaustive search to more sophisticated
search strategies such as genetic algorithms. In this work, we apply sequential forward
selection (SFS), also referred to as sequential forward search (Devijver and Kittler, 1982).
This is a greedy search technique that begins with an initially empty set and adds features
one at a time such that the feature added at each round is the one that best improves the
criterion. Note that one can utilize other search strategies, such as backward selection, se-
quential forward floating search, or applying sparse optimization (Tibshirani, 1994; Masaeli
et al., 2010). For the purposes of this paper, whose goal is to test the appropriateness of the
newly introduced criterion for outlier detection, we find it sufficient to utilize a simple search
strategy that takes feature interaction into account, such as sequential forward search. We
call our proposed method Local Kernel Density Ratio (LoKDR) feature selection.

3.3. Computational Complexity Analysis

One of the main components of calculating the criterion function is the k-nearest neighbor
(k-NN) search. A simple brute force approach is to calculate the distance between all pairs

of points, requiring n(n−1)
2 × O(d) calculations, and then sort the distances to find the k-

nearest neighbors of each point using n×O(n log n) comparisons, for a total computational
complexity of O(n2(d+ log n)). Other k-NN algorithms have been proposed to reduce the
computation time, where the main idea is to reduce the number of distances computed. For
example, some algorithms partition the data points using an indexing structure, such as a
kd-tree, and only compute distances within nearby volumes. This method has been shown
to be faster than the brute force approach by up to a factor of 10 (Garcia et al., 2008).

Once the k-NNs of a point is found, the k-nearest neighbor distances are used to
calculate its kernel density estimate. These KDE values are then summed up and av-
eraged for the normal points and outliers (O(n)), after which the ratio is taken (O(1)).
This produces the criterion value for one set of features. Assuming feature set Fi has
di ≤ d features, the computational complexity of calculating the criterion function for Fi

is: O(n2(di + log n)) +O(n) +O(1) = O(n2(di + log n)). It is interesting to note that all
of the k-NN queries and feature subset evaluations are independent of one another. Thus,
in an ideal situation where they are all performed simultaneously, round i of the algorithm
would only require O(di + n) time, with O(di) time for a distance calculation consisting of
di features and O(n) time for the KDE summation. Since there are at most d rounds of
the algorithm (corresponding to the addition of every feature), the best-case computational
complexity of a parallel implementation of the LoKDR algorithm is O(d2+nd). In practice,
the forward search is cut off after a certain constant number of features c << d are selected,
yielding a ideal run-time of O(c(d + n)) = O(d + n), making the algorithm linear in the
size of the features and sample space. In future work, we will utilize the power of graphics
processing units (GPUs) to perform many of the computations concurrently, pushing us
closer to the realization of the ideal linear run-time.
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Name Features Samples Description

CNS 7129 90

Central Nervous System Embryonal Tumor Data: 60
samples have medulloblastomas and 30 have other tu-
mors or no cancer.

LYMPH 7129 77
Lymphoma Data: 58 samples are diffuse large B-cell
lymphomas and 19 are follicular lymphomas.

OVARY 6000 66
Ovarian Cancer Data: 50 samples are benign tumors
and 16 are malignant tumors.

PROST 6000 89
Prostate Cancer Data: 63 samples have no evidence
of cancer and 26 have prostate cancer.

ARRHY 276 450
Cardiac Arrhythmia Data: 244 samples are from class
01 and 206 are from classes 02-16.

Table 1: Overview of datasets

4. Experimental Evaluation

In this section, we describe the datasets and outlier detection algorithms used in this study
to evaluate the quality of features selected by the LoKDR algorithm. We also briefly describe
other feature selection techniques with which we compare our results. We then present the
outlier detection results for each of the feature selection methods.

4.1. Datasets

The datasets used to evaluate our feature selection algorithm are shown in Table 1. CNS
and LYMPH are microarray gene expression datasets and OVARY and PROST are mass
spectrometry datasets provided by Chen and Wasikowski (2008). These datasets are ex-
amples of real-world problems that consist of a small set of samples and imbalanced class
labels. We also evaluate our feature selection algorithm on the ARRHY dataset3 (Güvenir
et al., 1998) from the UCI Machine Learning Repository, a dataset which has neither highly
imbalanced data nor a small sample space. The goal is to distinguish between the presence
and absence of cardiac arrhythmia, where class 1 is the normal class and classes 2 to 16
are outliers. Table 1 provides the number of features, number of samples, and a summary
description on each of these datasets.

4.2. Outlier Detection Algorithms

For outlier detection, we use one-class classifiers which are trained on only normal data
(inliers). For each data point, the classifier produces a decision value that represents its
confidence in that point being an outlier. We apply a threshold on the decision value as
a cutoff point for decision making. A data point is flagged as an outlier if the decision
value exceeds a threshold. Varying the threshold varies the number of correctly classified
outliers (true positives) and incorrectly classified normal data (false positives). Using this
information, we plot a curve of the true positive rate versus the false positive rate, known

3. Preprocessing was done to account for missing values, resulting in the removal of three features and two
instances.
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as the Receiver Operating Characteristic (ROC) curve. In section 4.4, we perform an
evaluation of several feature selection techniques in terms of the area under the ROC curve
(AUC) achieved by the outlier detection algorithms on different feature subsets chosen by
the feature selection techniques.

The classifiers used to evaluate the feature subsets are Nearest Neighbor (NN), Local
Outlier Factor (LOF), and One-Class Support Vector Machines (OCSVM). The (one-class)
Nearest Neighbor classifier is a distance-based outlier detection algorithm wherein a data
point’s decision value is the distance to its nearest neighbor. The greater the distance, the
more likely that point is an outlier. The LOF algorithm takes a density-based approach to
detect outliers; the greater the density of a point’s nearest neighbors compared to its own
density, the more outlying the data point. The decision value of a data point is its local
outlier factor.

The OCSVM classifier (Manevitz et al., 2001) uses a kernel function to map the data
into a feature space H with the goal of capturing most of the data vectors within a “small”
region. It then tries to separate the mapped vectors from the origin with a hyperplane that
has the maximum margin. The origin and data points “close enough” to it are assumed to
be outliers. The decision value of a data point is f(x) =

∑n
i=1 αiK(xi,x)− ρ where αi are

the support vector coefficients, K is a kernel function, and ρ represents the margin. The
parameter ρ is effectively the threshold that determines whether points are “close enough”
to the origin to be considered outliers. For our OCSVM experiments, we use LIBSVM
(version 3.11) (Chang and Lin, 2011) with the standard parameters for one-class SVMs.

4.3. Feature Selection Algorithms

To compare our results with other popular filter-based feature selection algorithms, we
evaluate the features selected by RELevance In Estimating Features (RELIEF), Feature
Assessment by Sliding Thresholds (FAST), Least Absolute Shrinkage and Selection Opera-
tor (LASSO), and BAckward elimination with the Hilbert Schmidt Independence Criterion
(BAHSIC). RELIEF (Kira and Rendell, 1992) is a filter feature selection method that eval-
uates individual features based on how well they differentiate between neighboring instances
from different classes versus from the same class. We use the Weka toolbox (Hall et al.,
2009) to select features with RELIEF. FAST (Chen and Wasikowski, 2008) is a feature se-
lection algorithm for small sample and imbalanced data classification problems. The main
idea is to rank features based on the area under the ROC curve generated by each feature.

LASSO (Tibshirani, 1994) solves the linear regression problem formulation with an
added constraint on the sum of the regression coefficients. This drives the coefficients of
less relevant features towards zero. We use the logistic regression variant provided in the
GLMNet (Friedman et al., 2010) Matlab toolbox and rank features based on the absolute
value of the coefficients. BAHSIC (Song et al., 2007) uses the backward elimination search
strategy on features evaluated using the Hilbert Schmidt Independence Criterion (HSIC).
We use the Python code provided by Song et al. (2007) to perform feature selection with
BAHSIC.
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4.4. Results

For the training phase of the outlier detection algorithms, we take a one-class (or semi-
supervised) learning approach and train only on normal data points.4 During testing, both
normal and outlier data points are used to see how well the model is able to detect outliers.
We perform 10-fold cross validation by dividing the normal data points into ten folds and
training on nine of them while testing on the tenth. Since no outliers are used during the
training phase, we use all outliers during the testing phases of the cross validation.

We evaluate the quality of the outlier detection results using the area under the ROC
curve (AUC) and the balanced error rate (BER). The ROC curve is a plot of the true
positive rate (fraction of outliers correctly detected) versus the false positive rate (fraction
of normal points misclassified as outliers). It represents the behavior of a classifier across
a range of thresholds on the decision values. The BER, on the other hand, represents the
behavior of the classifier at a particular operating point and is the average of the false
positive rate and the false negative rate (fraction of outliers misclassified as normal) at that
threshold.

For the LoKDR feature selection algorithm, there are two main parameters that can be
tuned: k which determines the size of the local neighborhood and σ, the Gaussian kernel
width. By varying the value of k in [1, n− 1] and σ in [1, 5], we observed that most of the
results were not drastically sensitive to the choice of these parameters, though some values
produced slightly better results than others. The benefits of this are two-fold; first, it shows
the stability of the criterion function, as it is not extremely sensitive to these parameters.
Second, with smaller values of k, we can achieve similar (if not better) results than larger
values, thereby reducing the computational cost. For our experiments, we set the values of
the parameters based on 10-fold cross validation.

The results of our experiments using NN, LOF, and OCSVM show that in general,5 the
classifiers perform comparably across the various feature selection algorithms and datasets
with no clear winner. As the goal is not to compare the outlier detection algorithms them-
selves, but rather to compare the proposed feature selection algorithm (LoKDR) with previ-
ous feature selection methods, in the figures of this section we shall present the outlier detec-
tion results using the LOF classifier. For the full set of results, please refer to (Azmandian,
2012). In Figure 2, we show the area under the ROC curve (AUC) results of the feature
selection algorithms on the microarray and mass spectrometry datasets. On the x-axis, we
vary the number of selected features and on the y-axis, we plot its corresponding average
AUC. With a horizontal line, we show the AUC obtained when using all of the features.
This displays the importance of performing feature selection, as all of the feature selection
algorithms are able to surpass the AUC achieved with the entire feature set. The figure also
highlights the strength of the LoKDR algorithm in selecting features for outlier detection.
Across the datasets, the features chosen by LoKDR enable the outlier detection algorithm
to identify outliers with a high detection rate and few false positives, as reflected in the
high average AUC. For the CNS, LYMPH, and OVARY datasets, as the number of selected
features increases, the average AUC for LoKDR rapidly exceeds that of the other methods.

4. This is also the approach taken by Hido et al. (2011).
5. There were a couple of exceptions to this with the NN classifier.
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Figure 2: Average AUC results for microarray and mass spectrometry datasets

For the PROST dataset, the performance of LoKDR starts out the strongest and continues
to be competitive with the other methods.

To see how well our feature selection algorithm performs on a more general dataset that
does not have imbalanced data with a small sample size, we also ran experiments on the
ARRHY dataset and present results in Figure 3(a). The results show that while features
selected by BAHSIC produce the highest average AUC for most of the feature subsets, the
LoKDR algorithm still performs well and produces AUC values that are comparable with
those of BAHSIC.

In addition to the area under the ROC curve which provides a picture of the outlier
detection results across a range of thresholds on the decision values, we also provide a
“snapshot” of the outlier detection results using the average minimum balanced error rate
(BER).6 These results are presented for the various feature selection algorithms in Fig-
ure 3(b) and Figure 4. On the x-axis, we have the number of selected features and on

6. We find the minimum BER for different thresholds and then take the average across the cross-validation
runs.
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Figure 3: AUC and BER results for ARRHY dataset
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Figure 4: Average BER results for microarray and mass spectrometry datasets
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the y-axis, the average minimum BER. For each dataset, the two lowest BER values are
highlighted, with an asterisk at the lowest BER and a plus sign at the second lowest BER.
The corresponding values are shown in the color of the feature selection algorithm that pro-
duced it. The results show that LoKDR consistently produces low values for the BER and
in most cases, outperforms all of the other feature selection methods. For the CNS dataset,
it is even able to achieve perfect detection (100% true positives and 0% false positives) with
only 14 features. For the LYMPH and OVARY datasets, LoKDR achieves the lowest BER
at a cost of a few more features than LASSO (which came in second). For the PROST and
ARRHY datasets, LoKDR places a very close second to LASSO and BAHSIC, respectively.

We also vary the number of selected features up to 100 and present the lowest average
BER results for the various feature selection algorithms (FS) and outlier detection algo-
rithms (OD) in Table 2. For each FS/OD pair, we show the number of selected features
next to the balanced error rate. For each dataset and outlier detection algorithm, the two
top feature selection algorithms with the lowest BER are shown in boldface, with an asterisk
next to the winner. These results show that LoKDR always achieves very low BER values
and in every case, either outperforms all of the other methods or places a close second.

Dataset
FS

OD NN LOF OCSVM

BER Features BER Features BER Features

CNS

LoKDR 0.000* 14 0.000* 14 0.000* 14

BAHSIC 0.035 27 0.035 13 0.042 18

RELIEF 0.047 41 0.048 37 0.055 51

LASSO 0.060 37 0.050 36 0.050 37

LYMPH

LoKDR 0.008* 42 0.008* 41 0.008* 39

BAHSIC 0.183 9 0.065 4 0.082 3

RELIEF 0.043 17 0.059 33 0.077 21

LASSO 0.041 21 0.043 21 0.043 21

OVARY

LoKDR 0.010* 42 0.019* 35 0.016* 36

BAHSIC 0.060 21 0.065 8 0.056 9

RELIEF 0.045 92 0.064 38 0.064 56

LASSO 0.039 23 0.048 20 0.045 20

PROST

LoKDR 0.007 37 0.007 19 0.007 19

BAHSIC 0.019 48 0.017 45 0.027 40

RELIEF 0.023 97 0.017 93 0.025 64

LASSO 0.000* 18 0.000* 16 0.000* 16

ARRHY

LoKDR 0.164* 34 0.152 34 0.151 34

BAHSIC 0.172 31 0.149* 24 0.148* 29

RELIEF 0.186 17 0.178 17 0.179 14

LASSO 0.263 33 0.268 34 0.269 34

Table 2: Lowest average BER results for the feature selection algorithms on all the datasets

Using the paired Student’s t-test, we confirmed that our experimental results showing the
superiority of LoKDR over the other feature selection methods are statistically significant
at the 95% confidence level with respect to all methods, except BAHSIC on the PROST and
ARRHY datasets, where they perform comparably. From our results, we conclude that the
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LoKDR feature selection algorithm chooses features that enable outlier detection algorithms
to do consistently well across all the datasets, from those which are very high-dimensional
with imbalanced class labels and that suffer from the small sample space problem, to a more
general dataset without these properties.

4.5. Discussion

One of the characteristics of outlier detection problems is the class imbalance of the data, as
outliers occur less frequently than normal points. Our proposed feature selection algorithm
is robust to the degree of imbalance present in the data as it seeks features which maximize
the average density of normal points while minimizing the average density of outliers. Binary
classification is often performed on imbalanced class data problems and this inspired us to
evaluate the quality of the features selected by our algorithm when the subsequent data
mining task to perform is not outlier detection, but rather classification using two-class
Support Vector Machines. The results (not shown here due to space limitations) were very
encouraging as the area under the ROC curve values was consistently high, and out of
the five feature selection algorithms tested, LoKDR was always one of the top-performing
algorithms on all of the datasets.7 This is a testament to the quality of the selected features
and their ability to, in particular, identify characteristics that do well in distinguishing
members of the larger class.

Binary classifiers provide supervised learning by using information about the class to
which some data points belong. Knowledge about class labels can improve the accuracy of a
learner by hinting at the characteristics of each class through the use of paradigms. Outlier
detection, on the other hand, is typically performed as unsupervised or semi-supervised
(one-class) learning. In cases where no labels for outliers exist, it is still desirable to select
informative features for outlier detection. Therefore in future work, we will explore the
notion of using the density of unlabeled data points in the denominator of our criterion
function, thereby providing a one-class learning variant of our feature selection algorithm.
While the use of some labeled outlier data can enhance the quality of the final solution, a
one-class feature selector may be a better fit for the subsequent task of outlier detection.

5. Conclusions and Future Work

In this work, we presented a novel feature selection criterion catered to outlier detection
problems. The proposed method is non-parametric and makes no assumptions about the
distribution of the underlying data other than the fact that outliers are different than
the normal data. It selects features that best capture the behavior of normal data while
making outliers more distinct from the normal. We applied a forward search strategy to our
evaluation criterion and compared its ability to detect outliers with other popular feature
selection methods. Experiments on real datasets showed that our local kernel density ratio
feature selection algorithm does very well to discern features that facilitate the detection of
outliers.

7. It was the best-performing algorithm on ARRHY and PROST, second-best on CNS and LYMPH, and
a close third on OVAR.
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In future work, we will incorporate other search techniques using our novel feature
selection criterion and exploit the parallelism that exists in calculating the criterion to
achieve computation time speedup, by implementing the algorithm on a graphics processing
unit (GPU). We will also investigate the quality of the features chosen by our algorithm for
real-world intrusion detection datasets. The selected features should capture the behavior of
normal patterns while enhancing the detection of the malicious activity of malware attacks.
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