
JMLR: Workshop and Conference Proceedings 25:97–112, 2012 Asian Conference on Machine Learning

AIC and BIC based approaches for SVM parameter value
estimation with RBF kernels

Sergey Demyanov s.demyanov@student.unimelb.edu.au

James Bailey baileyj@unimelb.edu.au

Kotagiri Ramamohanarao kotagiri@unimelb.edu.au

Christopher Leckie caleckie@unimelb.edu.au

Department of Computing and Information Systems

The University of Melbourne

Parkville, VIC 3010, Australia

Editor: Steven C.H. Hoi and Wray Buntine

Abstract

We study the problem of selecting the best parameter values to use for a support vector
machine (SVM) with RBF kernel. Our methods extend the well-known formulas for AIC
and BIC, and we present two alternative approaches for calculating the necessary likelihood
functions for these formulas. Our first approach is based on using the distances of support
vectors from the separating hyperplane. Our second approach estimates the probability
that the SVM hyperplane coincides with the Bayes classifier, by analysing the disposition
of points in the kernel feature space. We experimentally compare our two approaches with
several existing methods and show they are able to achieve good accuracy, whilst also
having low running time.

Keywords: AIC, BIC, SVM, RBF kernel, model selection

1. Introduction

The support vector machine (SVM) is well known and one of the most popular methods for
classification problems. In its basic form it is a linear classification method, but by using
different types of kernels one can model nonlinear separating surfaces, extending the utility
and power of the method. One of the most popular SVM kernels is the RBF (Radial Basis
Function) kernel.

When using this kernel, it is necessary to choose values for the kernel parameter γ and
soft margin parameter C. Together, these define the “dimensionality” of the kernel space
(we will later make this concept of dimensionality more precise) and thus a wrong choice
for them may cause underfitting or overfitting. Thus, choosing appropriate values for these
parameters is crucially important for achieving high classification quality.

The task of searching for the best values of the parameters of a SVM with the RBF
kernel has two broad types of approach. The first and most popular is as follows. First,
select values for the γ and C parameters. Next, using a test set, estimate the performance of
the SVM using these parameter values. One then chooses the parameter values that deliver
the best performance compared to any other. More specifically, the original training set is
separated into two parts (e.g., 80% and 20%), where the larger part is used for training and

c© 2012 S. Demyanov, J. Bailey, K. Ramamohanarao & C. Leckie.

Demyanov Bailey Ramamohanarao Leckie

the smaller one for testing. This works well when the dataset is large, but can be unreliable
when the dataset is small, since the difference between a classifier trained on 100% of the
data versus one trained on 80% becomes significant. Moreover, the small size of the test
sample may mean the estimated performance is subject to high variance, meaning that a
suboptimal choice of parameter values becomes more likely. To address this, “k-fold cross-
validation” is often used. The original dataset is split into k parts, where for example k is
equal to 5 or 10. Each part is then used as a test set and the other k − 1 parts are used
as a training set. Results over all test sets are then averaged. When k is large this method
gives an almost unbiased estimation of true performance. However, it requires the classifier
to be trained k times. If we try to choose the best values for C and γ among 10× 10 = 100
parameter value combinations and k = 10, it would require 1000 classifiers to be trained.
Even for small dataset sizes, this may be prohibitively expensive in terms of running time.

The second approach to selecting of values for γ and C in the SVM RBF kernel uses
different approximations of the test error based on the training error and/or different char-
acteristics of the SVM classifier. An example of such an estimation is the radius-margin
bound introduced by Vapnik in (Vapnik, 1998). Other examples include the trace bound
of Bartlett and Mendelson (2001), compression scheme of Floyd and Warmuth (2005) and
sparse margin bound of Herbrich et al. (2000). Also noteworthy are the compression ap-
proach described in (Luxburg et al., 2004) and the span estimation introduced in (Vapnik
and Chapelle, 2000). Work in (Luxburg et al., 2004) makes a comparison between meth-
ods that follow this second type of approach and argues that the compression approach
and span estimation are the best. The idea of span estimation was further developed in
(Chapelle et al., 2002), where authors provided a gradient descent algorithm for two similar
approximations of Leave-One-Out error. It was shown that the proposed method converges
to almost optimal parameters for only few iterations of the algorithm. This method has not
been considered in our paper, but it will be included in the future work.

In this paper we propose two new techniques for SVM parameter value estimation for
the RBF kernel, based on an analysis of the locations of support vectors. It is well known
that increasing the flexibility of the classifier can achieve a reduction in the misclassification
rate for the training samples. However, the plot for such a reduction usually has an “elbow”:
after a certain degree of flexibility, the misclassification rate continues to decrease very slowly
or even remains constant. This kind of idea is the motivation for our first approach. For the
second approach, if, after classification, we observe large connected regions of misclassified
objects, this indicates that these regions might be easily modelled by using a more flexible
classifier. Once an appropriate classifier has been found, all errors have approximately the
same distribution along the hyperplane and it is not possible to significantly decrease the
number of errors by small changes in the classifier’s shape. This property may be represented
as a monotonically decreasing function also having an “elbow”. The well known AIC and
BIC formulas provide a way to construct a convex function attaining its minimum at this
“elbow” point.

We now present an outline of the rest of the paper. In the first section we describe
the background for SVMs and kernel functions. Section 2 describes the background for
the AIC/BIC formulas and aspects of their derivation. In Section 3 we present general
considerations about how AIC and BIC may be applied as part of the search for optimal
SVM parameter values for RBF kernel. This is then followed by derivations of our two

98

AIC and BIC based approaches for SVM parameter value estimation

likelihood functions. After this, we conduct an experimental study of the performance of
our methods and compare them to existing techniques. Finally, we discuss the implications
of our results and outline future work.

2. Background on Support Vector Machines

The idea behind SVMs is to construct a separating hyperplane that has the largest distance
from the closest points of different classes. It has several important properties. First, it uses
quadratic programming and can be computed relatively efficiently even for large numbers of
points. Second, it is a sparse method, meaning that the location of the hyperplane depends
only on a small number of data points, called the support vectors. Third, the ability to use
kernels provides an elegant way to generalize for when the separating surface is non linear.
However, the problem of finding the most appropriate kernel and parameter values for the
kernel remains an open problem.

Let us consider the classification problem with two classes Y = {−1, 1} in a space
X = Rd. We construct the classifier

a(x) = sign(
n∑
i=1

ωix
i + b) = sign(〈ω, x〉+ b),

where x = (x1, . . . , xd) is a feature vector, and ω, b are computed by the SVM. The equation
〈ω, x〉+b = 0 describes the separating hyperplane. The original SVM minimization problem
is the following:

1

2C
〈ω, ω〉+

N∑
i=1

ξi → min
ω,b,ξ

yi(〈ω, xi〉+ b) ≥ 1− ξi ∀i = 1, . . . , N

ξi ≥ 0 ∀i = 1, . . . , N

(1)

for some constant C > 0. The value of this constant is a parameter of the algorithm.
Instead of this, it is much easier to solve a dual problem, which is a well studied quadratic

programming problem:

1

2

N∑
i=1

N∑
j=1

λiλjyiyj〈xi, xj〉 −
N∑
i=1

λi → min
λ

;

0 ≤ λi ≤ C ∀i = 1, . . . , N ;

N∑
i=1

λiyi = 0.

(2)

When this problem is solved, ω and b are calculated as
ω =

N∑
i=1

λiyixi;

b = yi − 〈ω, xi〉 ∀i : 0 < λi < C.

Here λi ≥ 0 only for points that have a distance from the hyperplane yi(〈ω, xi〉 + b) ≤ 1.
These points are called support vectors. Moreover, λi < C only for margin support vectors,

99

Demyanov Bailey Ramamohanarao Leckie

i.e., for points having the distance from the hyperplane di = yi(〈ω, xi〉 + b) = 1. For all
other support vectors λi = C and di < 1. Notice that points having λi = 0 do not influence
the solution (which is why the algorithm has a “sparsity” property).

Another property that makes SVMs popular is the possibility to use kernels. If the
dataset is poorly separated in the original feature space, it may be the case that it is better
separated in some space H with more dimensions. Consider some function φ(x) : X → H,
which transforms original vectors into such a space. The optimization problem does not
depend directly on the features, only on dot products, so the only difference compared to
the original SVM formulation is that now we need to use the dot product in the new space
〈φ(x), φ(x′)〉.

A function K(x, x′) is called a kernel if it can be represented in the form 〈φ(x), φ(x′)〉
for some function φ : X → H. Kernels can be very different, which leads to a significant
variety of possible algorithms. In all cases we simply substitute the original dot product by
its analogue given by the kernel function:

a(x) = sign(

N∑
i=1

λiyiK(x, xi) + b)

b = yi −
N∑
j=1

λiyiK(xi, xj) ∀i : 0 < λi < C.

(3)

The RBF and polynomial kernels are the most popular classical SVM kernels. The first
one is defined for two vectors and γ > 0 according to the formula

K(x, y) = 〈φ(x), φ(y)〉 = exp(−γ||x− y||2)

Although many kernels have been proposed, no single kernel is the best for all problems.
When using very small values of γ in the RBF kernel, the dot product for any two points
is close to 1 and so according to the third equation in (2) and (3) a(x) = sign(b). This is
the situation of underfitting. At the same time, very large values of γ lead us to an identity
dot product matrix, implying each point from the training set is classified to its own class.
This situation is called overfitting. Thus, there is the challenge to select the best values of
γ (and C) for the RBF kernel.

3. Background on AIC and BIC

Next we provide an overview of these two well known criteria. As mentioned earlier, the
problem of model selection is to find a compromise between the quality of classification
and generalization. In 1974, Hirotsugu Akaike presented a formula which is expected to
obtain its minimum when applied to the best model. It is simply the sum of the negative
log likelihood of the observed data under the current model plus the number of its fitted
parameters. This method is known as Akaike Information Criterion (AIC). The first term
of this function reflects the quality of fitting, whilst the second penalizes overly complex
models. Its derivation is based on the Kullback-Leibler divergence - a (non-symmetric)
measure of difference between two probability distributions.

100

AIC and BIC based approaches for SVM parameter value estimation

Let Z be the observed data, Mi the candidate model, θi the vector of parameters in the
model Mi, |θi| its length, and θ̃i and θ̂i the best and the maximum likelihood vectors of
parameters for this model. Assuming that p(x) is a true p.d.f. and q(x|θi) is a parametrized
p.d.f. in the model Mi, θ̃i minimizes DKL(p(x)||q(x|θi)). This is equivalent to

Ep

[
∂

∂θi
log(q(x|θi))|θi=θ̃i

]
= 0,

where Ep is the expectation with respect to the distribution p(x). Applying a Taylor

expansion to the function logL(θ̂i|Z) = log q(Z|θ̂i) around the point θ̃i and taking the
expectation, we get the first order term equal to zero. After using the approximation for
the second order term, we obtain the final result:

− logL(Mi|Z) ≈ − logL(θ̂i|Z) + |θi|

For our experiments we use the corrected version AICc

− logL(Mi|Z) ≈ − logL(θ̂i|Z) + |θi|+
|θi|(|θi|+ 1)

N − |θi| − 1
, (4)

which is necessary when the relation between dimensionality and total number of observa-
tions |θi| � N does not hold. An in-depth discussion about AIC may be found in (Burnham
and Anderson, 2002).

In 1978 Schwarz presented another approach, arising from a probabilistic description of
the data given a current model. This method came to be known as the Bayesian Information
Criterion (BIC). It has almost the same form as the AIC. However, it penalizes complex
models more heavily. Instead of expansion around the unknown vector θ̃i, the expansion
around the known θ̂i is used. A comprehensive description of the BIC derivation may be
found in (Bhat and Kumar, 2008). Using the same notation as for AIC, we reproduce the
final result:

logL(Mi|Z) ≈ logL(θ̂i|Z) + log gi(θ̂i) +
|θi|
2

log 2π − log |Hθi |
2

Here g(θi) is the prior probability of parameters θi, Hθi is the Hessian matrix, consisting of

Hmn
θi

= −∂
2[logL(θ̂i|Z) + log gi(θ̂i)]

∂θmi ∂θ
n
i

|θi=θ̂i .

When g(θi) is flat, it can be omitted here, as well as in the main formula for logL(Mi|Z),
since it has zero derivative and does not influence the best model arg mini L(Mi|Z). Looking
ahead, we will see later that a flat prior is preferable.

Since for independent observations

logL(θ̂i|Z) =

N∑
j=1

logL(θ̂i|zj)
N→∞−−−−→ NEp[logL(θ̂i|z)], (5)

the expression for Hmn
θi

is usually transformed into

Hmn
θi

= −N ∂2E[logL(θ̂i|z)]
∂θmi ∂θ

n
i

|θi=θ̂i = NImnθi
.

101

Demyanov Bailey Ramamohanarao Leckie

Of course, the determinant of the Fisher information matrix Iθi must be non-zero. When
N →∞, it remains constant and therefore is also usually omitted. Thus, the final formula
for BIC is the following:

− logL(Mi|Z) ≈ − logL(θ̂i|Z) +
|θi|
2

log
N

2π
(6)

In a classification problem the observed data Z consists of observations X and their
labels Y . In the SVM classifier the vector of free parameters θi contains the coordinates of
the normal vector for the separating hyperplane in the kernel space ω and the value of the
bias b. This bias term might also be considered as a coordinate of an extended vector ω, so
instead of L(Mi|Z) we use the notation L(ω|X,Y).

4. Searching for optimal values of γ and C parameters in RBF Kernel

Next, we offer some perspectives about how the AIC and BIC criteria might be used for
the problem of choosing optimal parameter values for the SVM. In the case of searching
for the best values of γ and C with RBF kernels, each pair of values for γ,C identifies an
individual model Mi.

Let some p.d.f. be a true distribution for a dataset. Each kernel function transforms
it to a new kernel p.d.f. in the transformed feature space. This new p.d.f implies a
corresponding (optimal) Bayes classifier in the same space. This classifier has a form
a(x) = arg maxy Pypy(x). Here Py are the prior probabilities of the classes, py(x) is the
p.d.f. for each class, y ∈ {−1, 1}. Since it is the best classifier for the current dataset, the
size of the region where the class predicted by the SVM differs from the Bayes classifier
is desired to be as small as possible. The perfect situation is when all points of the SVM
separating hyperplane are the points of the Bayes separating surface and vice versa. So
one way to achieve this is to consider only the class p.d.f.’s with the following property:
after Maximum Likelihood estimation of their parameters we obtain the (optimal) Bayes
classifier coinciding with the SVM classifier for the same sample. However, a true dataset’s
p.d.f. might differ significantly even from the best p.d.f of this class. Another approach
is to directly estimate whether the SVM hyperplane coincides with the Bayes separating
surface. We will present two methods, each based on one of these approaches.

In order to employ AIC and BIC functions, we also need to identify the dimensionality
(number of free parameters for the separating hyperplane in the kernel space) |θi| for each
pair of parameters. It is easy to do this when using a polynomial kernel, but less obvious
for the RBF kernel. The number of free parameters for the hyperplane is not higher than
the dimensionality of the span of points it separates. Since non-support vectors have no
influence on the hyperplane’s position, we can consider that |θi| ≤ Nsv. From another side,
we have Nm

sv margin support vectors (i.e., 0 < λi < C), and each of them has the distance
from the hyperplane di = yi(〈ω, xi〉 + b) = 1. This system of linear equations for ω and b
has at least one solution only when the number of free parameters |θi| = |ω| + 1 ≥ Nm

sv .
Since this lower bound showed better result than Nsv, we used it in our experiments.

For large values of γ (corresponding to overfitting), the dimensionality |θi| is often equal
to N and therefore the denominator in the AIC formula (4) is equal to −1. In this situation
we considered the value of AIC to be ∞, so it was higher than all other non-infinite AIC

102

AIC and BIC based approaches for SVM parameter value estimation

values. Since we were searching for the parameter value pair that had achieved the minimum
for the AIC, such γ and C could not be the solution.

5. Approach 1: Margin-based approach

In this section we derive the likelihood function of our first approach.
As we wrote before, in this first approach we consider the class of p.d.f.’s with the

following property: after Maximum Likelihood estimation of their parameters, the plug-in
Bayes classifier coincides with the SVM classifier. There exist methods to construct such
functions. For instance, Sollich (2002) introduced the third “don’t know” class to avoid
issues with normalization. In (Grandvalet et al., 2005), probability intervals were used
to interpret SVM outputs and thus the SVM solution is approximated with negative log-
likelihood. Work in (Platt, 2000) used a simple sigmoid function for the transformation of
outputs to posterior probabilities.

Franc, Zien and Schölkopf in (Franc et al., 2011) showed that the joint p.d.f. of an
observation x and its class y

p(x, y|ω) = Z(||ω||) · exp(−l(d)) · h(φ(x))

with a value ||ω|| obtained from the SVM solution that satisfies this condition. Here ω
is a normal vector to the SVM separating hyperplane in the kernel feature space, l(d) =
max(1 − d, 0) is the hinge loss function, d = y〈ω, x〉 is the distance from the hyperplane,
Z(||ω||) is a normalization constant, and h(x) is some positive integrable function, such that
h(x1) = h(x2) ∀x1, x2 : ||x1|| = ||x2||. They also showed that the plug-in Bayes classifier is
linear and coincides with the SVM solution for equal misclassification costs. Thus, assuming
that observations have this type of p.d.f., we can use the likelihood function of the SVM
solution in the AIC/BIC formulas.

The negative logarithm of this likelihood function given data X,Y can be written as

− logL(ω|X,Y) = −
N∑
i=1

log p(x, y|ω) =

N∑
i=1

l(di)−
N∑
i=1

log(h(φ(xi)))−N logZ(||ω||). (7)

Points with di ≥ 1 do not influence the SVM solution, so they have no influence on the
maximum likelihood solution, which gives the same result. This means that fitting p(x, y|ω)
and the conditional p.d.f. p(x, y|d < 1, ω) must be equivalent. Indeed, in the first term we
can use only points having di < 1, because all others have zero loss. Since ||ω|| is given, the
solution also does not depend on h(x) and Z(ω). Therefore, for a fixed ||ω||

arg min
ω

[− logL(ω|X,Y)] = arg min
ω

N∑
i=1

l(di) (8)

This result is not surprising if we look at the original function (1) that the SVM algorithm
aims to minimize and notice that ξi = l(di). The first term in the formula (7) is linear as a
function of ω, so its second derivative is zero. The second term depends only on ||x|| and
therefore has zero second derivative as well. However the third term Z(||ω||) gives non-zero
diagonal elements for the matrix Iθi and thus it has a non-zero determinant.

103

Demyanov Bailey Ramamohanarao Leckie

Extending this connection, we can assign a prior distribution for ||ω|| to be gi(ω) =
exp(−||ω||2/(2C)) in order to ensure its negative logarithm is equal to the first term in the
function (1). However, as our experimental analysis will show, using a simple flat prior for
||ω|| gives better results. This method requires only the calculation of

N∑
i=1

l(di) =
N∑
i=1

l(yi

Nsv∑
j=1

yjλjK(xi, xj)),

which takes O(N2) operations. In practice it is a negligible amount of time in comparison
to the SVM training procedure.

6. Approach 2: Density-based approach

Next we derive the likelihood function for our second approach based on AIC/BIC.
If for some γ the SVM hyperplane coincides with the (optimal) Bayes classifier for a true

data distribution p(x, y), the performance of the SVM cannot be improved by increasing
the value of γ (which implies increasing the kernel dimensionality). The Bayes classifier
for equal misclassification costs has the form a(x) = arg maxy Pypy(x). Here Py are prior
probabilities of classes, and py(x) is the p.d.f. for each class, y ∈ {−1, 1}. This means that
for each point x on the separating hyperplane, the equation P1p1(x) = P−1p−1(x) holds.

In order to make the Bayes classifier’s surface coincide with SVM separating hyperplane,
we require all points that have been classified to the class y satisfy the inequality Pypy(x) >
P−yp−y(x). For continuous p.d.f. functions it implies that only for points on the hyperplane
it is true that P1p1(x) = P−1p−1(x), i.e., this is equivalent to the original requirement. To
use the AIC and BIC formulas, we need to calculate the probability that these inequalities
hold for every point in the dataset. Assuming that at each point it holds independently
from others, total likelihood of the SVM solution can be expressed as

L(ω|X,Y) =
∏
i

Pr
[
Py(i)py(i)(xi) > P−y(i)p−y(i)(xi)

]
Let us fix some point xi of the dataset and a sphere of radius r around this point.

If we consider that density functions pyi(x) and p−yi(x) are constant inside this sphere,
the probability of a point in it being from class yi might be calculated using the following
formula:

qi =
Pyipyi(xi)

Pyipyi(xi) + P−yip−yi(xi)
(9)

Using qi, the previous expression may be rewritten as

− logL(ω|X,Y) = −
∑
i

log Pr

[
qi >

1

2

]
Let nr1(xi) and nr−1(xi) denote the number of positive and negative points in this sphere.

Since we suppose that all points in the dataset are independently drawn from the same
distribution, the probability of obtaining values nr1(xi) and nr−1(xi) for a certain qi is simply

104

AIC and BIC based approaches for SVM parameter value estimation

the value of the binomial distribution Bi(qi;n
r
y(i)(xi), n

r
y(i)(xi)+nr−y(i)(xi)) with parameters

qi as a probability of success and nry(i)(xi) successful outcomes among nry(i)(xi) + nr−y(i)(xi)

experiments. Given the certain values of nry(i)(xi) and nr−y(i)(xi), we are interested in the

probability that qi > 1/2.
For extreme values q ≤ 0 and q ≥ 1 Bi(q;nry, n

r
1+nr−y) = 0, so this function is integrable

and therefore after normalization it may be considered as a probability density function of
the parameter q. Hence,

Pr

[
q >

1

2

]
=

∫ 1
1/2Bi(q;n

r
y, n

r
y + nr−y)∫ 1

0 Bi(q;n
r
y, n

r
y + nr−y)

=

=

∫ 1/2
0 qn

r
−y(1− q)nr

y∫ 1
0 q

nr
−y(1− q)nr

y
=
B(12 ;nr−y + 1, nry + 1)

B(nr−y + 1, nry + 1)

(10)

Here B(a, b) is the Beta function and B(x; a, b) is an incomplete Beta function. Both of
these functions can be calculated efficiently.

As for our previous approach, we require that non-support vectors have no influence on
the likelihood function. This means that for all non-support vectors, Pr[qi > 1/2] = 1. In
our experiments we have assumed that this is also true for all correctly classified points.
Thus the only contributing points are the support vectors that have been misclassified.

There is still one free parameter r. For all these points we choose the fixed sphere
radius yielding the lowest probability for L(ω|X,Y). This approach allows us to capture
large connected regions of misclassified objects, which is a characteristic of underfitting. Of
course, points from the other side of the hyperplane are not included in the sphere, as they
are expected to have another value of qi.

This kind of discrete likelihood function cannot be differentiated, but its expectation
with respect to {X,Y } for continuous p(x, y) is also continuous. Therefore the determinant
of the Fisher information matrix is non-zero and usage of the AIC/BIC formulas is legit-
imate. This method requires calculation of the distance between all pairs of points in the
dataset. Using the kernel function, it may be computed with the following formula:

d(xi, xj) =
√
K(x1 − x2, x1 − x2) =

√
K(x1, x1)− 2K(x1, x2) +K(x2, x2)

requiring O(N2) operations.
When choosing the best radius r, it is enough to consider only the values of distance

between points, because only at these values the likelihood function may change. In order
to do this, we need to sort all distances between misclassified points and all other points
(≤ NSVN values), what requires O(NSVN logN) operations in total. Next, we iteratively
take each radius and recalculate the probability Pr [qi > 1/2] for the point xi having this
radius as a distance from xi to one of the other points. It takes O(NSVN) operations, one
for each radius. For large γ NSV ≈ N , so the total number of operations for this method
is O(N2 logN). In practice, it takes much less time, since it is enough to consider a fixed
amount of different values of radius (e.g., 50) and choose the minimum value of likelihood
function. For a relatively small dataset (≤ 1500 points) this algorithm runs faster than the
SVM training procedure.

105

Demyanov Bailey Ramamohanarao Leckie

7. Experiments

This section provides the details of the experimental evaluation of two proposed approaches.
Work by Luxburg et al. (2004) described a model selection approach based on the

compression quality for different values of γ and C. They showed how to compress the
SVM classification results for all points. The main idea was to code the position of the
hyperplane with the required accuracy and then add the information about misclassified
points. The values of parameters where the compression rate is highest are then chosen.
They made a comparison of their compression schemes with different error generalization
bounds and showed that the best quality among all tested methods was achieved for their C2
and C3 compression codes, and span estimation of Leave-One-Out (LOO) cross-validation
error, introduced in (Vapnik and Chapelle, 2000).

Our experiments followed the same design as described in (Luxburg et al., 2004). Train-
ing and test subsets were normalized according to the maximum and minimum values of
the training set. Instead of fixed sizes m = 100 and m = 500 we performed computations
for all values from 100 to 1500 (when the dataset was large enough), with step size 100. For
each dataset, each training set size and each experiment we calculated the test error for the
classifier learned with the parameters predicted by a given algorithm. An algorithm curve
represents an average test error for 30 different experiments (splits on the training and test
parts). Two plots for each dataset are presented: one for each likelihood function. We
used the following values of parameters: C ∈ [100, . . . , 105], γ ∈ [10−3, . . . , 103] and tested
using twelve well-known datasets. Since the dataset “usdigits-0” had ten output labels, we
considered the first digit as one class and all others as another class. All experiments were
conducted using the LibSVM (2011) software.

Table 1: List of datasets

dataset features size positive negative

diabetis 8 768 268 500
german 20 1000 300 700
image 18 2086 1188 898

banana 2 5300 2376 2924
ringnorm 20 7400 3664 3736
twonorm 20 7400 3703 3697

splice 60 2991 1344 1647
waveform 21 5000 1647 3353
usdigits-0 256 11000 1100 9900
abalone 8 4177 2081 2096
titanic 6 2201 711 1490
thyroid 21 7200 534 6666

We compared our two approaches against the C3 compression code as a baseline, be-
cause it involves eigenvalues only for the restricted kernel matrix K(xi, xj), where xi, xj
are the support vectors, and therefore it runs relatively efficiently. However, it requires
O(N3

SV) = O(N3) for large γ, which can be prohibitive even for medium size datasets. An-
other computationally expensive step is the calculation of the radius of the smallest sphere

106

AIC and BIC based approaches for SVM parameter value estimation

around support vectors. This is a quadratic programming problem, but it may be approxi-
mated by the maximum distance to their centre. This C3 baseline technique is denoted as
“Compression”.

We did not compare against the span estimation method in our experiments, since its
computational time was prohibitive. Instead, we compared against another baseline of
simple “Hold out” validation: each training set was split into two subsets (75% and 25%),
which were used as learning and validation sets, and the best pair of parameters γ and
C was the pair that gave the minimum error on this small validation set. This simple
method requires only one training procedure and therefore has similar running time to our
approaches. This second baseline technique is denoted as “Validation”.

In the plots, the “Test Minimum” curve is an average of the 30 test error minimums -
the best (and lowest) possible result. We present the results for variations of our methods
corresponding to combinations of i) our two different likelihood functions (Margin and Den-
sity) and ii) the two different complexity penalty terms (AIC and BIC). Our four methods
are thus termed Density-AIC, Density-BIC, Margin-AIC and Margin-BIC.

We also assessed the statistical significance of the differences in accuracy between each
pair of algorithms. In particular, for each dataset and each algorithm, 90 different error
values were selected: 30 for each of dataset sizes 1300, 1400 and 1500. The 90 values for the
first algorithm were then compared against the 90 values for the second algorithm using a
left-tail t-statistic and a p-value was obtained. For the smaller datasets, different dataset
sizes were used: 300-500 for “diabetis” and 500-700 for “german”. The p-value was consid-
ered to be significant using a threshold of 0.05. Table 2 shows the results.

100 200 300 400 500
0.22

0.23

0.24

0.25

0.26

0.27

0.28
diabetis

Dataset Size

A
ve

ra
ge

 E
rr

or
 R

at
e

Margin AIC
Margin BIC
Compression
Validation
Test Minimum

100 200 300 400 500
0.22

0.23

0.24

0.25

0.26

0.27

0.28
diabetis

Dataset Size

A
ve

ra
ge

 E
rr

or
 R

at
e

Density AIC
Density BIC
Compression
Validation
Test Minimum

100 200 300 400 500 600 700
0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.3

0.31
german

Dataset Size

A
ve

ra
ge

 E
rr

or
 R

at
e

Margin AIC
Margin BIC
Compression
Validation
Test Minimum

100 200 300 400 500 600 700
0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.3

0.31
german

Dataset Size

A
ve

ra
ge

 E
rr

or
 R

at
e

Density AIC
Density BIC
Compression
Validation
Test Minimum

107

Demyanov Bailey Ramamohanarao Leckie

100 300 500 700 900 1100 1300 1500
0.02

0.03

0.04

0.05

0.06

0.07

0.08

image

Dataset Size

A
ve

ra
ge

 E
rr

or
 R

at
e

Margin AIC
Margin BIC
Compression
Validation
Test Minimum

100 300 500 700 900 1100 1300 1500
0.02

0.03

0.04

0.05

0.06

0.07

0.08

image

Dataset Size

A
ve

ra
ge

 E
rr

or
 R

at
e

Density AIC
Density BIC
Compression
Validation
Test Minimum

100 300 500 700 900 1100 1300 1500
0.09

0.095

0.1

0.105

0.11

0.115

0.12
banana

Dataset Size

A
ve

ra
ge

 E
rr

or
 R

at
e

Margin AIC
Margin BIC
Compression
Validation
Test Minimum

100 300 500 700 900 1100 1300 1500
0.09

0.095

0.1

0.105

0.11

0.115

0.12
banana

Dataset Size

A
ve

ra
ge

 E
rr

or
 R

at
e

Density AIC
Density BIC
Compression
Validation
Test Minimum

100 300 500 700 900 1100 1300 1500
0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

ringnorm

Dataset Size

A
ve

ra
ge

 E
rr

or
 R

at
e

Margin AIC
Margin BIC
Compression
Validation
Test Minimum

100 300 500 700 900 1100 1300 1500
0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

ringnorm

Dataset Size

A
ve

ra
ge

 E
rr

or
 R

at
e

Density AIC
Density BIC
Compression
Validation
Test Minimum

100 300 500 700 900 1100 1300 1500
0.02

0.025

0.03

0.035

0.04

0.045

0.05
twonorm

Dataset Size

A
ve

ra
ge

 E
rr

or
 R

at
e

Margin AIC
Margin BIC
Compression
Validation
Test Minimum

100 300 500 700 900 1100 1300 1500
0.02

0.025

0.03

0.035

0.04

0.045

0.05
twonorm

Dataset Size

A
ve

ra
ge

 E
rr

or
 R

at
e

Density AIC
Density BIC
Compression
Validation
Test Minimum

108

AIC and BIC based approaches for SVM parameter value estimation

100 300 500 700 900 1100 1300 1500
0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

splice

Dataset Size

A
ve

ra
ge

 E
rr

or
 R

at
e

Margin AIC
Margin BIC
Compression
Validation
Test Minimum

100 300 500 700 900 1100 1300 1500
0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

splice

Dataset Size

A
ve

ra
ge

 E
rr

or
 R

at
e

Density AIC
Density BIC
Compression
Validation
Test Minimum

100 300 500 700 900 1100 1300 1500
0.08

0.09

0.1

0.11

0.12

0.13

0.14

waveform

Dataset Size

A
ve

ra
ge

 E
rr

or
 R

at
e

Margin AIC
Margin BIC
Compression
Validation
Test Minimum

100 300 500 700 900 1100 1300 1500
0.08

0.09

0.1

0.11

0.12

0.13

0.14

waveform

Dataset Size

A
ve

ra
ge

 E
rr

or
 R

at
e

Density AIC
Density BIC
Compression
Validation
Test Minimum

100 300 500 700 900 1100 1300 1500
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
usdigits0

Dataset Size

A
ve

ra
ge

 E
rr

or
 R

at
e

Margin AIC
Margin BIC
Compression
Validation
Test Minimum

100 300 500 700 900 1100 1300 1500
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
usdigits0

Dataset Size

A
ve

ra
ge

 E
rr

or
 R

at
e

Density AIC
Density BIC
Compression
Validation
Test Minimum

100 300 500 700 900 1100 1300 1500
0.19

0.2

0.21

0.22

0.23

0.24

0.25
abalone

Dataset Size

A
ve

ra
ge

 E
rr

or
 R

at
e

Margin AIC
Margin BIC
Compression
Validation
Test Minimum

100 300 500 700 900 1100 1300 1500
0.19

0.2

0.21

0.22

0.23

0.24

0.25
abalone

Dataset Size

A
ve

ra
ge

 E
rr

or
 R

at
e

Density AIC
Density BIC
Compression
Validation
Test Minimum

109

Demyanov Bailey Ramamohanarao Leckie

100 300 500 700 900 1100 1300 1500
0.205

0.21

0.215

0.22

0.225

0.23

0.235
titanic

Dataset Size

A
ve

ra
ge

 E
rr

or
 R

at
e

Margin AIC
Margin BIC
Compression
Validation
Test Minimum

100 300 500 700 900 1100 1300 1500
0.205

0.21

0.215

0.22

0.225

0.23

0.235
titanic

Dataset Size

A
ve

ra
ge

 E
rr

or
 R

at
e

Density AIC
Density BIC
Compression
Validation
Test Minimum

100 300 500 700 900 1100 1300 1500
0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06
thyroid

Dataset Size

A
ve

ra
ge

 E
rr

or
 R

at
e

Margin AIC
Margin BIC
Compression
Validation
Test Minimum

100 300 500 700 900 1100 1300 1500
0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06
thyroid

Dataset Size

A
ve

ra
ge

 E
rr

or
 R

at
e

Density AIC
Density BIC
Compression
Validation
Test Minimum

Table 2: Statistical significance results for pairs of algorithms. The value of cell (i, j) cor-
responds to the number of datasets where algorithm i is statistically significantly
better than algorithm j.

MAIC MBIC DAIC DBIC Compression Validation

MAIC 0 4 1 8 3 2
MBIC 4 0 3 8 4 4
DAIC 5 6 0 8 7 7
DBIC 3 1 1 0 2 4

Compression 4 3 1 7 0 6
Validation 6 6 4 7 5 0

8. Discussion of Results

We now discuss the plots from the previous section. One can see that all curves follow
the “Test Minimum” shape almost everywhere, and therefore they appear to be reliable
predictors for the best parameters. The single exception is the “Margin AIC” curve for the
“banana” dataset, which shows adequate results only for dataset sizes ≥ 1200. In Table 2,
we see that the “Density AIC” method achieved the best performance: it was consistently

110

AIC and BIC based approaches for SVM parameter value estimation

better than each of the other algorithms. Moreover, it appears to be the only one that is
better than “Validation”. It is difficult to draw any clear conclusion from the table either
about what type of penalty term is better (AIC or BIC) or about likelihood functions
(Margin or Density).

While “Density AIC” clearly outperforms the other algorithms, there were two datasets
where it did not converge to the “Validation” baseline (“splice” and “usdigits-0”). These
datasets differ from others in two things: they have the largest number of features among
all considered datasets and a very low rate of unique values for features. The influence of
number of features is presented in the plots below.

0 10 20 30 40 50 60
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
γ Î [0.01,0.1], average of 30 experiments

Number of features

M
is

cl
as

si
fic

at
io

n
er

ro
r

Density AIC
Validation
Test Minimum

0 10 20 30 40 50 60
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
γ Î [0.1,1], average of 30 experiments

Number of features

M
is

cl
as

si
fic

at
io

n
er

ro
r

Density AIC
Validation
Test Minimum

At first we were required to construct a set of points with the known best value of the
kernel parameter γ. In order to do this we employed the following procedure. In each
experiment (30 for each number of features) we randomly generated 800 points and their
labels in the cube [−2, 2]d and the kernel parameter γ from a particular range ([0.01,0.1]
or [0.1,1]). After that we iteratively classified these points by the SVM classifier with this
parameter γ and C = 10 and reassigned the labels until convergence. Finally, we generated
the test set with 10000 points that was perfectly separated by this classifier. Then we
started the algorithms for searching the best parameters as they were described earlier. In
the end the error rate of each algorithm was averaged for each number of features.

We can see that on the left plot (true γ ∈ [0.01, 0.1]) the Density AIC algorithm performs
well almost everywhere, but on the right plot (true γ ∈ [0.1, 1]) is starts to perform worse for
d ≥ 25. It is the dimensionality when the algorithm stops to recognize the right value of the
parameter and predicts the same value as for the datasets from the left plot. Thus, we can
claim that the higher dimensionality of the dataset with the fixed number of points, the lower
the maximum value of γ that algorithm is still able to identify. Other experiment showed
that the rate of unique values of features have no significant influence on the performance.

9. Summary

We described two new approaches for using AIC and BIC to estimate the best values of
parameters γ and C to use in an SVM with RBF kernel. Our approaches are based on
two likelihood functions, derived from different perspectives. The first operates using dis-
tances of points from the hyperplane, the second analyses the disposition of support vectors.
Our two approaches were embodied in four different algorithms: Margin-AIC, Margin-
BIC, Density-AIC and Density-BIC. Among these four algorithms, the best performing was

111

Demyanov Bailey Ramamohanarao Leckie

Density-AIC, which generally outperformed all others, including the more computationally
expensive baseline methods “C3” compression code described in (Luxburg et al., 2004) and
the simple “Validation” method.

References

P. Bartlett, S. Mendelson. Rademacher and Gaussian complexities. Risk bounds and struc-
tural results. In Proceedings of the 14th Annual Conference on Computational Learning
Theory, pages 273-288, 2001.

H.S. Bhat, N. Kumar. On the derivation of the Bayesian Information Criterion, http:

// nscs00. ucmerced. edu/ ~ nkumar4/ BhatKumarBIC. pdf , 2008

K. P. Burnham, D. R. Anderson. Model Selection and Multimodel Inference. A Practical
Information-Theoretic Approach. Second Edition, 2002.

O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee Choosing multiple parameters for
support vector machines. In Machine learning, 46(1), pp. 131159, 2002.

S. Floyd and M. K. Warmuth. Sample compression, learnability, and the Vapnik-
Chervonenkis dimension. In Machine Learning, 21(3), pages 269-304, 1995.

V. Franc, A. Zien, B. Schölkopf. Support Vector Machines as Probabilistic Models, In
Proceedings of the 28th International Conference of Machine Learning, 2011

Y. Grandvalet, J. Mariethos S. and Bengio. Interpretation of SVMs with an application to
unbalanced classification. In Advances in Neural Information Processing Systems, NIPS
18, 2005.

R. Herbrich, T. Graepel, and J. Shawe-Taylor. Sparsity vs large margins for linear classifiers.
In Proceedings of the Thirteenth Annual Conference on Computational Learning Theory,
pages 304-308, 2000.

U. von Luxburg, O. Bousquet, B. Schölkopf. A Compression Approach to Support Vector
Model Selection. In Journal of Machine Learning Research 5, pages 293-323, 2004

J. C. Platt. Probabilistic outputs for support vector machines and comparisons to regular-
ized likelihood methods. In Advances in Large Margin Classifiers. MIT Press, 2000.

P. Sollich. Bayesian methods for support vector machines: Evidence and predictive class
probabilities. In Machine Learning, 46(1), pages 21-52, 2002.

V. Vapnik. Statistical Learning Theory. Wiley, 1998.

V. Vapnik, O. Chapelle. Bounds on error expectation for support vector machines. In
Neural Computation, 12(9), pages 2013-2036, 2000.

C.-C. Chang, C.-J. Lin. LIBSVM: A library for support vector machines. In ACM Trans-
actions on Intelligent Systems and Technology, 2, pages 1-27, 2011. Software available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm

112

http://nscs00.ucmerced.edu/~nkumar4/BhatKumarBIC.pdf
http://nscs00.ucmerced.edu/~nkumar4/BhatKumarBIC.pdf
http://www.csie.ntu.edu.tw/~cjlin/libsvm

	Introduction
	Background on Support Vector Machines
	Background on AIC and BIC
	Searching for optimal values of and C parameters in RBF Kernel
	Approach 1: Margin-based approach
	Approach 2: Density-based approach
	Experiments
	Discussion of Results
	Summary

