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Abstract

In this paper, we investigate the problem of exploiting global information to improve the
performance of SVMs on large scale classification problems. We first present a unified
general framework for the existing min-max machine methods in terms of within-class dis-
persions and between-class dispersions. By defining a new within-class dispersion measure,
we then propose a novel max-margin ratio machine (MMRM) method that can be formu-
lated as a linear programming problem with scalability for large data sets. Kernels can
be easily incorporated into our method to address non-linear classification problems. Our
empirical results show that the proposed MMRM approach achieves promising results on
large data sets.

1. Introduction

Support vector machines (SVMs) are one of the most popular classification methods that
have been widely used in machine learning and related fields. The standard SVMs were
derived from purely geometric principles (Vapnik, 1995), where one attempts to solve for
a consistent linear discriminant that maximizes the minimum Euclidean distance between
any data points and the decision hyperplane. Although SVMs have demonstrated good
performance in the literature, it has been noticed that the margins defined in SVMs are
exclusively determined locally by a small set of data points called support vectors whereas
all other data points are irrelevant to the decision hyperplane. The missing consideration
for global statistical information in the data set could lead to the recognition of an inferior
decision hyperplane over the training data in some cases (Huang et al., 2008).

Motivated by this important observation, a new large margin approach called maxi-
min margin machines (M4) was developed in (Huang et al., 2004a, 2008). The M4 model
takes both local information and global information into consideration by incorporating the
within-class variance into the standard SVM formulation. It builds a connection between
the standard SVM and a recently proposed minimax probability machine (MPM) (Lanckriet
et al., 2002). The MPM model, focusing on global statistical information, maximizes the
distance between the class means and minimizes the within-class variance. One extension to
the MPM, minimum error minimax probability machine (MEMPM), has been proposed in
(Huang et al., 2004b) which contains an explicit performance indicator. Another extension
is the structured large margin machine (SLMM) proposed in (Yeung et al., 2007) which is
sensitive to the data structures. Another earlier approach that is relevant in the context
of exploring both within-class and between-class measures is linear discriminant analysis
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(LDA) (Duda and Hart, 1973), which minimizes the within-class dispersion and maximizes
the between-class dispersion.

However, these techniques developed to improve (or have the potential to improve) the
standard SVMs suffer from an evident drawback of lacking scalability. They all require to
estimate covariance matrices from the data, which is very sensitive to specific data samples,
e.g., the outliers, especially in small sample size problems. Moreover, the MPM is solved via
a second order cone program (SOCP), and the M4 and SLMM require to solve sequential
SOCP programs. For high dimensional and large scale data sets, these approaches suffer
from coherent limitations regarding to computational complexities.

More recently, a relative margin machine (RMM) method was introduced to overcome
the sensitivity of SVMs over large data spread directions (Shivaswamy and Jebara, 2008,
2010). The RMM maximizes the margin relative to the spread of the data by bounding the
projections of training examples in an area with radius less than a threshold value B. It
was shown that a proper B can help improve the prediction accuracy. However, the model
is very sensitive to the value of B and the B is not easy to tune. When B is too large,
the constraint will be inactive and the solution will be the same as the SVM. When B is
too small, all training samples are bounded by B and the large margin issue will not be
appreciated enough.

In this paper, we first show many models mentioned above, such as M4, MPM, LDA,
SVMs and RMM, can be expressed in a unified general min-max machine framework in terms
of within-class dispersion and between-class dispersion measures. We then propose a novel
max-margin ratio machine (MMRM) within the min-max machine framework based on a
new within-class dispersion definition. This MMRM can be reformulated into an equivalent
linear programming problem and it possesses scalability over large data sets. Kernels can be
incorporated into the MMRM to cope with non-linear classification problems. Our empirical
results show that the proposed MMRM approach can achieve higher classification accuracies
on large data sets comparing to the standard SVMs and the RMM method.

2. Min-Max Machine Framework

In this section, we present a min-max machine framework to address binary classification
problems. First we need to define some notations used in this section and the whole paper.
We use X = {xi}nx

i=1 to denote the positive samples, and Y = {yj}
ny

j=1 to denote the
negative samples, where xi, yj ∈ <m denote the positive and negative sample vectors,
nx, ny denote the numbers of positive and negative samples respectively, and n = nx + ny
denotes the size of the training set. We use (x̄,Σx) and (ȳ,Σy) to denote the mean vectors
and variance matrices for each class respectively, such that x̄ = 1

nx

∑nx
i=1 xi, ȳ = 1

ny

∑ny

j=1 yj ,

Σx =
∑nx

i=1(xi − x̄)(xi − x̄)>, and Σy =
∑ny

j=1(yj − ȳ)(yj − ȳ)>.
We consider the problem of training a good linear classifier. The standard SVMs iden-

tify the optimal linear classifier f(x) = sign(w>x + b) as the one that maximizes the
margin between the two classes, which is equivalent to maximizing the minimum projected
between-class distance for linear separable data. However, it has been noticed that SVMs
sometimes miss the optimal solution due to the fact that they ignored global statistical
information (Huang et al., 2008). M4, MPM and RMM methods are then proposed to
tackle this drawback of SVMs by either considering both between-class and within-class
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dispersions, or considering both the margin and the bounding for all training instances.
Here we define a min-max machine framework to generalize all these models.

A min-max machine aims to determine a hyperplane H(w; b) = {x|w>x = b}, where
w ∈ <m and b ∈ <, to separate two classes of data points by minimizing the within-class
dispersion and maximizing the between-class dispersion. More specifically, we can define
the min-max machine as a general optimization problem

min
w

dw(w)

db(w)
(1)

where dw(w) and db(w) denote the within-class dispersion and between-class dispersion
respectively. By replacing dw(w) and db(w) with different specific dispersion measures, one
can obtain a set of variants of min-max machine models. Assuming linear separable data,
we will show below that LDA, MPM, SVM, M4 and RMM can be formulated within this
min-max machine framework.

2.1. Linear Discriminant Analysis (LDA)

LDA is a well known discriminative method with an optimization goal of minimizing the
within-class dispersion and maximizing the between-class dispersion, which is consistent
with the min-max machine framework we proposed. LDA optimization is typically defined

as maxw
w>Σbw
w>Σww

, where Σb = (x̄ − ȳ)(x̄ − ȳ)> and Σw = Σx + Σy. Thus the within-class
dispersion for LDA is defined as the squared root of the sum of the projected within-class
variances of the two classes

dvw(w) =
√

w>Σxw + w>Σyw (2)

and the between-class dispersion of LDA is defined as the projected distance between the
two mean (center) vectors of the two classes

dcb(w) =
√

w>(x̄− ȳ)(x̄− ȳ)>w = w>(x̄− ȳ) (3)

2.2. Minimax Probability Machine (MPM)

The optimization problem for MPM is formulated as

min
w

√
w>Σxw +

√
w>Σyw s.t. w>(x̄− ȳ) = 1 (4)

which is solved using a second order cone program (SOCP) (Lanckriet et al., 2002). One
can easily verify that this problem is equivalent to a min-max machine problem with the
between-class dispersion dcb(w) defined in (3) and the within-class dispersion defined as the
sum of the standard deviation of the two classes

dsw(w) = dsx(w) + dsy(w) =
√

w>Σxw +
√

w>Σyw (5)
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2.3. Support Vector Machines (SVMs)

The hyperplane of the standard SVM can be viewed as being determined by minimizing a
simple within-class dispersion in terms of the norm of w (note it is obvious that a smaller
norm of w will result in a smaller within-class dispersion.)

dnw =

(
1

2
w>w

) 1
2

(6)

and maximizing the between-class margin distance defined between the samples closest to
the margin (the support vectors)

dmb (w) = w>(x∗ − y∗), (7)

where x∗ and y∗ are the margin samples in class X and Y respectively such that

x∗ = arg min
xi

w>xi (8)

y∗ = arg max
yj

w>yj (9)

Applying the within-class dispersion and the between-class dispersion defined in (6) and (7),
the min-max machine problem in (1) would result to the standard linear separable SVM

min
w,b

1

2
w>w subject to w>xi + b ≥ 1, ∀i; −(w>yj + b) ≥ 1, ∀j. (10)

where the bias term is

b = b1 = −w>x∗ + w>y∗

2
. (11)

2.4. Maxi-Min Margin Machine (M4)

The M4 is proposed in an attempt to integrate SVM and MPM by considering both dis-
criminative margin information and the global statistical information. It is formulated as
an optimization problem below

max
ρ,w,b

ρ (12)

subject to w>x + b ≥ ρ
√

w>Σxw, ∀i;
−(w>y + b) ≥ ρ

√
w>Σyw, ∀j

which can be put into the framework of min-max machine by using the within-class disper-
sion, dsw(w), defined in (5) and the between-class margin distance, dmb (w), defined in (7).
The bias term b for M4 is computed via

b = b2 = −w>y∗ −
dsy(w)

dsw(w)
(w>x∗ − w>y∗).
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Figure 1: The mapping of various samples in the w space. x̄, ȳ: mean of the positive and
negative classes, x∗, y∗: margin samples (support vectors), b1, b2: bias. xi: an
outlier sample.

2.5. Relative Margin Machines (RMM)

The RMM maximizes the classification margin relative to the spread of the data. It is
formulated as

min
w,b

1

2
w>w (13)

subject to w>xi + b ≥ 1, w>xi + b ≤ B, ∀i;
−(w>yj + b) ≥ 1, −(w>yj + b) ≤ B, ∀j.

It is easy to verify that the above problem is equivalent to a min-max machine problem
where the within-class dispersion is defined as the regularized projected diameter of the
whole data set

ddw(w) = max
i,j

(w>xi − w>yj) +
D

2
w>w (14)

and the between-class margin distance, dmb (w), is defined in (7). The D in (14) is a trade-off
parameter.

The techniques we presented above suggest that a combination of different within-class
dispersions and between-class dispersions (projected to the w space) within the min-max
machine framework can lead to models with strength in different perspectives. Figure 1
provides an intuitive understanding about outlier samples, class mean vectors, marginal
samples (support vectors) and the bias terms in the projected space.

3. Max-Margin Ratio Machine

Except support vector machines and relative margin machines, all the other three methods
we reviewed within the min-max machine framework above require the estimation of co-
variance matrices, which could make the computation steps in these techniques inefficient
for high dimensional or large data sets. Moreover, covariance matrices are typically not
very robust to outlier samples. Due to these observations, in this section we propose a new
within-class margin dispersion in the min-max machine framework, which leads to a novel
classification method, max-margin ratio machine.
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3.1. Max-Margin Ratio Machine Model

Consider the within-class dispersion dsw(w) defined in (5) for MPM. It can be rewritten into
the follow by expanding the covariance terms

dsw(w) = dsx(w) + dsy(w) =
( nx∑

i=1

(w>xi − w>x̄)2
) 1

2
+
( ny∑

j=1

(w>yj − w>ȳ)2
) 1

2
(15)

Now we replace the Frobenius norm in (15) with L∞−norm, then a new within-class disperse
measure can be obtained as below

lim
d→∞

(∑

i

|w>xi − w>x̄|d
) 1

d
+
(∑

j

|w>yj − w>ȳ|d
) 1

d

= max
i
|w>x̄− w>xi|+ max

j
|w>yj − w>ȳ|

where covariance terms are avoided. For linear separable data, samples can only appear on
the correct side of the separation hyperplane, and the outliers will be far away from the
separation hyperplane. Thus to reduce the influence of possible outliers, we can consider
only samples xi and yj that satisfy w>x̄− w>xi ≥ 0 and w>yj − w>ȳ ≥ 0. From Figure 1,
we can see these samples are the ones that lie between each class center and the separation
hyperplane. With this additional constraint, the absolute value sign in (16) can be dropped,
and a novel within-class dispersion measure can be obtained

dmw (w) = max
i

(w>x̄− w>xi) + max
j

(w>yj − w>ȳ) = (w>x̄− w>x∗) + (w>y∗ − w>ȳ) (16)

which is the sum of the distances between the margin samples, x∗ and y∗, and the class
mean vectors.

This new within-class dispersion does not require data covariance terms and hopefully
the computational cost can be reduced. The outliers (see xi in Figure 1 ) that are far away
from the hyperplane, counted only in the estimation of the mean vectors, have very small
influence on this dispersion measure. This new within-class dispersion measure also builds
a connection between the between-class center distance in (3) and the between-class margin
distances in (7), such that

dmw (w) = dcb(w)− dmb (w). (17)

Combining this new within-class dispersion (16) and the between-class margin distance
dmb (w) of (7) used in SVMs in a similar way as the M4 within the min-max machine frame-
work, we can obtain the following optimization problem

max
ρ,w,b

ρ (18)

subject to w>xi + b ≥ ρw>(x̄− xi), ∀i;
−(w>yj + b) ≥ ρw>(yj − ȳ), ∀j (19)

where the ρ represents the ratio between the between-class dispersion dmb (w), and the within-
class dispersion dmw (w), which is stated in the following theorem.
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Theorem 1 For linear separable data, the following equation stands between the optimal
solution (ρ∗,w∗) for the optimization problem (18), the within-class dispersion dmw (w∗) and
the between-class margin distance dmb (w∗)

ρ∗ =
dmb (w∗)

dmw (w∗)
(20)

Proof: According to the constraints of (18), when w is fixed, the samples {xi} and {yj}
have no effect on ρ if w>(x̄− xi) ≤ 0 or w>(yj − ȳ) ≤ 0. The optimal ρ corresponding to w
is

ρ = max
b

min
i,j

{ w>xi + b

w>(x̄− xi)
,
−(w>yj + b)

w>(yj − ȳ)

∣∣∣w>(x̄− xi) > 0,w>(yj − ȳ) > 0
}

= max
b

min
{ w>x∗ + b

w>(x̄− x∗)
,
−(w>y∗ + b)

w>(y∗ − ȳ)

}

≤ max
b

w>x∗ + b− (w>y∗ + b)

w>(x̄− x∗) + w>(y∗ − ȳ)
=

dmb (w)

dmw (w)
(21)

Note that, we use the fact that if b, d > 0, then min(ab ,
c
d) ≤ a+c

b+d . The equality holds if and
only if

w>x∗ + b

w>(x̄− x∗)
=
−(w>y∗ + b)

w>(y∗ − ȳ)

which implies

b = −w>y∗ − w>(y∗ − ȳ)

w>(x̄− x∗) + w>(y∗ − ȳ)
(w>x∗ − w>y∗). (22)

� According to this interpretation, we therefore name the model we proposed in (18) above
as max-margin ratio machine. Note the optimization problem in (18) is not convex due to
the existence of the bilinear term ρw in the constraints. Although sequential quadratic
programming can be developed to solve this problem, it will not be an efficient solution.

3.2. An Equivalent Alternative Formulation

In order to obtain a simple optimization problem, we next try to integrate the proposed
within-class dispersion dmw (w) in (16) with the much simpler between-class dispersion dcb(w)
defined in (3). Within the min-max machine framework, this optimization problem can be
literally formulated as

max
w

w>(x̄− ȳ) (23)

subject to (w>x̄− w>xi) + (w>yj − w>ȳ) ≤ 1 ∀i,∀j.

More interestingly, we will show below that the two optimization problems (18) and (23)
we formulated above yield the same optimal solution.
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Lemma 2 Assuming linear separable training data, the optimization problems (18) and
(23) have the same optimal solution with respect to w.

Proof: We know dmw (w) = dcb(w) − dmb (w) (see (17)). If w∗ is the optimal solution of (18),
then

ρ(w∗) =
dmb (w∗)

dmw (w∗)
= max

w

dmb (w)

dmw (w)
.

The optimization problem (23) is

max
w

dcb(w)

dmw (w)
= max

w

dmb (w) + dmw (w)

dmw (w)
= max

w

dmb (w)

dmw (w)
+ 1 = ρ(w∗) + 1.

Therefore, w∗ is also the optimal solution of (23). �

Lemma 2 suggests the optimization problems (18) and (23) are equivalent for linear
separable data. Below we will further exploit the relationship between dmw (w), dcb(w) and
dmb (w) to construct an even simpler formulation. We consider the following equations

arg max
w

dmb (w)

dmw (w)
= arg min

w

dmw (w)

dmb (w)
+ 1 = arg min

w

dmw (w) + dmb (w)

dmb (w)
= arg min

w

dcb(w)

dmb (w)
.

This suggests a simple linear programming optimization problem as below

min
w,b

w>(x̄− ȳ) subject to w>xi + b ≥ 1, ∀i; −(w>yj + b) ≥ 1, ∀j. (24)

Theorem 3 If w is the optimal solution of (24), then w is the optimal solution of (18),
and the optimal margin ration of (18) is ρ = 2

w>(x̄−ȳ)−2
.

Proof: Assume w is an optimal solution of (24). Let x∗ and y∗ be margin samples of the
two classes along the direction w, as defined in (8) and (9). Then it is straightforward to
have wT (x∗ − y∗) = 2. Let b2 be defined as in (22), then (w, ρ = 2

wT (x̄−ȳ)−2
, b2) is a feasible

solution for (18) according to the proof in Theorem 1. If w is not an optimal solution for
(18), there will exist another feasible solution for (18), (w1, ρ1), satisfying ρ1 >

2
wT (x̄−ȳ)−2

.

Let

x1 = arg min
xi

wT
1 xi (25)

y1 = arg max
yj

wT
1 yj (26)

Assume wT
1 (x1− y1) = 2

s . Let w2 = sw1, then (w2, ρ1) is a feasible solution for (18) as well.
Moreover, wT

2 (x1 − y1) = 2, and w2 is a feasible solution for (24) since there will be a b
value such that

wT
2 xi + b ≥ wT

2 x1 + b = 1,∀i; −(wT
2 yj + b) ≥ −(wT

2 y1 + b) = 1, ∀j.

Thus we have

wT
2 (x̄− ȳ) =

2

ρ1
+ 2 <

2

ρ
+ 2 = wT (x̄− ȳ) (27)
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This inequality means w is not an optimal solution for (24), which contradicts the assumption.�

The theorem above suggests that one can solve the max-margin ratio machine problem
(18) and the problem (23) by solving a simple linear programming problem (24). Below we
show that the convex linear programming (24) is a bounded optimization problem.

Lemma 4 If w satisfies the constraints in (24), then w>(x̄− ȳ) ≥ 2.

Proof: It is straightforward to get the conclusion by summing all the constraint inequalities
in (24). �

3.3. Slack Variables for Non-separable Data

All derivations we conducted above are for linear separable data. For non-separable prob-
lems, we can add slack variables to cope with misclassification errors, which yields a soft
margin model as follow

min
w,b,ξ

w>(x̄− ȳ) + C
( nx∑

i=1

ξi +

ny∑

j=1

ηj

)
(28)

subject to w>xi + b ≥ 1− ξi, ξi ≥ 0, ∀i;
−(w>yj + b) ≥ 1− ηj , ηj ≥ 0, ∀j.

From now on, we will refer to this model as max-margin ratio machine (MMRM). This is,
again, a standard linear programming problem, which can be easily solved. Note that, we
can let C ≥ max( 1

nx
, 1
ny

) to ensure the problem have bounded solution (according to the

proof of Lemma 4).

3.4. Kernelization of MMRM

We have focused on addressing linear classification problems so far. However, it has been
well known that many linear non-separable problems are actually separable in nonlinear
high dimensional space. In order to deal with nonlinear classification problems, we exploit
the standard kernelization technique to kernelize MMRM. This is done by introducing
a nonlinear mapping function ϕ : <m → <f to map the original samples into a high
dimensional feature space Rf , and rewriting the w parameter as

w =

nx∑

k=1

αkϕ(xk)−
ny∑

l=1

βlϕ(yl) (29)

for nonnegative parameters {αk} and {βl}. The kernelized MMRM can then be obtained
by replacing the w in (28) with (29) and using a Kernel function K(·, ·) to replace the inner
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product of two high dimensional vectors, ϕ(·)>ϕ(·),

min
α,β,b,ξ

nx∑

k=1

αk

( 1

nx

nx∑

i=1

K(xk, xi)−
1

ny

ny∑

j=1

K(xk, yj)
)

(30)

−
ny∑

l=1

βl

( 1

nx

nx∑

i=1

K(yl, xi)−
1

ny

ny∑

j=1

K(yl, yj)
)

+ C
( nx∑

i=1

ξi +

ny∑

j=1

ηj

)

subject to

nx∑

k=1

αkK(xk, xi)−
ny∑

l=1

βlK(yl, xi)+b ≥ 1−ξi,∀i;

ny∑

l=1

βlK(yl, yj)−
nx∑

k=1

αkK(xk, yj)−b ≥ 1−ξj ,∀j;

αk ≥ 0, βl ≥ 0, ∀k, l; ξi ≥ 0, ηj ≥ 0, ∀i, j.

Many semidefinite kernel functions can be used here. Each different kernel function cor-
responds to a different feature mapping function. In the experiments of this paper, we in
particular used RBF kernels.

By solving the above linear programming problem,the optimal nonlinear hyperplane
(w, b) can be obtained implicitly. Given a new sample z, it can be classified by the following
function

f(z) = wT z + b =

nx∑

k=1

αkK(z, xk)−
ny∑

l=1

βlK(z, yl) + b (31)

Similarly as in SVMs, when αk > 0 and βl > 0, the corresponding xk and yl are support
vectors. The α and β are usually sparse. We only need to compute kernel values between
the few support vectors and the test sample for the prediction.

4. Experiments

In this section, we report the experimental results on both binary data sets and multi-
class data sets. The MMRM is compared with four other min-max approaches: SVM,
RMM, MPM and M4. Sedumi (Sturm, 1999) is employed to train MMRM, M4 and MPM,
and the libsvm (Fan et al., 2005) is employed to train SVM. We used the RMM code
downloaded from Internet.1 The RBF kernels used in the experiments are defined as
K(x, z) = exp(−g‖x− z‖2).

4.1. Results on UCI Data Sets

We first conducted experiments on three data sets, Ionosphere, Pima and Sonar. Each
data set was randomly partitioned into 90% training and 10% test sets. We tested both
linear classification models and kernelized classification models with RBF kernels. The
parameter g for RBF kernel, the parameter B in RMM, and the trade-off parameter C in
each comparison approach were tuned using cross validation. Classification accuracies and

1. http://www.cs.columbia.edu/~pks2103/RMM/
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Table 1: Comparisons of classification accuracies (%) and standard deviations among
MMRM, SVM, RMM, M4 and MPM.

Linear kernel
data MMRM SVM RMM M4 MPM

Ionosphere 87.8(0.3) 86.7(0.3) 85.2(0.3) 87.7(0.4) 85.2(0.4)
Pima 76.6(0.4) 77.9(0.4) 76.1(0.5) 77.7(0.4) 77.5(0.4)
Sonar 76.0(1.2) 72.4(1.2) 74.3(1.2) 74.6(1.2) 71.6(1.2)

RBF kernel
data MMRM SVM RMM M4 MPM

Ionosphere 94.4(0.3) 94.0(0.2) 94.3(0.3) 94.2(0.3) 92.3(0.3)
Pima 76.9(0.4) 78.0(0.5) 76.2(0.5) 77.6(0.4) 76.2(0.5)
Sonar 88.1(0.6) 86.5(0.7) 86.9(0.7) 87.3(0.6) 84.9(0.7)

Table 2: Comparisons of classification errors of MMRM, RMM and SVM with RBF kernels.

Data Info Errors

data sets #train #test #features #classes MMRM RMM SVM

Isolet 6238 1559 617 26 47 50 52
Usps 7291 2007 256 10 89 96 98

Letters 16000 4000 16 26 80 88 88
Mnist 60000 10000 784 10 124 129 131

their standard deviations are reported in Table 1. The reported results are the averages
over 50 random partitions for linear kernels and RBF kernels respectively. The proposed
MMRM obtained highest accuracies on two of the three data sets. Moreover, the results
suggest that kernelization can improve the classification performance of these approaches
on non-separable data sets.

4.2. Results on Large Data Sets

Although our empirical results on regular UCI data sets are promising, we are more in-
terested in investigating the performance of the proposed MMRM on large scale data sets,
where previous extensions of SVMs, such as MPM and M4, are computationally expensive.
We then conducted experiments on four large scale data sets: Letters, Isolet, Usps and
Mnist. Information about these data sets is given in Table 2. For Isolet, Usps and Letters,
we used the original data without further preprocessing. Principal components analysis
(PCA) was used to reduce the dimensionality of Mnist from 784 down to 80 to speed up
training.

We compared the proposed MMRM approach with standard SVMs and RMMs on these
four data sets while the MPM and M4 are not tested due to their high computational
complexity. Large data sets are often linear non-separable, hence we used RBF kernels.
Moreover, these four data sets have multiple classes, and we thus need to address multi-
class classification problems. In this study, we used the “one-against-one” strategy and
trained M(M − 1)/2 binary classifiers for each M -class problem. On each data set, we
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Figure 2: Relationship between prediction accuracy and margin ratio on USPS data set.

selected parameters g and C using SVMs via a 5-fold cross validation, then used the same g
and C for both RMM and MMRM. The additional parameter B in RMM was also selected
by cross validation.

Test errors of the three methods are reported in Table 2. The RMM outperformed
the SVM in most cases. However, the price of this improvement is the addition of an
extra parameter which is difficult to select and limits the generalization of the model. The
proposed MMRM obtained the lower test errors on all four data sets than both SVMs
and RMMs without adding any additional parameters. In most cases, the prediction errors
yielded by MMRMs are 10% lower than that by SVMs. The MMRM is a linear programming
problem while the SVM is a quadratic programming problem.

4.3. Margin Ratio vs. Prediction Accuracy

We also conducted experiments to investigate the relationship between the margin ratio
(ρ) achieved by the MMRM and the prediction accuracy it produced. We used the Usps
data set. We trained 45 MMRM models, where each model is trained for a pair of two
classes. We plot the margin ratio on training set and the corresponding prediction accuracy
on testing set of each pair in Figure 2. It suggests that the margin ratio of the model on
training data is positively correlated with the prediction accuracy on testing data. We used
a linear regression to model this correlation relationship: prediction accuracy = 0.20354ρ+
98.182, which implies the prediction accuracy increases linearly as the margin ratio increases.
The regression function is shown as a red line in Figure 2. This verifies our assumption
that maximizing margin ratio can lead to a classification model with good generalization
performance on testing data.
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5. Conclusion

In this paper, a unified general framework for the existing min-max machine methods was
presented in terms of within-class dispersions and between-class dispersions. Then a new
within-class dispersion measure was introduced which leads to a novel max-margin ratio ma-
chine (MMRM) method. The MMRM can be formulated as a linear programming problem
and has scalability for large data sets. Kernel techniques were used to derive the non-linear
version of MMRM to cope with non-linear classification problems. The empirical results
show that the proposed MMRM approach can achieve higher classification accuracies on
large data sets comparing to the standard SVMs and relative margin machines (RMMs).
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