
JMLR: Workshop and Conference Proceedings 25:159–174, 2012 Asian Conference on Machine Learning

Learning Temporal Association Rules on Symbolic Time
Sequences

Mathieu Guillame-Bert mathieu.guillame-bert@inria.fr

James L. Crowley james.crowley@inria.fr

INRIA Rhône-Alpes Research Center

Editor: Steven C.H. Hoi and Wray Buntine

Abstract

We introduce a temporal pattern model called Temporal Interval Tree Association Rules
(Tita rules or Titar). This pattern model can express both uncertainty and temporal
inaccuracy of temporal events. Among other things, Tita rules can express the usual
time point operators, synchronicity, order, and chaining, as well as temporal negation and
disjunctive temporal constraints. Using this representation, we present the Titar learner
algorithm that can be used to extract Tita rules from large datasets expressed as Symbolic
Time Sequences. The selection of temporal constraints (or time-frames) is at the core of
the temporal learning. Our learning algorithm is based on two novel approaches for this
problem. This first one is designed to select temporal constraints for the head of temporal
association rules. The second selects temporal constraints for the body of such rules. We
discuss the evaluation of probabilistic temporal association rules, evaluate our technique
with two experiments, introduce a metric to evaluate sets of temporal rules, compare the
results with two other approaches and discuss the results.

1. Introduction

Data mining of Temporal Association Rules has been successfully applied in numerous
domains including medical, trading, robotics, social analysis, fraud detection, marketing and
assisted design (Guimares, 2000; Keogh and Smyth, 1997). Because of the variety of domains
and types of applications, several temporal data models have proven to be useful (numeric
time series, symbolic time series, symbolic time sequences, symbolic interval series, item
set sequences, etc.)(Roddick and Spiliopoulou, 2002; Antunes and Oliveira, 2001; Mörchen,
2007). Similarly, different types of models have been studied (Episodes, sequential rules,
first order logic based rules, chronicles, etc.). For each of these data and pattern models (or
subsets of pattern models), efficient learning algorithms have been proposed.

In this paper we are using the data model called Symbolic Time Sequence (multi set
of time points associated with a symbol) to represent time. Temporal Interval Tree As-
sociation Rules (Tita rules) are a rule model that express both uncertainty and temporal
inaccuracy of temporal events. Tita rules can also express the usual time point operators,
synchronicity, order, chaining and temporal negation. The Titarl algorithm (Temporal In-
terval Tree Association Rule Learner) is a temporal learning algorithm able to efficiently
extract Tita rules from symbolic time sequences. This paper presents an improved ver-
sion of the temporal learning algorithm called Titarl (Temporal Interval Tree Association

c© 2012 M. Guillame-Bert & J.L. Crowley.

Guillame-Bert Crowley

Rule Learner) and introduced in the short paper (Guillame-Bert and Crowley, 2011). The
main improvements of this new version of Titarl are the exploration and the suppression
of duplicates in the division of rules’ heads, the smoothing of the temporal constraints, the
sampling of the input dataset instead of the complete scanning, and several implementation
improvements which are not presented in this article.

Most of the algorithms that learn temporal rules begin with the learning of frequent
patterns, and then, they ‘convert’ these patterns into association rules. We can show that
a frequent pattern is not guaranteed to give a good rule, especially in the case of datasets
with rare events (or unbalanced dataset). Therefore, we design our algorithm to directly
learn temporal rules without going through a generation of frequent patterns.

Most temporal patterns can be seen as sets of temporal constraints between events.
The core of learning temporal pattern is the learning of these temporal constraints. For the
large majority of temporal patterns, these constraints are binary constraints (constraints
over two events). Also, the constraints of a majority of temporal patterns can be expressed
as a subset of R. A constraint c ⊂ R over two time points t1 and t2 holds if and only if
(t1 − t2) ∈ c. Different algorithms allow different degree of freedom on the constraints, and
different solutions to learn them (we call this problem the Temporal Constraint Selection
Problem). Most of the techniques found in the literature ask for the user to specify this
interval as an input parameter. Our approach does not need for the interval constraints to
be fixed.

The Titarl algorithm is evaluated on both real world and computer generated datasets.
The real world dataset evaluation supports the concrete usefulness of the technique while the
evaluation on the computer generated dataset allows precise understanding of the algorithm
on various and controlled situations. In addition, the computer generated dataset contains
a ‘ground truth’. This point is discussed in the evaluation section. The computer generated
dataset is available online (Guillame-Bert, 2011).

A significant part of temporal learning algorithms are extracting sets of patterns. The
evaluation of the ‘value’ of a set of patterns is a complex problem. We propose a new tool
called Global Support Map (GSM) to evaluate such ‘value’.

The next section is a quick introspection in the related literature. The third section
defines the Titar representation. Simple examples are presented. The fourth section gives
an overview of the Titarl algorithms and explains the main improvements. The fifth section
shows and discusses the results of the application of the algorithm on several test cases.
The results of two other algorithms are presented for comparison purpose. The last section
discusses several aspects of the algorithms.

2. Related work

A simple and well studied temporal data model is the symbolic time series. This problem,
also known as sequential patterns mining problem, is to extract sequences of events e.g.
‘ab(cd)e’. In such sequences, the relations between the events are limited to be ‘before’ or
‘unconstrained’. The first problem has been fairly well studied, and powerful solutions are
existing (Ayres et al., 2002; Zaki, 1998; Pei et al., 2001; Zhao and Bhowmick, 2003).

Symbolic time sequence is an another type of data model where events are ‘time sam-
pled’. Learning on time sequences (which is different from time sequences learning/mining)

160

Learning Temporal Association Rules on Symbolic Time Sequences

extends sequential patterns mining with a much richer grammar for temporal pattern e.g.
the relations between the events of a pattern is not limited to be ‘before’ or ‘unconstrained’.
In this problem, the challenged is not only to select the events of the patterns, but also to
extract the relations (or constraints) between them.

A Temporal Constraint System (TCS) as defined by Balaban et al. (Balaban and Rosen,
1999) is a collection of existing conditions (of events) and a set of binary constraints on
these events. Binary constraint systems can be represented by directed graphs where each
node is labelled with a symbol (i.e. existing condition of an event with such symbol), and
each edge is labelled with a temporal constraint. The simplest binary constraints are before,
equals and after. All temporal pattern presented in this paper can be reduced to a TCS.

Chen et al. (Chen et al., 2003) extend the sequential patterns used in symbolic time
series mining to the mining of symbolic time sequence. Symbols expressing laps of time
are introduced e.g. the time sequence < A, T2,5, B > describes A followed, between 2 and
5 time units, by B. The two classical sequential patterns mining algorithms Aprori and
PrefixSpan are extended to this grammar. Hirate (Hirate and Yamana, 2006) extends the
work of Chen et al. to the case of sequential patterns with partial orders.

WinEpi is a well known algorithm developed by Mannila et al. (Mannila et al., 1997) to
learn Episodes and association rules (based on the episodes). Basically, WinEpi discretizes
a symbolic time sequence into a transaction dataset with a fixed window length (parameter
of the algorithm), and apply the Apriori algorithm. A Mannila et al.’s episode is defined
as a partially ordered collection of events such that, the distance between any two events is
bounded. This maximum distance is called the ‘window size’.

The MinEpi algorithm is an improvement of the WinEpi algorithm proposed by Mannila
et al. (Mannila et al., 1997). Unlike WinEpi, it is not based on a sliding window. MinEpi’s
grammar is richer than the one used by Winepi (MinEpi’s rules allows two ‘window sizes’),
and MinEpi does not need to go through the dataset several times. However, MinEpi is
more space consuming than WinEpi.

The Face algorithm has been developed by Dousson et al. (Dousson and Duong, 1999)
to extract Chronicles from symbolic time sequences. A Chronicle is defined as a collection
of events such that, the temporal distance between any two events ei and ej is restricted
to be in a subsets ci,j ⊂ R. Chronicles are particularly interesting because they are more
expressive than Episodes (which is the commonly used pattern model). This algorithm has
the particularity of not needing the user to specify (as a parameter) the interval constraints.

The EpiBF algorithm has been developed by Garriga (Casas-Garriga, 2003). This al-
gorithm is inspired from WinEpi and MinEpi. One of the main differences between EpiBF
and WinEpi/MinEpi is that, EpiBF uses local constraints between couples of elements
(called ‘time unit separation’) instead of having a global window constraint between all the
elements;

Pablo Hernandez and his colleagues (Hernandez-Leal et al., 2011) are developing an
algorithm to learn Temporal Nodes Bayesian Networks (TNBNs). TNBNs are relatively
limited to express temporal pattern with more than two events, but the algorithm is an
interesting solution to select the temporal intervals (Gaussian mixture models).

The core of temporal patterns presented in this section is the set of temporal constraints
between the events. We call this problem the Temporal Constraint Selection problem. Our
main critic on current literature is the lack of rigorous learning/estimation of these con-

161

Guillame-Bert Crowley

straints. Several techniques are simply fixing the temporal constraints as a user parameter,
or they are proposing an exhaustive evaluation of an arbitrarily subset of candidates. Since
the number of patterns grows exponentially with the number of constraints and the num-
ber candidate constraints, these solutions are not viable. Other techniques are proposing
non-robust estimations of the temporal constraints with strong suppositions on the data
(shape of the distribution, type and level of noise, etc.). Unfortunately, real world data do
not satisfy these suppositions, and the techniques can not be applied.

Our approach to this problem has three major differences with the current literature:
First, we do not suppose any properties on the dataset. Second, we are not doing any
exhaustive tests on the candidate constraints. Third, because of the fundamental difference
between the temporal constraints of the body of an association rule and the temporal
constraints of the head of an association rule, we develop two different and specialized
techniques for these two cases.

3. Tita rules

Several notations are used in this paper:
A probability distribution describes the probability of each value (or interval of values)

of a random variable. The uniform probability distribution between two points a and b is
noted Ua,b.

A (temporal) event e is a symbol (called type and noted symbole) and a time of oc-
currence (timee). The writing convention is e := symbole [timee]. A state s is a function
R → {0, 1} that maps a value for every time location (i.e. real number). If s(t) = 1, s is
said to be true at time t. Otherwise, s is said to be false at time t. A boolean function is a
function R→ {0, 1}.

A Temporal Interval Tree Association Rule (Tita rule or Titar) is a temporal pattern
with the semantic of a rule i.e. a body and a head. Several graphical examples of rules are
given in fig. 1 and detailed after the formal definition.

Definition 1 A type 1 condition c is a symbol (symbolc) and a set (possibly empty) of
type 2 conditions (condsc). The writing convention is c := 〈symbolc, condsc〉. Given a set
of events E, a type 1 condition c is true at time t if:

- E contains an event e of symbol symbolc and time t i.e. symbole = symbolc and
timee = t.

- All type 2 conditions c′ ∈ condsc are true at time t (see definition bellow).

Definition 2 A type 2 condition c is either:

- The negation of a type 2 condition c2 (written c := not c2). Here, c is true at time t
if and only if c2 is false at time t.

- A condition over a state s (written c := s). Here, c is true at time t if and only if s
is true at time t i.e. s(t) = 1.

- An association between a boolean function m and a type 1 condition c3 (written c :=
[m, c3]). Here, c is true at time t if and only if ∃t′ with m(t′ − t) = 1 and c3 is true
at time t′. The boolean function is the temporal constraint of the condition.

162

Learning Temporal Association Rules on Symbolic Time Sequences

A B 95%
U10,15

A B 95%
U10,15not s+

r1 =

r2 =

C D 100%
U10,15

s+

r3 = B
A

[−10, 0]
[−10, 0]

+
+

A C 95%
U10,15

r4 = B
[−5, 5] not +

Figure 1: Four examples of Titar rules

Definition 3 A Temporal Interval Tree Association Rule (Titar) r is a symbol (symbolr),
a confidence (confr), a non null temporal distribution (distr) called the head, and a type
1 condition (condr) called the body. distr(t − t′) is the probability density of having an
event of symbol symbolr at time t while the condition condr being true at time t′. The
temporal distribution is the temporal constraint of the rule’s head. The writing convention
is r := condr ⇒ headr 〈confr,distr〉.

When the body condr of a Tita rule r is true at time t (also written as condr(t)), r is
said to predict an event of symbol headr with a probability of confr and with a temporal
distribution of t + distr. An event e of symbol symbole = headr is said to verify such
prediction if the density of the prediction is not equal to zero at time timee i.e. f ′(timee) > 0
with f ′ := t+ distr.

The support of a rule r is the percentage of events of type headr which are predicted by
the rule. By convention the standard deviation stdr of a rule r is the standard deviation
of its probability distribution distr. The temporal precision of a rule r is defined as 1

stdr
.

By convention the prediction range (written ranger) of a rule r is the range of its temporal
distribution distr. The standard deviation and the prediction range of a rule are two
measures of the “temporal accuracy” of a rule. Depending on the application of the rules,
one measure can be more interesting to use than the other.

Definition 4 A unit Tita rule is a Tita rule with the pattern 〈 , ∅〉 ⇒ 〈 , 〉 with the
unbound term i.e. a unit rule is a direct correlation between two events. Unit Tita rule
expresses direct correlation such as: An event A at time t implies an event B between t+ 5
and t+ 10.

Definition 5 A trivial unit Tita rule is a unit rule with the pattern 〈x, ∅〉 ⇒ y 〈100%,U−∞,+∞〉.
This type of rule is called trivial because as soon as there is at least one occurrence of x and
one occurrence of y, this rule’s confidence and support are 100%.

We present four examples of Tita rules. A graphical representations of next example
rules are given in fig. 1. This representation is made to help the understanding and reading
of rules.

Example 1 Suppose the rule r1 := 〈A, ∅〉 ⇒ B 〈95%,U10,15〉. Literally, r1 expresses that if
an event of type A occurs at time t, then, an event of type B will occur between t+ 10 and
t+15 with 95% chance. This rule is a unit rule. It expresses a simple and direct correlation
between two events.

Example 2 Suppose the rule r2 := 〈A, {not s}〉 ⇒ B 〈95%,U10,15〉. Literally, r2 expresses
that if an event of type A occurs at time t and the state s is not true at time t, then, an
event of type B will occur between t + 10 and t + 15 with 95% chance. This rule uses the
negation of a state as a condition.

163

Guillame-Bert Crowley

Set of rules

Creation of
trivial unit rules

Decorrelation

Selection of a rule and
Addition of condition

Decorrelation
i.e. Division of rule

Refinement

Refinement

Until stopping criterion is met

Output

Figure 2: Structure of the Titarl algorithm.

Example 3 Suppose the rule r3 := 〈C, {[T−10,0, 〈B, {s, [T−10,0, {〈A, ∅〉}]}〉]}〉 ⇒ D 〈100%,U10,15〉
. Literally, r3 expresses that if an event of type C occurs at time tc followed by an event of
type B at time tb (with a maximum interval of 10 seconds i.e tb−10 ≤ tc ≤ tb−0) followed by
an event of type A at time ta (with a maximum interval of 10 seconds i.e ta−10 ≤ tb ≤ ta−0)
and s is true at time tb, then, an event of type D will occur between ta + 10 and ta + 15

with 100% chance. This rule is the chain of conditions A→ B → C
then
=⇒ D.

Example 4 Suppose the rule r4 := 〈A, {not [T−5,5, 〈B, ∅〉]}〉 ⇒ C 〈95%,U10,15〉. Literally,
r4 expresses that if an event of type A occurs at time t and no events of type B occur between
t− 5 and t+ 5 i.e. there are no events of type B around the event of type A, then, an event
of type C will occur between t+ 10 and t+ 15 with 95% chance. This rule shows a negation
of the occurrence of an event.

4. Learning algorithm

The structure of the algorithm has been proposed and presented in (Guillame-Bert and
Crowley, 2011). This section presents an overview of this algorithm, and details the im-
provements. The underling idea is the following one: Titarl begins by computing the set
of trivial unit rules: Given n symbols, n2 trivial unit rules are created. These rules are
‘decorrelated’, ‘refined’ and stored in a set R (R is initially empty). Next, until a stopping
criterion is meet (maximum number of rules, maximum duration of learning, etc.) the al-
gorithm picks a rule r in the set R, it adds a condition to r, ‘decorrelate’ it, ‘refine’ it, and
it adds the result back to the set R (the result can be several rules). The figure 2 shows the
global architecture of the Titarl algorithm.

The improvement of a rule is based on three different operations (Addition of condition,
division (or decorrelation) and refinement). These three operations are presented through
three examples in Figs. 3, 4, 5 and 6. Given a rule, the number of different parameters for
the improvements (Addition of condition, division and refinement) is infinite. Therefore,
for each of these three operations, we associate an improvement policy. These improvement
policies are the core of the algorithm, and they are our solution to the Temporal Constraint
Selection Problem. They are presented in the next sub-section.

164

Learning Temporal Association Rules on Symbolic Time Sequences

A B
U5,15

A B
U5,10

r7 =

r8 =

A B
U10,15

r9 =

Figure 3: Example of division of a rule. The rule r7 is di-
vided into {r8, r9}. The temporal distribution of
the rule r7 is split in two parts U5,10 and U10,15.
The division of a rule can lead to more than two
output rules.

A B 95%
U10,15C

[−10, 0] +
A B 95%

U12,13C
[−10, 0] +

Figure 4: Example of head of rule refinement. The distribution of the rule is reduced from
U10,15 to U12,13. The result rule has a greater temporal precision (i.e. lower
prediction range), but the confidence and the support of the result rule may be
lower than the confidence and support of the original rule.

4.1. Improvement policies

This subsection presents the three improvement policies used in the algorithm. Each of
these policies take as input a rule (or a set of rules), and give in return a parameter for
the corresponding operation. For example, given a rule r, the policy for the division of
rule returns the ‘best’ division function for r. Each of these policies need to scan the input
dataset of events. In the case of large datasets, the input can be randomly sampled.

4.1.1. Policy for the Addition of condition

The policy for the addition of condition relies on the information gain of addition of condi-
tion. The selection of the highest information gain is inspired from the ID3 algorithm used
to generate decision trees (Quinlan, 1986). A given percentage of the time (fixed at 90% in
the experiments), the process selects the rule and the condition to add in order to maximise
the information gain. The other ten percent of the time, the process selects a random rule
and a random condition.

4.1.2. Policy for the Division of rule

We begin the presentation of this policy with an example.

C D 95%

U10,15B
[−10, 0]

+

A
[−10, 0]

+

C D 95%
U10,15

B
[−8,−3]

+

A
[−10, 0]

+

Figure 5: Example of body of rule refinement. The boolean function of one of the condition
of the the rule is reduced from U−10,0 to U−8,−3.

A B 95%
U10,15

A B 95%
U10,15

r5 =

r6 =
C

[−10, 0] +

Figure 6: Example of addition of the condition
[T−10,0, 〈C, ∅〉] to the rule r5 := 〈A, ∅〉 ⇒
B 〈95%,U10,15〉 . The result is r6 :=
〈A, {[T−10,0, 〈C, ∅〉]}〉 ⇒ B 〈95%,U10,15〉.

165

Guillame-Bert Crowley

5 10 15

(b) histogram (c) co-occurrence
matrix

(e) colored independence
graph

(f) colored distribution

(d) co-occurrence
matrix

with threshold

(a) input rule

A B
U0,20

r1 =

(g) output rules

A B
U0,10

r2 =

A B
U10,20

r3 =5 10 15

5 10 15

5 10 15

Figure 7: The seven steps of rule division policy.

Example 5 Suppose a rule r that produces predictions that always match two events or
none. Suppose, we divide this rule into two rules r1 and r2, and that r1 and r2 produce
predictions which always match one event or none. We have, confr1 = confr2 = confr and
stdr1 ≤ stdr and stdr2 ≤ stdr. To conclude r1 and r2 are ‘better’ than r because r1 and r2
are more precise than r but their confidence is similar to the confidence of r.

The goal of this policy is to produce more temporally precise rules (decrease of rule stan-
dard deviation) while loosing as less as possible confidence and support (like the division of
r into r1 and r2). Several possible solutions have been studied to chose the ‘best divisions’
including the analysis of the shape of histograms (detection of maximums, detection of in-
flexions points, etc.) and the maximisation of the likelihood on models mixtures (Gaussian,
exponential, uniform, log-normal, etc.). These solutions rely on strong hypothesis on the
data. The final solution we propose does not rely on such hypothesis.

Given a rule r, the policy selects a ‘good division’ to split r into a set of rules {ri}
such that the rules {ri} are optimally matching always only one event. We perform this
operation with a graph colouration technique. Suppose a rule r, and condr the condition
of r. By convention condr(t) is a Boolean predicate which is true if and only if condr

is true at time t. The policy relies on the analysis of the probability distribution of the
rule distr = P (t′ − t′′|headr[t] and condr(t

′)). Fig. 7 shows a step by step example of the
process.

1. The first step is to compute H, an N categories histogram of distr (distr is the distri-
bution of a rule r). The bounds of this histogram are defined by the user parameter
histogramBounds (H is not necessarily uniform). Each category i of the histogram
corresponds to the interval Ii.

2. The second step is to compute an N by N co-occurrence matrix M such as: Given a
prediction t′ + distr of the rule r (condr(t

′) is true) and an event headr[t1] matching
this prediction ((t′ + distr)(t1) > 0) with t1 − t′ ∈ Ii, Mi,j is the probability of having
an event headr[t2] also matching this prediction with t2 − t′ ∈ Ij .

Mi,j = P (headr[t2] ∧ (t′ + distr)(t2) > 0 ∧ (t2 − t′) ∈ Ij
| condr(t′) ∧ headr[t1] ∧ (t′ + distr)(t1) > 0

∧ (t1 − t′) ∈ Ii)

166

Learning Temporal Association Rules on Symbolic Time Sequences

3. Next, we apply a set of thresholds {σi} on the covariance matrix Mi,j . We apply
alternatively the thresholds to the matrix Mi,j . The next operations will be applied
on each of these result matrices.

4. For each matrix Mi,j , we compute the graph G := ({vi} , {ei}) using Mi,j as an
adjacency matrix. {vi} are the vertices of the graph G. {ei} are the edges of the graph
G. An adjacency matrix is defined a follow: If Mi,j = 1, then there is an edge between
the vertices vi and vj . Otherwise, if Mi,j 6= 1, then there is no an edge between the
vertices vi and vj .

5. We compute the vertices colouring c : V → N of G i.e. labelling of the graph’s vertices
with colours such that no two vertices sharing the same edge have the same colour.
In this context, two vertices of different colours represent independent intervals of the
probability distribution of the rule r.

6. Finally, the division function d is defined as follow:

d(x) = c(i) with x ∈ Ii

The division function defines the division of the rule’s head. We merge all the division
function and remove the duplicates. The Thresholds are defined between 0 and 1. In

the next the experiments, σi are set to be σi = α exp
x−p
2 for i ∈ [0, p[with p = 10 and

α = 0.2. Decreasing the number of thresholds increases the speed of the algorithm,
but in the case of noisy datasets, the algorithm will produce rules with less accurate
temporal constraints (rule’s confidence, support and temporal accuracy will decrease).
If the dataset is noisy, increasing the number of thresholds increases the number of
generated rules and reduce the speed of the algorithm.
In the worse case (datasets with a very specific type of noise), the number generated

rules is bounded by min(N(N+1)
2 , N(N+1)−(N−p)((N−p)+1

2) with N the number of cat-
egories of the histogram. In our real world experiment, the average number of rules
created during this step is 1 and in the computer simulated dataset, it was about 10
in the part with the highest level of noise.

4.1.3. Policy for the Refinement of a rule

The refinement of a rule r is the modification of the temporal constraint of the conditions of
r, or the modification of the temporal distribution of r. The refinement has two objectives:
First, in the case of a modification of the temporal distribution, it can increase a rule
precision without decreasing significantly the support and the confidence. Second, in the
case of the modification of the condition, it can improve a condition, and therefore, increase
a rule confidence.Such operation is needed to get rid of the noise of initial estimation of
temporal constraints.

Head refinement
The head refinement consists in:

1. Compute a histogram of the distribution of a rule’s head.

2. Apply a small Gaussian filter on the distribution.

3. Threshold this histogram with the ruleRefinementThreshold parameter.

4. Set the new distribution of a rule’s head to be the thresholded histogram.

167

Guillame-Bert Crowley

thresholdold distribution

new distribution

Figure 8: Graphical representation of the head refinement.

The figure 8 presents graphical this operation.

Body refinement
The body refinement consists in:

1. Compute all the successful occurrences of the rule i.e. successful predictions. For each
prediction, we need to keep track of each events that make the condition true i.e. for
each predictions, we need to keep track of the mapping ‘type 2 condition of the rule’
→ ‘matching time’.

2. For each type 2 conditions of the rule c, compute the histogram h of D := {timec −
timeparent(c)}, where given a prediction, timec is the time of matching of the condition
c, and parent(c) is the type 2 parent condition of c.
Note: ∀d ∈ D,m(d) = 1 with c := [m, c′].

3. Threshold the histogram h with the ruleRefinementThreshold parameter.

4. Set the new boolean function of the condition c to be m′ with m′(t) = 1 if h(t) > 0,
m′(t) = 0 otherwise.

5. Results

We present two evaluations of our algorithm. First, the algorithm is applied on a computer
generated dataset that constraints 100 sub-parts. The second experiment is performed on
a real world dataset. This data set is based on a one month recording of human activity.
We conclude these experiments with a discussion. A new metric call Global Support Map
(or GSMap) is introduced and used to evaluate our algorithm and compares it with related
techniques.

5.1. Global Support Map

A Global Support Map (GSMap) is a tool used to evaluate a set of predictors (such as
association rules) on a temporal dataset. A support map m : [0, 1] × [0,∞] → [0, 1] is a
function mapping a minimum confidence (probability of the predictions to be true) and a
maximum prediction range (or size of prediction’s window) to a global support. The global
support is the percentage of events predicted by rules with a confidence greater or equal
than the minimum confidence and a prediction range lower or equal than the maximum
prediction range. The main advantage of GSMaps over classical metrics (e.g. confidence or
support) is to do not require an arbitrary fixed window size as it is usually done in related
literature. A GSMap can be represented as two dimensional picture. Two GSMaps can also
be compared together.

168

Learning Temporal Association Rules on Symbolic Time Sequences

P A 62%
U0.8,2.9

D A 100%
U5.9,8.3M

E
[−18,−9]

[−5,−3]

+
+

H A 95%
U2.0,4.8

F
[−10,−1]

not +

Q
[−9,−2] +

M
[−18,−10]

+

Figure 9: Three examples of rules from the generated dataset (experiment 1).

5.2. Experiment 1

We apply the Titarl algorithm on a symbolic time sequence generated on a computer. The
dataset is divided into 100 parts. Each part has a ‘ground truth’. Each part is constructed in
this following way: The algorithm randomly selects a temporal association rule (structure
and metrics) called reference rule. The confidence is chosen between 60% and 90%, the
support is chosen between 40% and 90%, the number of conditions is chosen between 1
and 4, the number of uses of the pattern is chosen between 1000 and 50000. The ratio
of noisy events/useful events is selected between 0% and 1000%. Several types of noises
are considered: A noise non-correlated with the pattern, and noises with different types
of correlations with the pattern. Next, the algorithm generates a dataset’s part with the
selected rule and parameters. This process is an heuristic, and the metrics of the rule need
to be re-evaluated on the generated part. The generated part contains and infinite number
of temporal rules (e.g. a dataset where the reference rule is A B C also contains the
rule B C with a lower confidence). However, the generative algorithm guaranties that
the reference rule is the rule with the highest score according to Equ. 1.

For a symbolic time sequence, a ground truth is not a set of the actual events to predict,
but a set of the best possible predictions to do. Such ground truth is required for the proper
evaluation of predictors on symbolic time sequences. This is especially true while dealing
with patterns with low confidence/support. For example, an algorithm producing predic-
tions with 10% confidence when the ground truth has a 15% confidence can be considered
better than an algorithm producing predictions with 50% confidence when the ground truth
has a 100% confidence.

The goal of this dataset is to precisely analysis of the robustness, completeness and
power of expression of temporal learning algorithm. As far as we know, there is currently
no available symbolic time sequence datasets associated with a ‘ground truth’. The reference
predictions are (with a small error rate) the best predictions that can be expected to do.
Fig. 9 shows three examples of patterns of the dataset. The convention is the same as the
one used for the fig. 1. The dataset is available online (Guillame-Bert, 2011).

We apply the Titarl algorithm for 60 seconds on each part of the dataset. We applied the
Minepi (Mannila and Toivonen, 1996) until it reaches the fourth loop (since the maximum
number of conditions is 4). The time bound is fixed to 100 time units and the window sizes
parameter is fixed to all integer between 1 and 100 i.e.
(w1, w2)|(w1, w2) ∈ N2 with w1 ≤ w2 ≤ 100. We applied the Face (Dousson and Duong,
1999) algorithm until it stops. On every part of the dataset, Face is run ten times with the
pMin parameter fixed between 0.1 and 1 i.e. pMin ∈ {0.1, 0.2, 0.3, · · · , 0.9, 1}.

Each generated rule is scored according to the equation 1. Since each part of the
dataset is based on only one temporal rule (called reference rule), and because the temporal
distribution of this rule is always uniform distribution (the dataset is designed in such way),

169

Guillame-Bert Crowley

algorithm Normalized Normalized A.v.g. range N.o.p.
confidence support /reference /reference
/reference /reference

Face 0.49 0.71 16.29 2.21
Minepi 0.51 0.78 3.75 1.43
Titarl (old version) 0.83 0.95 3.18 1.16
Titarl (new version) 0.90 0.99 2.09 1.11
Reference 1.00 1.00 1.00 1.00

Table 1: Evaluation of Titarl, Minepi and Face algorithms on the computer generated
dataset. The table shows the average of the ratio measure/reference measure
for the normalized confidence, normalized support, average range and number of
predictions. ‘n.o.p.’ stands for ‘number of predictions’.

then the reference rule is guaranteed to be the rule with the highest score in a given dataset.
We select the best rule from each set of leaned sets of rules according to the ‘score’.

score(r) :=
conf4r supp2

r

ranger
(1)

The cross validation is performed in the following way: (a) We extract rules for each
part of the dataset (b) We select the rule with the highest score. (c) Finally, we evaluate
this rule on another part of the dataset that contains the same pattern. We know the
exact patterns (reference rules) for each parts of the dataset. The ranges of predictions
are normalized to the ranges of the reference predictions in order to compare supports and
confidences (called normalised support and normalised confidences). For example, suppose
a part where all reference predictions have a range of 4. In addition, suppose the prediction
‘A will occurs between times 16 and 22’. This prediction has a range of 22 − 16 = 6. The
normalized prediction will be ‘A will occurs between times 17 and 21’ (range of 4). The
normalized confidence of a predictor is the confidence of its normalized predictions.

The table 1 shows the average ratio between the normalized confidence, normalized
support, average range and number of predictions of the learned rules and the confidence,
support, average range and number of predictions (n.o.p.) of the reference rules.

Minepi gives a slightly better normalized confidence and normalized support than Face.
We also observe that our algorithm outperforms Minepi and Face on normalized confidence
and normalized support. Minepi prediction ranges are better than Face prediction ranges.
Our algorithm outperform Minepi and Face on prediction range. The new version of Titarl
performs better than the old version. Detailed observation shows that the new version of
Titarl especially outperform the old version of Titarl in the part of the dataset with the
highest level of noise.

5.3. Experiment 2

The ‘Home activities dataset’ created by Tim van Kasteren et al. (van Kasteren et al., 2008)
is a record of 28 days of sensor data and activity annotations about one person performing
activities within an apartment. The apartment is equipped with sensors on doors, cupboard,
fridge, freezer, etc. Activities of the person are annotated (prepare breakfast, dinner, having
a drink, toileting, sleeping, leaving the house, etc.). The dataset is divided into two cat-

170

Learning Temporal Association Rules on Symbolic Time Sequences

start sensor toilet flush
-0-110-220

start action use toilet

conf:92% supp:82%

start sensor frontdoor
-0-25-50

start action leave house

conf:51% supp:100%

end sensor Hall Bedroom door
-0-20-40

+start sensor hall toilet door
-240 -175 -110

start action go to bed

conf:100% supp:66%

(a)

(b)

(c)

(d)

(e)

(f)

start sensor plates cupboard
-0-5-10

+end sensor groceries cupboard
0 20 40

start action prepare Breakfast

conf:100% supp:77%

start sensor frontdoor
-0-25-50

(neg)end sensor hall bathroom door
110 165 220

(neg)end sensor fridge
40 95 150

hour 17 (neg)hour 19 (neg)

start action leave house

conf:80% supp:100%

end sensor groceries cupboard
-10-30-50

start action prepare Breakfast

conf:42% supp:77%

Figure 10: Example of learned rules from the HomeDataSet (experiment 2)

egories: sensor events (start sensor fridge, end sensor fridge, start sensor frontdoor, etc.)
and change of activities (start action get drink, end action get drink, start action prepare dinner,
etc.). In addition, twenty-four states describing the time of the day (it is 1am, it is 2am,
it is 3am, etc.) is available. In this experiment, the Titarl algorithm is applied in order to
predict activity change events according to sensor events and states.

The algorithm is executed for 120 seconds for every type of event to predict (beginning
and ending of each activities).

The learned rules that predict all the uses of bathroom with at least 58% confidence
and a temporal precision of less than 100 seconds, or with 100% confidence and a temporal
precision range of 400 seconds. Direct correlations between events (unit rules) often have
good support but average confidence. The algorithm learns the direct implication between
the use of the toilet flush and the action of using toilets (confidence: 92%, support: 82%,
prediction range: 220 seconds and standard deviation: 46 seconds), or the use of the front
door and the action of leaving the flat (confidence: 51%, support: 100%, prediction range:
50 seconds and standard deviation: 11 seconds). Fig. 10 shows some example of learned
rules. The Fig. 11 shows the average GSMaps of the rules learned with the Face, Minepi
and our algorithm. Table 2 shows the statistics of the subtraction of these GSMaps.

Table 2 shows that Face is more efficient than Minepi: With the same confidence and
range constraint, Face explains an average of 41% more of events than Minepi. Titarl
outperform the Face and Minepi algorithm: With the same confidence and range constraint,
Titarl explains an average of 10% more of events than Face and 51% more of events than
Minepi.

Remark 6 The given percentage represents means of differences of global support. If the
techniques A and B have respectively a global support of 50% and 100%, the B explains
+50% of events than A.

Fig. 12 shows the evolution of the average of the GSMap for the Titarl algorithm with
the training time. Most of the events can be explained with the trivial rules learned during
the first loop (spike at time = 2). Next, the rules are refined and the metrics are improved
until they stabilize.

171

Guillame-Bert Crowley

100 200 300 400 500
maximum prediction range (s)

0

25

50

75

100

m
in

im
um

 c
on

fi
de

nc
e

(%
)

0

10

20

30

40

50

60

70

80

90

100

gl
ob

al
 s

up
po

rt
 (

%
)

100 200 300 400 500
maximum prediction range (s)

0

25

50

75

100

m
in

im
um

 c
on

fi
de

nc
e

(%
)

0

10

20

30

40

50

60

70

80

90

100

gl
ob

al
 s

up
po

rt
 (

%
)

(a) Face algorithm (b) Minepi algorithm (c) Titarl algorithm
(new version)

100 200 300 400 500
maximum prediction range (s)

0

25

50

75

100

m
in

im
um

 c
on

fi
de

nc
e

(%
)

0

10

20

30

40

50

60

70

80

90

100

gl
ob

al
 s

up
po

rt
 (

%
)

100 200 300 400 500
maximum prediction range (s)

0

25

50

75

100

m
in

im
um

 c
on

fi
de

nc
e

(%
)

0

10

20

30

40

50

60

70

80

90

100

gl
ob

al
 s

up
po

rt
 (

%
)

100 200 300 400 500
maximum prediction range (s)

0

25

50

75

100

m
in

im
um

 c
on

fi
de

nc
e

(%
)

0

10

20

30

40

50

60

70

80

90

100

gl
ob

al
 s

up
po

rt
 (

%
)

100 200 300 400 500
maximum prediction range (s)

0

25

50

75

100

m
in

im
um

 c
on

fi
de

nc
e

(%
)

0

10

20

30

40

50

60

70

80

90

100

gl
ob

al
 s

up
po

rt
 (

%
)

Figure 11: Global support maps for the ‘Home activities dataset’ represented with mono-
color and multi-colour map. GSMap shows the percentage of explained events
given a minimum confidence and a maximum prediction range. It is easy to
read global tendencies when using a mono-colour colour map. It is convenient
to read punctual support value when using a multi-colour map.

PPPPPPX
Y

Face Minepi
Titarl

(old version)
Titarl

(new version)

Face

mean : 41.65%
median : 47.33%

std : 17.51%
strict pos. : 97.70%

mean : -11.76%
median : -2.31%

std : 15.60%
strict pos. : 5.53%

mean : -15.83%
median : -9.82%

std : 17.68%
strict pos. : 26.84%

Minepi

mean : -41.65%
median : -47.33%

std : 17.51%
strict pos. : 1.72%

mean : -53.41%
median : -54.48%

std : 12.40%
strict pos. : 1.41%

mean : -57.42%
median : -59.59%

std : 12.20%
strict pos. : 1.78%

Titarl

(old version)

mean : 11.76%
median : 2.31%

std : 15.60%
strict pos. : 69.90%

mean : 53.41%
median : 54.48%

std : 12.40%
strict pos. : 98.02%

mean : -4.05%
median : -1.92%

std : 4.96%
strict pos. : 36.77%

Titarl

(new version)

mean : 15.83%
median : 9.82%

std : 17.68%
strict pos. : 73.16%

mean : 57.42%
median : 59.59%

std : 12.20%
strict pos. : 98.22%

mean : 4.05%
median : 1.92%

std : 4.96%
strict pos. : 63.23%

Table 2: Statistics of the subtraction of the GSMaps display in Fig. 11. The ‘strict pos.’
is the percentage of the global support strictly greater than 0. The GSMaps are
computed with a prediction range between 0s an 500s with 100× 100 cells.

172

Learning Temporal Association Rules on Symbolic Time Sequences

0 5 10 15 20 25
Training time (s)

0

25

50

75

100

A
ve

ra
ge

 g
lo

ba
l s

up
po

rt
(%

)

Figure 12: Evolution of the GSMap average with the training time i.e. the curve shows
the average (on the different actions) of the average (for a given GSMap) of the
GSMaps according to training time.

6. Summary and Conclusions

We identify one of the core problems of the learning on symbolic time sequences (the
Temporal Constraint Selection Problem) and presented a new solution to tackle it.

We introduce a temporal model for temporal associate rules called Tita rules. Based
on our solution for the Temporal Constraint Selection Problem, we present an efficient
algorithm (Titarl) able to learn such rules. A solution to represent performance of sets of
temporal rules is presented (GSMaps). The algorithm is evaluated on two datasets, and
compared with other approaches. The computer generated dataset shows the robustness of
the approach while the real world dataset shows the usability in practical problems.

The result of our algorithm leads us to believe that the combination of the new grammar
of temporal rules (Titar) and our techniques to mine them is a powerful tool.

References

C. M. Antunes and A. L. Oliveira. Temporal data mining: An overview. KDD 2001
Workshop on Temporal Data Mining, 2001.

Jay Ayres, Johannes Gehrke, Tomi Yiu, and Jason Flannick. Sequential pattern mining
using a bitmap representation. ACM Press, 2002.

Mira Balaban and Tzachi Rosen. Stcsp : structured temporal constraint satisfaction prob-
lems. Annals of Mathematics and Artificial Intelligence, 25, January 1999.

Gemma Casas-Garriga. Discovering unbounded episodes in sequential data. In Knowledge
Discovery in Databases: PKDD 2003, volume 2838. Springer Berlin / Heidelberg, 2003.

Yen-Liang Chen, Mei-Ching Chiang, and Ming-Tat Ko. Discovering time-interval sequential
patterns in sequence databases. Expert Systems with Applications, 25(3):343 – 354, 2003.

Christophe Dousson and Thang Vu Duong. Discovering chronicles with numerical time
constraints from alarm logs for monitoring dynamic systems. In Proceedings of the 16th
international joint conference on Artifical intelligence - Volume 1, 1999.

173

Guillame-Bert Crowley

M. Guillame-Bert. Symbolic time sequence dataset. 2011. ”available at http://www-prima.
imag.fr/guillame-bert/?page=database”.

Mathieu Guillame-Bert and James L. Crowley. New approach on temporal data mining for
symbolic time sequences: Temporal tree associate rules. In ICTAI, 2011.

G. Guimares. The induction of temporal grammatical rules from multivariate time series.
In Grammatical Inference: Algorithms and Applications, volume 1891. Springer Berlin /
Heidelberg, 2000.

Pablo Hernandez-Leal, Luis Enrique Sucar, and Jesus A. Gonzalez. Learning temporal
nodes bayesian networks. In FLAIRS Conference, 2011.

Yu Hirate and Hayato Yamana. Generalized sequential pattern mining with item intervals.
JCP, pages 51–60, 2006.

Eamonn J. Keogh and Padhraic Smyth. A probabilistic approach to fast pattern matching
in time series databases. In KDD, 1997.

Heikki Mannila and Hannu Toivonen. Discovering generalized episodes using minimal oc-
currences. In In Proceedings of the 2nd International Conference on Knowledge Discovery
in Databases and Data Mining. AAAI Press, 1996.

Heikki Mannila, Hannu Toivonen, and A. Inkeri Verkamo. Discovery of frequent episodes
in event sequences. Data Mining and Knownledge Discovery, 1, 1997.

Fabian Mörchen. Unsupervised pattern mining from symbolic temporal data. SIGKDD
Explor. Newsl., 9, June 2007.

Jian Pei, Jiawei Han, Behzad Mortazavi-asl, Helen Pinto, Qiming Chen, Umeshwar Dayal,
and Mei chun Hsu. Prefixspan: Mining sequential patterns efficiently by prefix-projected
pattern growth. 2001.

J. R Quinlan. Induction of decision trees. In Machine Learning, 1986.

J.F. Roddick and M. Spiliopoulou. A survey of temporal knowledge discovery paradigms
and methods. Knowledge and Data Engineering, IEEE Transactions on, 14(4), 2002.

Tim van Kasteren, Athanasios Noulas, Gwenn Englebienne, and Ben Kröse. Accurate activ-
ity recognition in a home setting. In UbiComp ’08: Proceedings of the 10th international
conference on Ubiquitous computing. ACM, 2008.

Mohammed J. Zaki. Efficient enumeration of frequent sequences. In CIKM ’98: Proceed-
ings of the seventh international conference on Information and knowledge management.
ACM, 1998.

Q. Zhao and S. S. Bhowmick. Sequential pattern mining: A survey. ITechnical Report CAIS
Nayang Technological University Singapore, 2003.

174

http://www-prima.imag.fr/guillame-bert/?page=database
http://www-prima.imag.fr/guillame-bert/?page=database

	Introduction
	Related work
	Tita rules
	Learning algorithm
	Improvement policies
	Policy for the Addition of condition
	Policy for the Division of rule
	Policy for the Refinement of a rule

	Results
	Global Support Map
	Experiment 1
	Experiment 2

	Summary and Conclusions

