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Abstract

We describe a bootstrapping algorithm to learn from partially labeled data, and the results
of an empirical study for using it to improve performance of sentiment classification using up
to 15 million unlabeled Amazon product reviews. Our experiments cover semi-supervised
learning, domain adaptation and weakly supervised learning. In some cases our methods
were able to reduce test error by more than half using such large amount of data.

Keywords: Sentiment Analysis, Semi-Supervised Learning, Domain Adaptation, Weakly
Supervised Learning

1. Introduction

Sentiment analysis (Nasukawa and Yi, 2003; Chen et al., 2011; Bai, 2011; Prabowo and
Thelwall, 2009; Pang and Lee, 2005) is the task of extracting opinions and emotions in
general, and from a given text, such as articles or product reviews, in particular. Performing
this analysis automatically can be used in many applications, such as generating reports for
large companies about their products from the practically limitless amount of data that is
available online.

A fundamental task of sentiment analysis is sentiment classification—given a review
about a product the goal is to classify whether it is positive or negative with respect to the
subject of the review. Pang and Lee (2008) mention that a majority of end-users claim that
they are influenced by online reviews, and in fact actively search for them. Aggregating the
ever growing amounts of sentimental data may benefit consumers as well.

In our research we follow Blitzer et al. (2007) and use Amazon product reviews, together
with the associated rating given by the reviewer. Unlike most, if not all, previous work, we
scale-up our study, and use up to 15M unlabeled reviews.

We describe a bootstrapping (self training) algorithm and apply it in a semi-supervised
learning setting, where only very small amount of labeled data is available. We show that our
method can reduce the test error by about 40% relatively to a model built with only 1, 000
labeled examples, and further investigate the influence of the initial size of the training set,
and various algorithmic choices, to obtain an optimal algorithmic combination. Motivated
from these results we apply our algorithm to two more tasks: domain adaptation with
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more than 30 domains and, unsupervised learning that replaces labeled documents with
simple rules designed with prior knowledge. We show that in all problems our algorithm is
improving performance using this large amount of unlabeled data.

2. Supervised Binary Classification

Our algorithm reduces learning with partially labeled data to supervised learning, which
we describe now. Each review is represented with a vector x ∈ {0, 1}F where for our data
F ≈ 33M is the number of features, and is associated with a binary label y ∈ {±1}, where
y = 1 (y = −1) is associated with positive (negative) sentiment. We focus on linear models:
functions of the form sign (w · x) for some weight vector w ∈ RF .

We assume the existence of a supervised algorithm that given a labeled set Sl = {(xi, yi)}
outputs a model w that performs well on that set. That is, the fraction of reviews from
Sl for which w outputs a wrong label is small. We chose to use the AROW algorithm
(Adaptive Regularization of Weight vectors) of Crammer et al. (2009) since it was shown
to work well on binary document classification, in general, and sentiment classification in
particular. The AROW algorithm is based on the CW (confidence weighted) framework
(Dredze and Crammer, 2008).

The algorithm is incremental, or online, and works in rounds. Often, it is initialized
with the zero weight vector w = 0 ∈ RF . On each round AROW picks an example from the
labeled set (x, y) ∈ Sl, and uses it to update its current model w. The algorithm maintains
not only a weight vector w ∈ RF but also a diagonal matrix Σ ∈ RF×F both represent the
mean and covariance of a Gaussian distribution. The algorithm updates both weight-vector
and covariance after processing any example. Two parameters controls the behavior of the
algorithm when it is executed in a batch setting: a learning rate r and the number of rounds
the algorithm goes over the training set. We denote by w = AROW (S) the model that
AROW outputs after iterating the training set S exactly once, setting the learning rate to
r = 10−5, which was fixed in all our experiments below. It is worth noting that a version
where r is chosen dynamically quickly converages on r = 10−5 across many settings, with
very similar results to a fixed value (a fixed value saves running time).

3. Semi-Supervised Learning (SSL)

In semi-supervised learning, algorithms are introduced not only to a labeled set of example
Sl, but also to an additional unlabeled set Su. The new set contains only input vectors (or
feature vectors) with no labels. The goal of the learning algorithm is to build a classifier
w based on both resources, which is often called inductive semi-supervised learning. We
denote the size of a set S by |S|. Typically |Sl| � |Su|, as it is often easy or cheap to obtain
unlabeled documents, yet labeling them is a long and expensive process. The goal of the
learning algorithm is to improve the performance of the output model by incorporating Su
as well.

4. Algorithm

We propose to use a bootstrapping approach for SSL. Our algorithm first builds a model
w0 using the labeled data S0

l = Sl, then using this model it picks a small subset A0
N of size
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N from the unlabeled set S0
u and labels its inputs using the model w0, constructing a new

labeled set,
S1
l ← S0

l ∪
{

(x, y) : x ∈ A0
N , y = sign(w0 · x)

}
.

The algorithm then removes the newly labeled vectors from the unlabeled set, reducing its
size by N , S1

u ← S0
u/A

0
N .

The algorithm works in iterations. On the ith iteration, it uses AROW to build a model
wi based on the set Si

l of size |Sl|+i×N , which is then used to choose and label a new set
Ai

N of size N from the unlabeled set Si
u of size Su−i×N . This set Ai

N is then labeled using
wi and removed from the unlabeled set Si+1

u to the labeled set Si+1
l . The algorithm stops

when the labeled set is exhausted, i.e., a round i for which Si
u = ∅1. For completeness, we

include below plots of the error rate vs. the amount of unlabeled data that was labeled,
evaluating the error rate in case of any-time early stopping.

To fully describe our algorithm, it remains to define how to choose the subset AN
i .

The algorithm uses the current model wi to assign a score s(x) to each unlabeled example
x ∈ Si

u and picks the N inputs with the highest score value. Since our learning algorithm
employs linear models, a natural quantity to use is the distance of an input point x from
the hyperplane defined by w,

s(x) = |x ·w|/‖w‖ ∝ |w · x| .

This approach was used by Tong and Koller (2001) in the context of active learning, where
an input with the lowest score s(x) is chosen to be labeled.

Finally, since AROW is an online algorithm, its output depends on the order of the
inputs examples. We found that the best tradeoff between speed, simplicity and diversity is
to fix a random permutation over S0

l and to add the new set of examples Ai
N , labeled by the

current model, before Si
l . In other words, in the next round i+ 1, AROW first learns with

the recently added examples Ai
N and only then it learns with remaining labeled examples.

The algorithm is summarized in Alg. 1.
We conclude this section with a complexity analysis of the algorithm. Let D be the

maximum number of non-zero elements of inputs, D = maxx ‖x‖0. Denote by L = |Sl|
and U = |Su| the size of the labeled set and unlabeled set. On iteration i the algorithm
labels U −N × i inputs and trains with L+N × i, each step takes a time of O(D). Thus,
each iteration takes O (D(U −N × i+ L+N × i)) = O (D(U + L)). There are about U/N
iterations, and thus the total running time is O (DU(U + L)/N), which scales quadratically
with the number of unlabeled examples U . We reduced the time in two ways, first setting
N to be proportional to U (e.g. N = U/1000), and second, using parallelization in the
search for the set Ai

N .

5. Data

We downloaded a few million Amazon reviews of products from 35 categories, or domains.
Beside the actual text, each review is additionally associated with a numeric ranking of 1
to 5 stars. We consider reviews with 4 or 5 stars as positive reviews, and reviews with 1

1. The bootstrapping procedure can be stopped at any time, in which case the last trained classifier would
be returned (e.g., after a certain period of time, or when the best score is lower than some threshold).
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Algorithm 1 Bootstrapping Framework
Input: labeled data set Sl, unlabeled data set Su

Parameters:
• N number of inputs labeled on each iteration
• r parameter to be used by AROW
• n number of online iterations of AROW

Initialize: i = 0, S0
l = Sl, S

0
u = Su

while |Si
u| > 0 do

• Receive a model using AROW
wi = AROW (Si

l , r, n)
• Select Ai

N ⊆ Si
u the N unlabeled instances with the highest score,

minx∈Ai
N
wi · x ≥ maxx∈Si

u/A
i
N
wi · x

• Update sets:
Si+1
l ← Si

l ∪
{(
x, sign

(
wi ·x

))
: x ∈ Ai

N

}
Si+1
u ← Si

u/A
i
N

• Set i← i+ 1
end while
Return the final classifier, wi−1

or 2 stars as negative. Reviews with 3 stars (about 9%) were shown in preliminary tests
to be very hard to predict (or noisy) and thus were omitted. More than three quarters
of the reviews in Amazon are positive, yet for development purpose, we made the dataset
balanced, ending with 2.3 million reviews of each label, i.e., 4.6M reviews altogether. The
total number of words–tokens separated by white spaces–is 700M . All experiments below
were repeated 5 times, each with a random draw of test set and labeled (training) set. Table
5 in the appendix (Haimovitch et al., 2012) summarizes the properties of the data.

Reviews were preprocessed as followed: (1) Convert upper-case text to lower-case. (2)
Replace common non-word patterns (such as common emoticons, 3 dots, links) with a
unique mark. (3) Remove HTML tags and any character that is neither alphanumeric nor a
punctuation. (4) Expend abbreviations (“prof.” → “professor”), and remove periods from
abbreviations (“i.e.” → “ie”).

Additionally, since negations may inverse the sentiment of other words, we used the fol-
lowing processing of negation words: (1) Expand common apostrophe omissions (eg “don’t”
→ “do not”), and (2) Replace (up to 7) words following a negation word (no, not, never,
nobody) with a unique negation form. For example, the text “not so good” is replaced with
“not neg so neg good”. Finally, stop-words are removed.

Reviews are represented as a binary bag-of-word vector. We used both unigrams and
bigrams, ending with about 33M features. We normalized the vector-reviews to have a unit
Euclidean norm. The average number of non-zero elements over the 4.6M reviews is 192,
with 99% of the reviews having at most 1, 000 non-zero elements, the shortest review has
only 1 non-zero element, and the longest review has 5, 922 non-zero elements.

6. Empirical Study of SSL

The goal of these experiments is to evaluate the performance of the SSL algorithm on a
single domain. We used the 8 domains with largest amount of examples: books, movies,
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Figure 1: SSL results for three domains (left to right): Books, Movies and Electronics.

0 5 10 15
x 10

5

8

10

12

14

16

 Labeled

 %
 E

rr
or

 

 

 50K
 100K
 200K
 400K
 1.6M

0 20 40 60 80 100
0

10

20

30

40

50

 % Labeled

 %
 E

rr
or

 o
n 

A
N

 

 

 50K
 100K
 200K
 400K
 1.6M

0 20 40 60 80 100
8

10

12

14

16

 % Labeled

 %
 E

rr
or

 

 

 50K
100K
 200K
 400K
 1.6M (Unlimited)

Figure 2: left: SSL Books - Different amounts of unlabeled data. middle: Error on added
instances (1.6K each iteration). right: SSL in chunks.

|Su| Before After Skyline
No. Label SSL Label

Domain Unlabeled 1,000 all
Books 1.6M 16.0% 8.4% 4.0%
Movies 0.5M 17.1% 10.3% 5.5%
Elect. 0.4M 13.4% 7.8% 5.1%
Music 0.3M 17.8% 9.8% 6.1%
Kindle 0.2M 16.0% 8.7% 6.1%
Videos 0.1M 17.3% 10.5% 7.3%
Kitchen 0.1M 13.7% 8.2% 5.5%
Health 0.1M 15.9% 10.1% 6.1%

Table 1: Test error of three algorithms on a single domain. Before: training with small
amount of labeled data, after: semi-supervised learning, and skyline: training
with all data labeled.

electronics, music, kindle, videos, kitchen, and health. From each dataset we randomly
picked 1K examples with their labels to be the initial set Sl, and additional 10K examples
for evaluation, or test-set, except the book domain for which we used 100K (it contains
much more examples than other domains). The remaining examples consists of the initial
unlabeled set Su for each domain. We ran the bootstrapping algorithm for about 1K
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Figure 3: Top, left-to-right: No of features used by the model vs no labeled examples,
test error vs. no of features; both panels apply to learning with a fixed size of
unlabeled data. The next two panels (bottom) show the same plots but when
adding unlabeled data in chunks.

iterations, that is we set, N = |Su|/1000, and computed the error rate on the test set after
each iteration.

The two left columns of Table 1 state the size of the unlabeled set for the eight datasets.
The three right columns summarize the test error of three algorithms. Our baseline, called
before, is training with only 1, 000 labeled examples. Next, we evaluate our bootstrapping
algorithm, called after, and also evaluated a skyline version, trained with the entire set of
examples labeled, that is, adding labels to the original unlabeled set Su. For example, in the
books domain we have 1, 614K labeled examples, all together. For all eight domains, test
error of SSL (after) is more than 40% lower than the test error of the baseline. Additionally,
the algorithm was able to close at least 60% of the gap in test error between training with
1M examples and training with all the data.
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Fig. 1 shows detailed (averaged) results for three domains. Our goal is to evaluate
the contribution of each of the two components of the bootstrapping algorithm: choosing
examples and labeling them. The first algorithm presented is Alg. 1, denoted by Highest
Margin, SSL (red solid). The next algorithm, denoted by Highest Margin, Supervised (green
solid), is a possible skyline, where instead of using wi to label the new set Ai

N , the true
labels are used. The difference between the performance of these two baselines illustrates the
amount of additional error suffered by the SSL algorithm that is not using the true labels,
but only generated ones. The third algorithm, denoted by Random, SSL (dot-dashed black)
evaluates the contribution of our method to choose examples. Here, the algorithm chooses
random N examples for Ai

N and uses the current model wi only to label them. Finally, we
used a standard supervised algorithm, denoted by Random, Supervised (dashed blue), that
chooses random examples and uses the true labels. The x-axis in all plots is the fraction of
the initial unlabeled data that is labeled (either by the algorithm or true labels) and used
to build the model, and the y-axis is the error on the test set.

In all datasets (results for Music are omitted due to lack of space) the qualitative be-
havior is similar, and thus we focus on the left panel which shows the results for books.
At x = 0% all algorithms use the same initial 1, 000 labeled training data and thus suffer
the same test error of 16% (first row, third column of Table 1). The value at x = 100%
for Highest Margin, SSL (red line) shows the test-error of the SSL algorithm after training
8.4% (first row, fourth column of Table 1), and the value of 4.0% for Random, Supervised
(blue-dashed line) shows the test-error of the algorithm training with the fully labeled data
(first row, fifth column of Table 1).

First, not surprisingly, supervised algorithms outperform SSL algorithms (blue and green
lines are below black and red for most of the range). Second, the quality of the SSL-labeling
rule degrades in time, the gap between the red and green line gets larger as more unlabeled
data is being labeled. We investigate this phenomena below. Third, comparing the two
self-labeling (with wi) methods–highest margin (red solid) and random (dashed black)–we
observe that random outperforms highest-margin only on early iterations, but then, highest-
margin outperforms a random choice of examples when most amount of unlabeled data is
used. This is because the error of wi on a random set is higher than its error on a chosen
set (highest-margin), and as a consequence, the algorithm adds examples with higher label
noise to the training set.

Random vs. Choosing Examples: We investigated the tradeoff between using random
examples and highest-margin examples with SSL. Here random examples were used for the
initial p% of the unlabeled data, and the remaining (100− p)% were chosen using highest-
margin. The value of p = 0% is the same as Highest margin, SSL of the left panel of
Fig. 1, and the value of 100% is the same as Random, SSL of that figure. The results are
summarized in Fig. 11 in the appendix (Haimovitch et al., 2012). In a nutshell, after
labeling about 30% of the unlabeled points., using no random examples p = 0% (Highest
margin) outperforms all other choices p > 0. In fact even for p = 5% the trend of the test
error was similar to the trend of Random, SSL, leading to the conclusion that the algorithm
could not recover even from 5% of the unlabeled data that was labeled with noisy labels.

Similarly, we experimented with initially using highest margin examples and then switch-
ing over to using random examples. The results can be viewed in Fig. 13 in the appendix
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|Sl| Before After Std. Dev.
100 30.8% 15.2% 7.20%

1,000 16.0 % 8.4% 0.24%
10,000 10.2% 7.1% 0.11%

Table 2: test error vs size of initial training data on books

(Haimovitch et al., 2012). The results clearly show that if the SSL algorithm is stopped
before the unlabeled dataset is exhausted, then it is preferable to switch to random selection
shortly before stopping. This can give a quick boost to the success rate, as the error rate
drops more than 1 percentage point.

Amount of Unlabeled Examples: Careful study of the error rate of Highest-margin,
SSL in all three panels of Fig. 1 make it seem that the slope of all test-curves start to
reduce after x = 80% of the unlabeled data was (self-)labeled, which may indicate that the
there is a limit to the usage of unlabeled data. Since, 1.6M reviews are all the unlabeled
data we have, we repeated the experiments with less amount of labeled data. The left
panel of Fig. 2 shows the test-error of the learned classifier for six-subsets (one of which
is all 1.6M reviews) of the unlabeled data for the books domain. We observe, that the
phenomena that the slope of the curve reduces close to the end of the dataset, appears
in all scales (or dataset sizes). In all curves the slope close to the end is lower than the
slope in the beginning. Furthermore, the test error after labeling an entire subset of 50K
examples (∼ 10%) is much lower that the test error after picking 50K examples from 1.6M
(∼ 15%). We hypothesize that it is because, a random 50K examples is more similar to the
test data, than 50K examples chosen by the Highest-Margin method, which is close to the
initial 1, 000 labeled examples. Only when most of the unlabeled examples are labeled, the
effective training set becomes close to the test set and the performance improves.

We gain deeper insights into this phenomena in the middle panel of Fig. 2, where we
plot the error of wi over the chosen new set Ai

N of size U/1, 000 vs the fraction of labeled
inputs (which is proportional to i). Clearly, for all sizes of unlabeled data, the error over
the new set grows about linearly until x ≈ 78% (where the error is ∼ 10%), then the error
starts to increase sharply until the prediction is equivalent to random labeling (50% error
rate) in the last 3% of the data. This may indicate, that unlabeled data, independent of
their size, contain a fraction of examples that are hard to label, nevertheless, including
them, even with a very noisy label, still improves the performance of SSL (as indicated by
the fact that the error lines are continuing to decrease).

We next examine the possibility of using unlabeled data gradually. That is, first training
with 50K examples, then using additional 50K, and so on, until using the entire 1.6M book
reviews. Our hope was to have an error-curve that “connects” all the end-points of the
curves of the left panel of Fig. 2. That is, have a fast convergence as using 50K examples,
and a final performance as using 1.6M documents. The results are summarized in the right
panel of Fig. 2. All runs use 1.6M unlabeled reviews, yet in chunks. Each curve corresponds
to a run where the algorithm first used q examples, then after these q examples were all
labeled, q additional examples were made available, and so on. From the plot we observe
that performance was improved during the first chunk of size q, after that the curves are
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Col id 1 2 3 4 5 6 7 8
Labeled Src Src Src Both Both Both Trgt Trgt
Unlabeled - Trgt Both - Trgt Both - Trgt

Source Target 1&2 1 2 3&4 3 4 SSL SSL
Domain Domain Before After After Before After After Before After

Movies Books 19.2% 9.4% 10.1% 17.0% 8.6% 8.6% 16.0% 8.4%
Elect. Books 27.4% 14.6% 22.5% 19.5% 9.2% 12.9% 16.0% 8.4%
Music Books 20.5% 13.9% 13.4% 17.1% 11.8% 11.1% 16.0% 8.4%
Books Movies 19.2% 11.1% 10.5% 17.7% 10.6% 10.0% 17.1% 10.3%
Elect. Movies 25.9% 18% 14.1% 19.0% 10.7% 11.0% 17.1% 10.3%
Music Movies 19.2% 11.2% 11.5% 18.4% 10.8% 10.5% 17.1% 10.3%
Movies Elect. 23.7% 8.7% 11.0% 14.3% 7.9% 8.2% 13.4% 7.8%
Books Elect. 24.7% 8.6% 21.2% 14.6% 7.9% 8.4% 13.4% 7.8%
Music Elect. 26.7% 8.5% 12.3% 14.3% 7.9% 7.9% 13.4% 7.8%
Books Music 19.8% 12.1% 13.2% 17.1% 9.7% 13.0% 17.8% 9.8%
Movies Music 21.4% 13.9% 19.3% 17.9% 9.7% 9.6% 17.8% 9.8%
Elect. Music 26.2% 21.2% 26.5% 19.4% 10.1% 10.4% 17.8% 9.8%

Table 3: Performance of algorithm in domain-adaptation.

almost flat, indicating that any additional amount of unlabeled data is not useful to further
reduce the test error.

We investigate this phenomena in Fig. 3. The left panel shows the size of the model
(=total number of distinct features, the “dictionary”) during training for each size of unla-
beled set (left panel Fig. 2). When more data is used, the total number of features increases,
both during training (lines are increasing) and with larger sets of unlabeled data (the high-
est point of each curve increases). This indicates that our bootstrapping algorithm “covers”
possible features much slower than of a random sample of the same size. For example, with
50K unlabeled examples there are about 1M features (hight of magenta line), yet when
the algorithm is run with 1.6M unlabeled points, after 50K only about 200K features are
used. This point is further made clear in the second panel of Fig. 3, where we plot the test
error vs size of model (combining both left panels of Fig. 2 and Fig. 3). During most of the
training process, the test error is reduced as more features are accumulated, except in the
end (where very noisy labels are introduced). The next two panels of Fig. 3 are analog to
the first two panels, yet they correspond to adding data in chunks (as in the right panel of
Fig. 2). Comparing the first and third panel, clearly adding unlabeled data in chunks causes
features to be added much faster than with no chunking. In fact all chunk sizes shown in the
third panel (other than 1.6M which is no chunking) behave similarly. This rapid addition
of features, as indicated by the right panel, coincides with worse performances per number
of features used.

Label Noise: To test if the algorithm can work even in the case the initial training set
is noisy, we conduct a few experiments where a random fraction of the labels were flipped.
The results can be found in the appendix in Fig. 14 (Haimovitch et al., 2012). As would
be expected, a noisy initial training set has lingering effects. However, even with 20%
label noise, the behavior of the algorithm remains the same. For 1% and 5% the effect is
negligible.
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Unbalanced Data: We experimented with using the full data of the books domain, that
is 6M reviews, where 85% of the data is positive. Since the initial 1K training set and test
sets are chosen randomly, they too reflect the same ratio of positive vs. negative reviews.
The results can be seen in Fig. 15 in the appendix (Haimovitch et al., 2012). In short, the
behavior remains the same, where the error rate drops from 12.1% to 5.9%.

Substituting AROW: We compared the same SSL technique with 4 variants. The
same bootstrapping framework was used, but with a different classifier: 1) Single epoch
Perceptron, 2) Single epoch Averaged-Perceptron, 3) 10 epoch Perceptron, and 4) 10 epoch
Averaged Perceptron. We used the balanced 1.6M book reviews for these experiments,
starting with a 1K training set, as before. The results are summarized in Fig. 16 in the
appendix (Haimovitch et al., 2012). The best result after AROW was for the 10 epoch
Averaged Perceptron, which starts at 18.7% and ends at 13.6%. This means that both
the initial error and the rate of improvement is inferior to using AROW. Interestingly,
Perceptron after one epoch, outperforms its averaged version.

Comparison to T-SVM: We compared our method to the linear T-SVM implementa-
tion described and used by Sindhwani and Keerthi (2006). We chose this algorithm as it
is well known, and similarly to ours, it is a generic SSL linear classifier intended for large
scale data. For these experiments we used a subset of the balanced book reviews data:
1K reviews for the initial training set, 400K for the unlabeled set, and two 50K test sets.
We compared our method with three methods: 1) L2-SVM-MFN, 2) multi-switch T-SVM,
and 3) Deterministic Annealing semi-supervised SVM. The best results were found for the
multi-switch T-SVM (λ = 10−5, λu = 10−3, S = MAX) ending with an average of 15.4%,
compared to our 9.5%. It is also interesting to note that some of the runs took more than
24 hours, while ours consistently finishes within the hour. Further experiments are needed
to verify and establish the cause of the discrepancy.

Amount of initial labeled data: We conclude this section with Table 2 that summarizes
experiments studying the effect of the size of the initial labeled examples. In all runs we
used 1, 613K of unlabeled data. Thus any difference in performance is only due to difference
in the amount of labeled data. We ran the algorithm with three sizes of that set, repeating
the experiments 5 times. As in Table 1 two algorithms were evaluated, one using a small
amount of labeled data (before), and one that uses SSL (after). As expected, more labeled
data improve performance (error values are decreasing in the column before). Yet, SSL still
improves performance. Even with initial 10K labeled examples, SSL is able to reduce test
error by ∼ 30%. Also, the performance with 10K labeled examples is the same as with 1K
examples and about 800K additional unlabeled examples (see Fig. 1).

7. Domain Adaptation

Motivated by the results of the last section, we employed our algorithm to the task of
domain adaptation, where data from two domains are available. We are interested in the
test error of only one of them, called the target domain. The SSL setting of the last section
is where all data comes from the target domain. We evaluated four additional settings.
(1) The initial labeled training set consists of a single domain (source domain) and the
unlabeled set consists of the target domain(s), (2) Same as setting 1, except the unlabeled
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Figure 4: Domain adaptation from the industrial domain to 32 other domains. See text for
details.

set also includes data from the source domain, (3) Same as setting 1, except the training
set also includes data from the target domain, the total number of labeled data remains
1K. (4) The initial training set and the unlabeled set both include data from the source
and target domains, the total number of labeled data remains 1K.

The results are summarized in Table 3 for twelve pairs of source and target domains.
The numbers show the test error over the target domain. The first two columns (1,2) show
the test error when training only with labeled source, or also when using unlabeled target
data (setting 1). The next column (3) shows the results if we use unlabeled data from both
domains (we omitted the results before as they are the same as of setting 1). The next two
columns (4,5) show the results for setting 3, where we have small amount of labels from
both domains, and unlabeled data only from the target domain. The next column (6) shows
the results for when the initial training set and the unlabeled set come from both domains.
Finally, we added in the last two columns (7,8) for completeness the results from Table 1
where there are only target data.

First, comparing the results with only labeled data (cols 1,4,7), we observe, as expected,
that the more data we have from the target domain, the lower the test error is. For
example, when the target domain is books, the test error is 19.2% when the labeled data is
only movies, 17.0% if we replace half of the movies labeled data with books labeled data,
and reduced to 16.0% when all labeled data is of books.

Second, comparing cols 1 and 2, we see that using in addition domain adaptation re-
duces error. For example (row 1) training with 1K labeled reviews from movies, the classifier
achieves 19.2% test error on the books domain. Yet, using additional unlabeled books ex-
amples, it is able to reduce the error to 9.4%, which is lower than a test error of 10.2%
obtained by building a classifier even with 10, 000 labeled books examples (see Table 2).
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Encouraged from these results we investigated three possible alternatives to improve per-
formance: use unlabeled data from both source and target domains (setting 2), use data
from both domains during training (same amount altogether, setting 3), or use data from
both domains for both the initial training set and the unlabeled set (setting 4).

Comparing columns 1 and 3 we conclude that when using unlabeled data from both
domains (setting 2) our algorithm improves performance over just using the labeled data,
yet comparing columns 2 and 3, we see that in 9 out of 12 cases, using unlabeled data only
from the target domains yield lower test error than using unlabeled data from both source
and target.

Finally, comparing columns 2, 5 and 7 we see that using 500 examples from each domain
is a sweet point of having all data from only the source or only the target. For example,
when the target domain is books, having 1K labeled examples from books yields a test error
of 8.4% and when starting with 1K movies reviews the test error is larger by 1%, and is
9.4%. Similarly when the target domain is movies and starting with labeled movies reviews
the test error is 10.3% and when having 1K labeled books reviews the test error is higher
by 0.8% and is 11.1%. When starting with equal number of reviews from both domains, the
test error on books is 8.6% (0.2% larger than labeling only book reviews) and on movies is
10.6% (0.3% larger than labeling only movies reviews).

We also performed a one-to-many adaptation starting with 1K labeled examples from
the Industrial domain and using unlabeled data from all domains. We evaluated two other
skylines that use more labeled data, one building a single classifier per domain, using all
data from that domain, and the other, building one classier using all data. We expect the
first baseline to perform well, since there is no bias due to examples from other domains,
and the second baseline to perform well since the amount of training data is large (low
variance).

The results are summarized in Fig. 4 with domains ordered by the amount of unla-
beled data (books with largest amount). For all domains, except Industrial, the adaptation
approach improves performance significantly over using only the labeled data, with an av-
erage relative reduction in test error of 47± 15%. Both skylines are indeed better than the
domain-adaptation algorithm, yet for domains with small amount of data the gap is not
large. As was observed by Dredze et al. (2010) in a smaller scale, there is no clear winner
between the two skylines.

In a similar experiment, we ran a one-to-many adaptation starting with 1K labeled
examples from the Industrial domain and using unlabeled data from all domains, using
unbalanced data. In this setting, 84.7% of the data used had positive labels, and the size
of the unlabeled dataset used was 15M . The results are similar to the balanced data
experiments, with an average relative reduction in test error of 46± 8%.

8. Weakly supervised learning (WSL)

Our bootstrapping algorithm is based on an initial set of labeled examples. We now describe
a variant in which we replace this human effort with a way to generate such a labeled set
automatically, yielding an unsupervised method.

The only deviation from the SSL algorithm is the construction and labeling of the initial
set. Once it is generated the same bootstrapping algorithm is used. Instead of sampling a
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Domain |Sl| |Su| Before After
Books 22.4K 1.6M 24.1% 13.5%
Movies 9.5K 0.5M 24.2% 15.0%
Elect. 9.3K 0.4M 21.4% 11.2%
Music 4.2K 0.3M 25.9% 16.1%

Table 4: Size of initially labeled set with WSL rules, test error with model built using the
initial set (before) and after applying the bootstrapping algorithm (after).

set of examples and label them by humans we used the following rules to pick documents
which are likely to be positive or negative. We are aiming for a high-precision subset,
otherwise the bootstrapping algorithm would fail, as seen above. Clearly, these rules are
based on prior knowledge about the task at hand.

A review is considered positive if the following two conditions holds, one for the title,
and one for both title and body. The title contains at most 2 words, where at least one of
them belongs to the set (great, excellent, perfect, good, recommended). Additionally, the
title and body, do not contain any negation word (no, not, never, nobody), nor a negative
word (poor, awful, horrible, bad, disappointment).

Similarly, a review is considered negative if its title contains at most 2 words, where at
least one of them is either a negative word, or a negated word of one of the five positive
words above. Additionally, the title and body do not contain a positive word. Finally, we
chose an equal number of positive reviews and negative reviews. These rules have high-
precision, close to 100% of the chosen reviews are labeled correctly. Example book reviews
that are true and false positive and true and false negative appear in Fig. 9 in the appendix
(Haimovitch et al., 2012).

The results of four single domain experiments are summarized in Table 4. The initial
labeled set by the rules is between 4.2 − 22.4K, which is about 1 − 2% from the available
examples per domain. To our surprise, the test error using this large amount of training
data was higher than the test error using 1K labeled examples that are chosen randomly
(compare with before column in Table 1).

Since the precision of the rules is very high, we hypothesize that this gap is because the
set of inputs these rules chose are not representative and far from a random sample. Yet,
when applying the SSL procedure after the rules the resulting test error (column after in
Table 4) in all domains is lower than the test error of using 1K labeled examples (column
before in Table 1).

9. Related work and Summary

In the last decade, large volume of work was published in the area of sentiment classifica-
tion. However, only recent researches have begun to focus on larger-scale data sets. For
example, Godbole et al. (2007) describe a system which uses score based information re-
trieval techniques for constructing a sentiment lexicon on a relatively large dataset; they
track hundreds of thousands of news and blog entries over time.

Goldberg and Zhu (2006), as well as other later works, used a graph-based semi-
supervised algorithm, where nodes represent documents, and edges weights represent the
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similarity between documents. This approach allowed them perform only transduction,
while for us transduction is a byproduct, and they experiment on a few thousand movie
reviews only. Sindhwani and Melville (2008) used a bi-partite graph (word-document) to
allow for semi-supervised classification. Their method was extended to allow also for in-
duction and was evaluated on a few thousand review and blog posts. Dasgupta and Ng
(2009) used SVM for active semi-supervised classification of a few thousand reviews, where
the general approach of starting with “easy” reviews is similar to ours, although for us it is
a consequence of our method, rather than a design choice.

Blitzer et al. (2007) and Tan and Wang (2011) used the structural correspondence
learning (SCL) algorithm and weighted-SCL (respectively) for domain adaptation, both
use pivot features to adapt to new domain specific features. They use a few thousand
Amazon reviews.

The closest work to ours is of Glorot et al. (2011) who also predict sentiment from
Amazon reviews. Yet, the amount of data they use is an order of magnitude smaller than
ours, and their work focuses on domain adaptation, while we work additionally in semi-
supervised and weakly-supervised settings.

Turney (2002) applied WSL techniques on hundreds of product (Epinions) reviews from
multiple domains. Their core concept is similar to our WSL approach: use rules to choose
and label an initial set of reviews, and then apply a self-training technique.

While our work shares some aspects with these works, we are not aware of any large-
scale sentiment analysis study similar to ours. Most previously used datasets contain few
thousand documents, with a total word count less than a few millions (often much less).
Most, if not all, works mentioned in a recent survey on SSL (Zhu, 2005) evaluate their
algorithms on much less data than we do.

Summary and Conclusions: We described a study showing the usefulness of large
amounts of unlabeled data in various settings for sentiment classification of Amazon reviews.
The study indicates that a large amount of data is useful, and it is not clear, what is the
limit of the amount, if any. Additionally, the order and rate of using this data affects
performance of the final classifier. We hypothesize that by proper incorporation of the
data, we may be able to learn the sentiment associated with words, or features, that appear
only in the unlabeled data, leading to improved generalization. The exact nature of this
aspect is remained to be studied.

We currently expand our methods for unbalanced datasets, and improve them by incor-
porating the confidence information provided by AROW.
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