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Abstract

Matching of samples refers to the problem of inferring unknown co-occurrence or alignment
between observations in two data sets. Given two sets of equally many samples, the task is
to find for each sample a representative sample in the other set, without prior knowledge
on a distance measure between the sets. Recently a few alternative solutions have been
suggested, based on maximization of joint likelihood or various measures of between-data
statistical dependency. In this work we present an variational Bayesian solution for the
problem, learning a Bayesian canonical correlation analysis model with a permutation
parameter for re-ordering the samples in one of the sets. We approximate the posterior
over the permutations, and demonstrate that the resulting matching algorithm clearly
outperforms all of the earlier solutions.

Keywords: Canonical correlation analysis, matching, permutation matrix, variational
Bayes

1. Introduction

The task in object matching or alignment is to learn correspondence of samples in two data
sets. The problem occurs frequently especially in natural language processing, in form of
document alignment (Jagarlamundi et al., 2010; Quadrianto et al., 2010), sentence align-
ment, or word-alignment used for constructing bilingual dictionaries (Haghighi et al., 2008)
and multilingual topic-models (Boyd-Graber & Blei, 2009). It also re-occurs in compu-
tational biology and medicine, where the alignment is learned between patients measured
in different experiments, or between cellular level components such as protein structures
(Wang & Mahadevan, 2009), functionally related genes of two species, or lipids involved
in metabolism (Sysi-Aho et al., 2011; Tripathi et al., 2011). The traditional solutions for
such problems create a distance measure between the two sets of objects based on domain
knowledge. Given the distance, the problem is fairly straightforward to solve as an instance
of bipartite graph matching. All of the works cited above, however, solve the problem in a
data-driven way, by learning such a distance measure directly from the measurement data.
We extend this line of work, by providing a novel Bayesian solution to the problem.

The most common assumption is that the matching is correct when some measure
of statistical dependency between the two sets, measured over the objects, is maximized.
Haghighi et al. (2008) and Tripathi et al. (2011) maximize correlation in a low-dimensional
subspace, whereas the kernelized sorting by Quadrianto et al. (2010) maximizes the Hilbert-
Schmidt Independence Criterion (HSIC; Smola et al., 2007). Haghighi et al. (2008) provides
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also an alternative viewpoint: They maximize not only the correlation between the sets but
also the joint likelihood of the samples under a certain probabilistic model, the probabilistic
interpretation of canonical correlation analysis (CCA) (Bach and Jordan, 2005). Boyd-
Graber & Blei (2009) give another example of learning the match to maximize the joint
likelihood, and the early kernelized sorting algorithm by Jebara (2004) maximizes the joint
likelihood of a Gaussian model.

We extend the work of Haghighi et al. (2008) in the sense that we define the matching
through both a joint likelihood criterion and maximal correlation. The former criterion is a
natural choice in the generative modeling framework, whereas the latter choice is encouraged
by the success of earlier dependency-maximizing solutions. The main difference between the
two solutions is that Haghighi et al. (2008) learns the maximum likelihood estimate over the
match and the parameters of the probabilistic model, whereas we do posterior inference for
both. As the underlying model we use the Bayesian canonical correlation analysis (Wang,
2007; Klami & Kaski, 2007; Virtanen et al., 2011).

The match can be parameterized by a permutation matrix. If X denotes one data set
of N objects and Y the other, the task is to find a N ×N permutation matrix π such that
X is close to Y π, where “close” is defined by one of the criteria mentioned above. To be
more precise, we will do inference over a posterior distribution of the permutation. Exact
variational inference over permutations is only tractable for small N (at most tens), based
on Fourier transformations (Kondor et al., 2007) or mapping the permutations to a hyper-
sphere (Plis et al., 2011). To work with larger N , we present two alternative approximative
techniques that are computationally feasible for the size of problems considered by earlier
matching solutions (hundreds of samples). Both build on the observation that we can learn
the most likely permutation efficiently with an assignment problem (AP) solver.

In summary, we present a novel solution to the matching problem using variational
Bayesian inference. We simultaneously learn the posterior over parameters of a Bayesian
CCA model and a permutation matrix representing the match. We compare the method
with the best earlier solutions on two benchmark datasets used by Jagarlamundi et al.
(2010), Quadrianto et al. (2010) and Tripathi et al. (2011), and show how the new variational
Bayesian matching clearly outperforms them. Furthermore, we demonstrate the importance
of good initialization and provide a new initialization strategy that is generally applicable
for all matching solutions.

2. Matching

2.1. Problem Formulation

Given two sets of N objects, denoted by X and Y, the goal is to discover a permutation
matrix π over the objects in Y such that the ith object in X corresponds to the object
in Y for which πji = 1. The correspondence is defined by a cost function c(X ,Y|π)
which is maximized with respect to π ∈ P. Here P ∈ {0, 1}N×N is the set of all N × N
binary permutation matrices with unit row and column sums. Our cost function will be
the marginal log-likelihood, whereas many of the earlier solutions have used statistical
dependency.
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In this work the samples will be represented as real-valued vectors, and hence the sets
are represented as matrices X ∈ RDx×N and Y ∈ RDy×N . Individual samples will be
denoted by column vectors xi and yj .

2.2. Earlier Solutions

Most earlier solutions to the matching problem maximize a dependency measure such as
canonical correlation or the HSIC measure Smola et al. (2007). Haghighi et al. (2008) and
Tripathi et al. (2011) seek for a linear subspace revealing the correlations, alternatingly
optimizing over the projections and solving a linear assignment problem to find the best
permutation in that subspace. The kernelized sorting methods Jebara (2004); Quadrianto
et al. (2010), in turn, directly evaluate and maximize a kernel-based dependency measure.
However, the resulting cost corresponds to a quadratic assignment problem, which they solve
by iteratively applying a linear AP solver. Jagarlamundi et al. (2010) presented improved
initialization and various other tricks to improve robustness of kernelized sorting solutions.

The matching canonical correlation analysis (MCCA) method by Haghighi et al. (2008)
can also be interpreted as maximizing the joint likelihood of the two data sets, based
on the probabilistic interpretation of CCA (Bach and Jordan, 2005). Another example of
likelihood maximization is the multilingual topic model of Boyd-Graber & Blei (2009), which
matches vocabularies of two languages by finding a maximum a posteriori estimate over their
permutations. Finally, an alternative strategy for learning the match is to explicitly create
a distance measure between the two sets. For example, manifold alignment by Wang &
Mahadevan (2009) does that by comparing within-set neighborhoods. Given the distances,
the matching problem can be solved as linear AP. While this approach circumvents the need
for iterative solution, the computational cost for learning the distances is severe.

We will compare our method with the closest alternatives from all categories, namely
the alternating CCA+AP solution by Tripathi et al. (2011), the leading kernelized sorting
variant by Jagarlamundi et al. (2010), and the manifold alignment method of Wang &
Mahadevan (2009) complemented with an AP solver. The model by Boyd-Graber & Blei
(2009) is not comparable, since their goal is learning a topic-model and the match is learned
only as a part of it.

3. Variational Bayesian Matching

We formulate a solution to the matching problem by straightforward joint modeling. We
assume the data is generated by a latent variable model of the type

p(X,Y ) =

N∏
i=1

∫
p(xi|zi)p(yi|zi)p(zi)dzi.

That is, the i.i.d. samples in the two data sets are conditionally independent given a latent
variable, which is a typical assumption in multi-view learning.

The matching is introduced as an explicit permutation matrix π ∈ P applied to re-order
the samples in one of the data sets. We indicate by πji = 1 that the sample yj pairs with
the latent variable zi (which is associated with the sample xi), and using π.i to denote the
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ith column we can write the Bayesian matching model as

p(X,Y ) =

∫
P

(
p(π)

N∏
i=1

∫
p(xi|zi)p(Y π.i|zi)p(zi)dzi

)
dπ.

We will explicitly integrate over π, which turns out to be crucially important for the match-
ing accuracy. To compare with the alternative methods only providing a point-estimate, we
will additionally obtain a MAP estimate for π after learning the posterior.

We could alternatively introduce separate permutation matrices for bothX and Y . This
would make the scenario more symmetric by enabling soft choice of latent variables for both
sets, but for the task of learning a match it would mostly just double the computational
cost due to needing to optimize for two permutations.

3.1. Bayesian CCA

As the actual model we use the Bayesian CCA model as presented by Virtanen et al.
(2011), which matches the choice of maximizing correlation made by the earlier solutions of
Haghighi et al. (2008) and Tripathi et al. (2011). This means our approach is maximizing
both the joint marginal likelihood and a dependency measure. Furthermore, it has the
intuitively appealing property that we need not consider variation independent of the other
set while learning the match.

The Bayesian CCA with K components is defined as

zi ∼ N (0, I),

[xi;yi] ∼ N (Wzi,Σ),

where [xi;yi] denotes the feature-wise concatenation of the samples with D = Dx + Dy

dimensions and zi ∈ RK×1. The covariance is diagonal

Σ =

[
τ−1x I 0

0 τ−1y I

]
,

with Gamma prior for the precisions τx and τy, and the projection W ∈ RD×K is made
group-wise sparse by the prior

βxk ∼ G(α0, β0) βyk ∼ G(α0, β0)

p(W ) =

K∏
k=1

(
N (W x(k)|0, β−1xk I)N (W y(k)|0, β−1yk I)

)
.

Here W = [W x;W y] so that W x covers the dimensions spanned by X, W x(k) is the
kth column of W x, and G(α0, β0) is a flat Gamma prior. The prior is critical in dividing
the components into three categories: those describing correlations between the two sets
(βxk and βyk are both small) and to those describing variation specific to just one set and
independent of the other (either βxk or βyk is very large).

An efficient variational approximation is provided by the factorization

Q = q(τx)q(τy)
K∏
k=1

q(βxk)q(βyk)
N∏
i=1

q(zi)
D∏

d=1

q(W d.), (1)
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and the parameters of each term are learned with the alternating updates explained by
Virtanen et al. (2011).

3.2. Matching Bayesian CCA

The matching Bayesian CCA model extends the above formulation by replacing the likeli-
hood part with

[xi;Y π.i] ∼ N (Wzi,Σ),

where π ∈ P. We assume a uniform prior over all N × N permutation matrices, but
could easily incorporate priors obtained from additional information sources as long as they
factorize over the sample pairs.

The variational approximation in (1) needs to be complemented by an extra term q(π),
which is a distribution over permutation matrices. The primary challenge in learning the
model is in updating this distribution. Even approximating the distribution that is over the
N !-dimensional space initially sounds infeasible, but in practice the problem is simplified
by two observations: (i) We can efficiently find the exact permutation matrix π̂ that maxi-
mizes the variational lower bound and (ii) only a tiny fraction of other permutation matrices
will have probability that does not vanish to zero compared to π̂ (see, e.g., Leskovec et al.
(2010)). Given these observations, we can construct q(π) by properly normalizing a distri-
bution over a small set of permutations S = {π(m)}Mm=0 that includes π̂ = π0 and some
nearby permutations.

Given a set S of feasible permutation matrices with their associated weights wm, it is
easy to compute the expectation 〈π〉 = 1∑

wm

∑M
m=0wmπ

(m). Simple verification confirms
that the update rules of regular Bayesian CCA can be re-used for all other terms in the
approximation, assuming we simply transform Y by 〈π〉 after updating the match.

3.2.1. Finding the Most Likely Permutation

The log-cost of any permutation is given by

logwm ∝ −
1

2

N∑
i=1

〈
τy

(
Y π

(m)
.i −W yzi)

)T (
Y π

(m)
.i −W yzi)

)〉
,

where 〈·〉 denotes the expectation over the approximating posterior. To find the most likely
permutation π̂, we collect all pairwise expected distances into a single N × N matrix A
with entries

Aij =
1

2
〈τy(yj −W yzi)

T (yj −W yzi)〉

=
1

2
〈τy〉

[
yTj yj − 2yTj 〈W y〉〈zi〉+ Tr

(
〈W T

yW y〉〈zizTi 〉
)]
,

where Tr(·) denotes the matrix trace. A regular linear assignment problem solver will then
find a globally optimal choice of π̂ so that

∑
diag(Aπ̂) is minimized.

It is worth noting that the entries of Aij are here assumed independent; the uncertainty
in zi is integrated out separately for each j. For any single π this corresponds directly to
the factorization assumptions of (1) and hence we will correctly identify the most likely
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permutation without needing to make any further assumptions. However, for comparing
different permutations the above formulation makes one more independence assumption:
The latent variables are assumed independent of the match. This is a necessary assumption
for efficient computation, but as discussed in Section 3.2.2 it causes problems when trying
to approximate the full posterior over the matches, especially for high-dimensional data.
We will later explain one way of relaxing the assumption, but first we proceed by explaining
the rest of the algorithm for this factorized choice.

Another important detail concerns the computation of the expectations in (2). The
straightforward choice would be to use as 〈zi〉 and 〈zizTi 〉 the moments of the current q(zi),
which has been computed according to the previously updated q(π). This would, however,
bias the choice of the permutation towards the current expectation 〈π〉, preventing efficient
change of pairs and causing severe issues with local optima: if yj was last time paired
with xi then zi has already been optimized for yj . A much more efficient approach is to
implicitly re-optimize q(zi) for each entry of A, allowing fair game between the different
samples. Assuming yj pairs with zi, the update rule for q(zi) = N (µij ,Σz) is given by

Σz =
(
〈τx〉〈W T

xW x〉+ 〈τy〉〈W T
yW y〉+ I

)−1
µij = Σz

(
〈τx〉〈W T

x 〉xi + 〈τy〉〈W T
y 〉yj

)
.

Plugging 〈zi〉 = µij and 〈zizTi 〉 = µijµ
T
ij + Σz in (2) improves the eventual matching

accuracy of the method considerably, compared to directly using the current q(zi). Note
that Σz does not depend on i or j, and hence needs to be computed only once per iteration.

Finally, since CCA automatically infers which of the K components model correlations
between the two sets, it makes sense to learn the match only over those components. We
can do that by analytically integrating out zi for the components that do not describe
any variation in X (that is, βxk is very large) – the ones not active in Y anyway have
no effect on A. Denoting by V y the columns of W y corresponding to the components
marginalized out and by Uy the remaining columns, the entries in (2) are replaced by
1
2〈(yj−Uyzi)Ψ(yj−Uyzi)〉, where Ψ =

(
V yV

T
y + τ−1y I

)−1
. For efficient inversion we use

the Woodbury identity Ψ = τyI− τ2yV y

(
I + τyV

T
y V y

)−1
V T

y . For large Dy we can further
approximate Ψ = τyI for faster computation, since the elements of the latter term are of the

order τy
rank(V y)

Dy
, tending to zero for large Dy. This can be seen (details omitted for brevity)

by contrasting the scales of V yV
T
y and V T

y V y, for which we get analytic expressions since
the elements of V y are drawn from zero-mean Gaussian distributions with known variances.

3.2.2. Finding Other Likely Permutations

To create a full distribution over the permutations we need to complement the most likely
permutation with a set of other reasonable permutations. For this purpose we propose two
alternative strategies. The first approach assumes the latent variables to be independent
of the match and results in a deterministic approximation, whereas the latter breaks the
independent assumption but numerical integration is needed for inference.

Factorized Method: By making the assumption that zi are independent of the permu-
tation π, we can directly use costs of the form wm ∝ e−

∑
diag(Aπ(m)) to obtain the relative

210



Variational Bayesian Matching

D

R
at

io
 o

f l
ik

el
y 

pe
rm

ut
at

io
ns

16 32 64 128 256 512 1024 2048

0
0.

25
0.

5
0.

75
1

above 0.01
above 0.0001

Figure 1: The ratio of likely permutations (probability compared to the best permutation π̂
above 10−2 or 10−4) in the neighborhood of π̂ as a function of the dimensionality
D. For large D all of the alternatives have essentially zero probability, which
implies that q(π) converges towards a delta distribution around π̂. The ratios
were computed for the final model learned for N = 80 images (see Section 4.1)
based on random subsets of D features, averaged over 10 runs. For larger N the
situation is not as extreme, but the trend is similar.

probabilities of different permutations π(m). We can then approximate the full posterior by
repeatedly slightly perturbing π̂ and computing the relative cost of the resulting alternative
permutations. This will produce a unimodal approximation centered around the mode, to
complement the other unimodal terms in (1).

To create the set of other feasible permutations, we find N other permutations that
differ minimally from the optimal one. We exclude one pair at a time from the optimal
match (by setting the corresponding element in A to infinity) and solve the AP again. All
of the resulting matches π(m) will be worse than the optimal one, but will be maximally
close in terms of probability due to having only one extra constraint. Note, however, that
they will typically differ for multiple pairs, since the single constraint propagates to multiple
changes in the full permutation. For each unique π(m) we then evaluate the associated cost
wm, and the expectation over the approximative posterior is given by the weighted average
〈π〉 = 1∑

wm

∑M
m=0wmπ

(m). Here π(0) = π̂ denotes the most likely permutation. Note
that M ≤ N , since we create N alternative permutations, but it is possible that several
constraints result in the same permutation.

An interesting observation is that for large Dy the weight wm will be negligible for most
π(m). Even though the algorithm generates maximally similar permutations by adding
always just one additional constraint, most of them have very low probability for all but
very low-dimensional data. We ran the algorithm for various lower-dimensional variants of
the image data studied in Section 4.1, and plot the ratio of likely permutations as a function
of dimensionality in Figure 1. Already for Dy = 128 the relative probabilities of half of the
permutations are below 10−4, and for Dy = 2048 we find essentially no permutations that
would have noticeable weight in q(π).

211



Klami

For low-dimensional data the posterior over the permutations is smooth, and no efficient
algorithm for finding all likely permutations exists. The above process will, however, gen-
erate a reasonable subset of those in the immediate vicinity of the optimal one, providing
an approximation of the posterior around its mode. It is also easy to extend the proce-
dure to create larger set of likely permutations, for example by creating also alternative
permutations with more than one constraint, or by performing weighted random walk in
the space of all permutations similar to the sampling scheme by Leskovec et al. (2010). In
the experiments we use the algorithm as described above, creating only the N alternative
permutations. Preliminary tests indicate that covering bigger set of likely permutations
slightly improves the accuracy, but for these applications the gain is small compared to the
increased computational cost.

Non-factorized Method: The property that q(π) converges to a delta distribution
around π̂ is caused by the assumption that the latent variables are independent of the
match. When computing Aij we integrate over zi separately for each j, which implies that
the matching cost depends only on the expected distances between W yzi and yj . This
assumption is critical for computation (otherwise the matching cost would not factorize
over the samples), but it also means that the uncertainty in the distances is not fully taken
into account: the pairs with the smallest expected distance will be strongly preferred for
high-dimensional data, irrespective of the variance.

To avoid the problem we should model the dependencies between the choices instead of
allowing each yj to independently integrate over zi. If a particular value is chosen for zi
then it should simultaneously become, for instance, both a better pair for yj and a worse
pair for some other sample yl. In other words, the posterior distributions depend on the
chosen match: Conditional on the choice “yj is paired with xi”, the distribution of W yzi
shifts closer to yj than what the update rule in (2) would suggest, and often this implies it
shifts away from some other samples. This property is illustrated in Figure 2.

Explicitly modeling such dependencies requires simultaneously integrating over the N
latent variables zi to compute the relative costs of different permutations. Solving such an
integral analytically seems hopeless, and hence we resort to Monte Carlo integration. For
notational convenience, we introduce a new variable ξi ∼ N (0,Σz) such that zi = µij + ξi
where µij and Σz are given in (2). Instead of assuming independent set of ξi values for
each sample yj and integrating them out (which would correspond to (2)), we draw a joint

random sample {ξ(m)
i }Ni=1 that is independent of j. This results in z

(m)
i |xi,yj = µij + ξ

(m)
i

for all choices of yj . We then solve the assignment problem with costs Aij = 1
2〈τy(yj −

W yz
(m)
i )T (yj −W yz

(m)
i )〉, where z

(m)
i is now a fixed quantity and hence the expectation

is only over q(τy) and q(W ), to find the match corresponding to this particular choice of

ξ(m). By repeating this process M times we can estimate 〈π〉 as the unweighted average of
the resulting permutations.

It is worth noting that the above numerical integration scheme does not result in mono-
tonically increasing variational lower bound for the marginal likelihood. We have not found
this to be a problem in practice, and as shown by the experiments the resulting match
is better than the one obtained when not modeling the dependencies between the latent
variables. The gain is particularly clear for high-dimensional data.
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Figure 2: Schematic illustration of the matching process, drawn for W x = W y = I which
enables depicting both the latent variables and the samples of both views in the
same two-dimensional space. Left: The posterior density of zi depends on both
xi and yj , and for two samples in both views there are a total of four peaks
in the posterior of the latent variables, one for each possible pair. The factor-
ized variational approximation integrates over the uncertainty (denoted by the
equiprobability contours) for each choice independently, and the match will only
depend on the difference of the expected distances. Even though the distribu-
tions of the distances to z1 (bottom figure) overlap heavily, the closer sample will
be preferred strongly for high-dimensional data. Right: Conditional on having
made a particular match (here y1 pairing with z1 and y2 pairing with z2) the
posterior distributions of zi shift towards the chosen y samples, influencing not
only the distances depicted here but also distances to potential other samples
yl. If this effect is not modeled, the permutations with some unlikely pairs will
receive too low probability since the compensation from these posterior shifts is

ignored. We model the dependencies by sampling: For each zi we draw ξ
(m)
i that

is converted to z
(m)
i |xi,yj (see text for details) shown here as small diamonds,

and then solve the match using distances from yj to these samples.

3.2.3. Initialization

As demonstrated by most earlier works, the matching problem is very sensitive to the
initialization. Our solution is no exception, due to the iterative mean-field algorithm for
updating the variational approximation. Hence, we present an initialization scheme that
borrows elements from several earlier solutions.

The basic idea is that we solve the problem L times, each time with a different ini-
tialization. We then create a consensus of those matches, following the idea by Tripathi
et al. (2011), by counting how many times each of the sample pairs were matched together
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in the set of the L solutions. Finally, the actual solution is computed by initializing the
model with the consensus (normalized to probabilities) and solving the matching problem
one more time.

The reasoning behind the strategy is that by choosing diverse initial models we can
better cover the space of potential matches, making the unimodal posterior approximation
less of a limitation. However, each individual initialization should still be a good one. To
achieve both properties, we use a modified version of the PCA-initialization suggested by
Quadrianto et al. (2010). For each of the L initializations we compute PCA separately
for both sets and order the samples according to the first component. For increasing the
diversity, we compute the PCA from random subset of N/2 dimensions instead of the whole
data, getting slightly different initialization for each run. Furthermore, we smoothen the
initial permutation by convolving it with a Gaussian kernel (the exact width does not seem
to matter).

3.3. Summary of the Method

Due to the somewhat complicated presentation above, we here summarize the alternative
versions of the algorithm. All choices are based on the same idea of learning Bayesian
CCA with an extra permutation matrix for re-ordering the samples, and they optimize each
term in the posterior approximation alternatingly. For all other parameters we re-use the
updates by Virtanen et al. (2011) but replace Y with Y 〈π〉. For updating q(π) we have
three alternative choices which will be empirically compared in the next section:

1. Hard matching (Hard): We find the most likely permutation π̂ and assume a delta
distribution for the posterior, such that 〈π〉 = π̂.

2. Factorized soft matching (F-Soft): The most likely permutation is complemented
with a set of other feasible permutations {π(m)}, obtained by re-optimizing the match
with extra constraints that prevent each of the samples in turn from picking its favorite
pair. We then compute 〈π〉 as a weighted average of these permutations.

3. Non-factorized soft matching (NF-Soft): We numerically integrate over q(zi)
to model the dependencies between the match and the latent variables. For each
Z(m) drawn from the posterior we solve the assignment problem to obtain a feasible
permutation π(m). The expectation is given by the flat average of such permutations.

For all variants we learn the match only over the components for which both βxk and βyk
are small (in practice, we use components that describe at least 0.1% of the variance in both
data sets), to ignore the set-specific variation not useful for learning the match. Learning
the match is the most time-consuming part, and hence we update q(π) only after every 10
iterations for the other terms. Overall, the computational cost of the method is dominated
by the cost used for computing the A matrix and solving the assignment problem. The hard
variant does these only once per iteration, the F-Soft variant repeats the latter N times,
and the NF-Soft variant repeats both multiple (in our experiments M = 50) times for each
iteration.
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4. Experiments

Next we compare the alternative versions presented above with earlier matching problem
solutions. For fair comparison, we use data sets analyzed by the authors of the earlier
methods. We start with the image data used by Quadrianto et al. (2010) and Jagarlamundi
et al. (2010) and compare our method with the latest kernelized sorting variant, and then
proceed to compare our method with a CCA-based method and a distance-based method
of Wang & Mahadevan (2009) on the data used by Tripathi et al. (2011). The first data is
high-dimensional (Dx = Dy = 2400), and hence an example of a case where the factorized
soft matching does not help, whereas the latter is low-dimensional (the dimensionalities
range from 3 to 30) and both of the soft variants provide a proper distribution over the
permutations.

4.1. Image Matching

In this problem the task is to match two halves of a set of 320 images, using the raw pixels
values (40 × 40 pixels in Lab color space) as the input. The problem itself is completely
artificial, but it has nevertheless become a kind of benchmark for the matching solutions
due to the data provided by Quadrianto et al. (2010).

We apply the hard and non-factorized soft variants of our model to different subsets of
the data. For each choice of N , we learn L = 50 initial solutions and initialize the final
model by the consensus of these matches. To further diversify the initializations, we use
only a subset of 300− 1200 dimensions (random choice) for each initial run. We use K = 8
components, but the results would not change much for larger K since the Bayesian CCA
automatically ignores unnecessary components (K = 16 gave slightly more correct matches,
216, for the full data, but slightly less for some smaller values of N).

Figure 3 compares the proposed method with the p-smooth variant of kernelized sorting
by Jagarlamundi et al. (2010), which has earlier been demonstrated to be superior to the
original algorithm. The p-smooth model is slightly better than ours for small N , but starting
from roughly N = 100 the NF-Soft variant clearly outperforms it. In particular, for the
choice of all images we get almost 50% more correct matches (201 vs 136).1 The figure also
shows that it pays off to use a full distribution over π instead of finding just the most likely
solution, but even the computationally very efficient variant of hard matching works well
in some cases (N = 320 gives 151 correct solutions). The factorized soft variant would not
help here; it finds almost a delta distribution over the permutations and consequently also
the resulting accuracy is comparable to the hard variant (not shown).

To illustrate the importance of good initialization, Figure 3 also shows the distribution
of matching accuracies for each of the individual preliminary runs for the NF-Soft variant
with N = 320 (the plot would be similar for other values of N). The accuracy varies
considerably from one run to another and the final accuracy is better than any of the
results obtained in the 50 initial runs, showing that a consensus of multiple runs provides
an excellent initialization. While the initialization comes with a notable extra computational
cost, the comparison with KS p-smooth is fair as both algorithms include an initialization

1. Note that the subsets of images used for N < 320 may not be exactly the same that were used by
Jagarlamundi et al. (2010), so only the case of N = 320 is directly comparable.
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Figure 3: Left: The number of correct matches as a function of the number of samples N .
The NF-Soft variant clearly outperforms the hard matching, and for all but the
smallest data sets is also better than the state-of-art kernelized sorting method
p-smooth. The results for p-smooth are measured with a ruler from Jagarlamundi
et al. (2010). Right: For N = 320 the soft variant finds 201 correct matches. The
boxplot shows the distribution of accuracies for the 50 initial runs with different
initialization, demonstrating how the final consensus match is clearly better than
any of these. In particular, the median accuracy of the initial runs is only 33,
which means that we could not rely on any single initialization.

scheme that requires solving the match several times. To be on the safe side we used 50
initializations, compared to 200 runs by Jagarlamundi et al. (2010).

4.2. Metabolite Matching

Next we proceed to an example data on translational medicine, taken from Tripathi et al.
(2011), where the task is to match metabolites of two populations. The problem mimics
a challenge where we need to align metabolites of two different species (Sysi-Aho et al.,
2011), but here the two populations are both human to provide the ground-truth alignment.
The data consists of time series of concentrations of N = 53 metabolites, and we have
measurements for several subjects. We compare our method with two methods presented
by Tripathi et al. (2011), using a setup very similar to theirs. In particular, we average
the matching accuracies over 100 runs where X and Y are taken from random subjects
(that is, the runs are truly independent since the input data is different in each run), and
we restrict the matchings so that a metabolite can only pair with another one in the same
functional class (which are assumed known).

We also provide another set of results without constraints, to demonstrate how well
we can do without any prior information on the match. For both tasks we compare our
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Figure 4: The accuracy of matching the metabolites in two human populations, averaged
over 100 different matching tasks and summarized as boxplots using the default
parameters of the R implementation. The top plot summarizes the results for
setup where the matches are constrained to be within the known functional classes
of the metabolites, whereas the bottom plot shows the results for purely data-
driven solution with no additional constraints. For both setups the soft variants
(both the non-factorized variant “NF-Soft” and the factorized one “F-Soft”) of
the proposed method are the best, followed by the hard variant. All three beat the
baseline methods of CCA-based matching (CCA+AP) and manifold alignment
(MA+AP) (paired t-test, p < 0.05).

method with the alternating optimization of CCA and AP (Tripathi et al., 2011) and
manifold alignment (Wang & Mahadevan, 2009) followed by AP. The kernelized sorting
is left out since Tripathi et al. (2011) already showed that both CCA+AP and MA+AP
outperform the basic version, and we did not have an implementation of the p-smooth
version by Jagarlamundi et al. (2010) at hand.
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Figure 4 shows how we again outperform the earlier methods by a relatively wide mar-
gin2, the non-factorized soft variant again having almost 50% more correct matches com-
pared to the best earlier method (38.9% correct vs 26.9% correct for CCA+AP). Both of
the soft variants provide comparable accuracy, outperforming the hard matching solution.
Nevertheless, even the hard one outperforms the comparison methods. This is understand-
able since the hard version is very close to the CCA+AP model. Both learn the most likely
matching with an AP solver, so the primary difference is in our method using the Bayesian
CCA instead of classical CCA as the underlying model. Given the relatively small sample
size of N = 53, it was to be expected that Bayesian CCA would outperform the classical
one.

Note that in this experiment we did not use the advanced initialization strategy of learn-
ing the final model given a consensus of preliminary runs, to warrant fair comparison with
the MA+AP model that could not utilize the same strategy as it does not require initial-
ization. Instead, we merely initialized each run with the first PCA component. However,
we did one final test to mimic the consensus matching setup of Tripathi et al. (2011), and
found the consensus of the 100 runs with different input matrices to reach 85%, compared
to their result of 70% with equal amount of data and some additional biological constraints
not used in our solution.

5. Discussion

We introduced a variational Bayesian solution for the matching problem introduced by
Jebara (2004) and popularized by Haghighi et al. (2008), Quadrianto et al. (2010) and
Tripathi et al. (2011) for solving alignment tasks for example in natural language processing
and computational biology. By learning together a Bayesian canonical correlation analysis
model (Virtanen et al., 2011) and a permutation matrix re-ordering the samples in one of
the sets, we obtained matching accuracies better than those of any earlier solution.

The good performance can be pinpointed to three key properties. First, using CCA as
the underlying probabilistic model enables matching the samples in the subspace capturing
only the dependencies between the sets. Hence, the model combines the advantages of
generative modeling and earlier matching solutions that explicitly maximize a dependency
measure.

The second key element is that we learn a full distribution over the permutation matrices,
instead of finding just the best one. Even if the overall goal was to find a single match,
making the inference with soft assignments improves the accuracy considerably. In addition,
it automatically implements properties similar to some earlier heuristic additions: Both
Haghighi et al. (2008) and Jagarlamundi et al. (2010) attempt to identify the most reliable
pairs to trust them more, whereas we will automatically average over the unreliable pairs
by having wider posterior for them.

Finally, the third critical improvement is our improved initialization which dramatically
helps converging to a good local optimum. The earlier works have also pointed out the
importance of good initialization, and Jagarlamundi et al. (2010) in particular ended up de-
vising an advanced initialization scheme that involves sequentially solving the problem with

2. The exact values for the comparison methods are not directly comparable with Tripathi et al. (2011),
since they used additional biological constraints for learning the match.
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slightly different tuning parameter while starting with the best solution obtained thus far.
Our approach is complementary to that, by trying out several different initializations and
then learning a consensus of those to be used as an initialization for the final solution. The
proposed initialization is directly applicable also for other matching algorithms, including
kernelized sorting.

During the review process Djuric et al. (2012) introduced a convex relaxation to kernel-
ized sorting, obtaining accuracies comparable to ours in the image matching task. They got
206 correct matches for the 320 images, compared to our results of 201 (K = 8) and 216
(K = 16). Their method has computational advantage due to guaranteed convergence to
a global optimum, but it lacks justified probabilistic treatment. They use soft assignments
obtained by relaxation to doubly stochastic matrices, which means they do not necessarily
solve the original problem, in contrast to our method that directly operates on true per-
mutations. However, their solution would most likely be an excellent initialization for the
proposed model, either as a replacement for the different random initializations or as one
extra initialization to be included in the consensus.

On a broader perspective, we introduced techniques for dealing with permutations in
variational approximation, to complement the earlier exact approaches for small sample
sizes (Kondor et al., 2007; Plis et al., 2011). The ideas should be applicable also to other
problems involving permutation matrices, such as object tracking (Kondor et al., 2007),
assuming the mode (the optimal permutation) can be found efficiently. The algorithms
for creating the alternative permutations could be improved, but already the current ones
dramatically improve the accuracy compared to using only the best match. We also pointed
out that breaking the independence assumption between the match and the latent variables
is crucial for high-dimensional data.
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