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Abstract

Based on the convex-concave relaxation procedure (CCRP), the (extended) path following
algorithms were recently proposed to approximately solve the equal-sized graph matching
problem, and exhibited a state-of-the-art performance (Zaslavskiy et al., 2009; Liu et al.,
2012). However, they cannot be used for subgraph matching since either their convex or
concave relaxation becomes no longer applicable. In this paper we extend the CCRP to
tackle subgraph matching, by proposing a convex as well as a concave relaxation of the
problem. Since in the context of CCRP, the convex relaxation can be viewed as an initial-
ization of a concave programming, we introduce two other initializations for comparison.
Meanwhile, the graduated assignment algorithm is also introduced in the experimental
comparisons, which witness the validity of the proposed algorithm.

Keywords: subgraph matching, convex relaxation, concave relaxation, feature correspon-
dence

1. Introduction

Subgraph matching as a fundamental problem in theoretical computer science finds wide
applications in many fields such as computer vision, machine learning and bioinformatics.
It is also sometimes referred to as subgraph isomorphism, but here we consider the inexact
subgraph matching or subgraph homomorphism problem, which provides a basis for many
real applications, such as pattern/object matching, feature correspondence, and weighted
subgraph matching. Since the problem has been proven to be NP-complete (Abdulkader,
1998), in general we have to resort to some approximate approaches to get a trade-off
between the complexity and matching accuracy.

Though there existed some quite successful algorithms (Ullman, 1976; Haralick and
Elliot, 1980) targeting at subgraph isomorphism, they can hardly be extended to solve
weighted subgraph matching problems. On the other hand, an important family of approx-
imate subgraph matching algorithms arises from the relaxation technique, which usually
involves relaxing the discrete matching problem to be a continuous one. The point lies in
the fact that a continuous problem is usually more convenient to be approximated than its
discrete counterpart. Typical relaxation based subgraph matching algorithms include, for
instance, probabilistic relaxation (Christmas et al., 1995) and convex relaxation (Schelle-
wald and Schnörr, 2005).

c© 2012 Z.-Y. Liu & H. Qiao.



Liu Qiao

Actually, relaxation technique based graph matching algorithms have been receiving
extensive attentions in the past three decades (Fischler and Elschlager, 1973; Luo and Han-
cock, 2001; Umeyama, 1988; Gold and Rangarajan, 1996; Zaslavskiy et al., 2009; Liu et al.,
2012). A common problem faced by the relaxation techniques is the back projection, which
involves projecting the relaxed continuous solution back to a discrete one. A frequently
used approach is based on the maximal linear assignment principle, closely related to the
winner-take-all schema, which may however introduce significant additional errors. Some
more successful algorithms such as the graduated assignment (Gold and Rangarajan, 1996)
and (extended) path following algorithms (Zaslavskiy et al., 2009; Liu et al., 2012) gradu-
ally approach a discrete solution, via a deterministic annealing or convex-concave relaxation
procedure (CCRP). However, it is not trivial to extend a graph matching algorithm (with
equal size) to be a subgraph matching one, by, for instance, adding some dummy nodes into
the smaller graph. There are two issues to be considered. Firstly, such an addition expands
the search space of the problem (NS !/(NS−NM )!→ NS !), and thus increases the chance of
getting trapped into poor local minima, especially as NS � NM , where NS and NM denote
the size of the bigger and smaller graphs. Secondly, and maybe more importantly, it is easy
to check that adding dummy nodes makes the matching problem, in general, not equivalent
to the original one, or in other words, a good solution of the expanded problem may result
in a poor solution for the original problem, depending on the objective functions selected.

In this paper we will propose a CCRP based algorithm directly targeting at subgraph
matching problems. The proposed method can be taken as an extension of the (extended)
path following algorithms (Zaslavskiy et al., 2009; Liu et al., 2012), both of which are
based on CCRP, but can be used on only equal-sized graph matching problems. The next
section gives a brief description of the subgraph matching problem and the convex-concave
relaxation procedure, and the proposed method is detailed in seciton 3. After giving some
experimental comparisons in section 4, section 5 concludes the paper.

2. Problem Description and Convex-Concave Relaxations Procedure

2.1. Problem Description

The objective function of subgraph matching can be defined from different perspectives.
For instance, three types of generalization from equal-sized matching problem to subgraph
matching problem were discussed in (Zaslavskiy et al., 2009), including the expansion
scheme discussed previously. Actually, what we are interested in this paper is the first
case in (Zaslavskiy et al., 2009), which matches the smaller graph directly to a subgraph in
the bigger one without needing to modify the adjacency matrices. However, the (extended)
path following algorithm in (Zaslavskiy et al., 2009; Liu et al., 2012) cannot tackle such a
subgraph problem because as will be shown below the transform matrix P is no longer a
permutation matrix. Specifically, given the two graph models GM and GS to be matched,
the objective function for the subgraph matching problem is defined by

F (P ) = ‖ AM − PASP T ‖2F , P ∈ Ω, (1)

where the problem domain Ω is defined as

Ω = {P |Pij = {0, 1},
∑
j

Pij = 1,
∑
i

Pij ≤ 1, ∀i, j}. (2)
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In (1), AM ∈ RNM×NM and As ∈ RNS×NS denote the adjacency matrices, and without loss
of generality, it is here and hereafter assumed that NM ≤ NS , which implies that P is a
partial permutation matrix since PP T = I, but P TP 6= I in general. Actually, (1) was also
adopted as the objective function for the equal-sized graph matching problem in (Zaslavskiy
et al., 2009; Liu et al., 2012) where P is constrained as a permutation matrix. However,
generalization of P from permutation to partial permutation matrix makes the subgraph
matching problem greatly different from the equal-sized problem, especially in the context
of CCRP, as to be discussed in 2.2.

To globally solve the above integer programming, an exhaustive search involves CNM
NS

times of enumerations, which is a typical NP-hard problem.

2.2. Convex-Concave Relaxations Procedure

To utilize the CCRP to approximately solve an (integer) optimization problem like (1),
we need first to relax the feasible domain the problem from a discrete set to a (convex)
continuous one. For instance, the set of (NM ×NS) partial permutation matrices in (2) can
be relaxed to the set of (NM ×NS) doubly substochastic matrices as follows,

Π = {P |Pij ≥ 0,
∑
j

Pij = 1,
∑
i

Pij ≤ 1,∀i, j}. (3)

It is easy to check that Π is the convex hull of Ω (Maciel and Costeira, 2003). Then,
we need to figure out both of its convex and concave relaxations. A convex relaxation
(underestimates) Fv(P ) of F (P ) is a convex function that satisfies

Fv(P ) = F (P ), P ∈ Ω, and Fv(P ) ≤ F (P ), P ∈ Π, (4)

and on the other hand, a concave relaxation (overestimates) Fc(P ) of F (P ) is a concave
function that satisfies

Fv(P ) = F (P ), P ∈ Ω, and Fc(P ) ≥ F (P ), P ∈ Π. (5)

Finally, based on Fv(P ) and Fc(P ), the objective function of a CCRP is constructed as
follows (Zaslavskiy et al., 2009),

Fγ(P ) = (1− γ)Fv(P ) + γFc(P ), 0 ≤ γ ≤ 1, P ∈ Π. (6)

In implementation, γ is increased gradually from 0 to 1, making Fγ(P ) becomes gradually
from Fv(x) to Fc(X). The global minimum of Fv(P ) can be found, which provides the
initialization of CCRP, and finally, minima of Fc(P ) are located exactly in Ω, the feasible
domain of the original integer optimization problem. Such a procedure is in spirit similar to
the graduated non-convexity algorithm (Blake and Zisserman, 1987) in that both methods
approximate the global minimum of a non-convex function by first solving a simple convex
program, and then gradually transferring to the original problem.

The CCRP was firstly proposed to solve the equal-sized graph matching problem, where
P is constrained as a permutation matrix, i.e., both PP T = I and P TP = I, which makes
the convex relaxation of (1) directly obtainable as (Zaslavskiy et al., 2009; Liu et al., 2012),

Fv(P ) =‖ AM − PASP T ‖2F=‖ AMP − PAS ‖2F= vec(P )TQvec(P ), (7)
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where Q = (I ⊗AM −ATS ⊗ I)T (I ⊗AM −ATS ⊗ I) is a positive definite matrix. Meanwhile,
though involving a complicated mathematical derivation, the concave relaxation is also
obtainable by taking advantage of P being a permutation matrix (Zaslavskiy et al., 2009;
Liu et al., 2012). However, as P is generalized to be a partial permutation matrix, the
convex or concave relaxation found on equal-sized problem is no longer applicable. Below
we will propose the convex and concave relaxations, and consequently the CCRP algorithm
for the subgraph matching problem.

3. Proposed Method

A concave as well as a convex relaxation is firstly proposed to construct the CCRP, then
a frank-wolfe based optimization algorithm is proposed to minimize the objective function,
and finally some discussions will be given on the convex relaxation.

3.1. Concave and Convex Relaxations

Since P is not a permutation matrix, (7) is on longer satisfied. Instead, by removing a
constant with respect to P , the objective function F (P ) in (1) can be equivalently written
as,

F0(P ) = tr(P TPATSP
TPAS)− 2tr(ATMPASP

T ). (8)

Then, we first discuss undirected graphs which involves a symmetric adjacency matrix, and
then extend the results to directed graphs.

3.1.1. undirected graphs

As P ∈ Ω, by introducing two constants c1 and c2 the objective function F0(P ) above is
derived as follows,

Fu(P ; c1, c2) = tr(P TPATSP
TPAS)− 2tr(ATMPASP

T )

= tr(P TPATSP
TPAS)− 2tr(ATMPASP

T )− (c1 + c2) trJP︸ ︷︷ ︸
NM

+c1 vec(P TP )Tvec(P TP )︸ ︷︷ ︸
NM

+c2 vec(P )Tvec(P )︸ ︷︷ ︸
NM

(9)

where J := 1NM×NM
denotes a unit matrix consisting of all 1s. Because AS and AM are

both symmetric since both graphs are undirected, implying further that both (AS ⊗ AS)
and (AS ⊗AM ) are also symmetric, the first two terms of Fu(P ; c1, c2) can be written in an
eigen-decomposed form as,

tr(P TPATSP
TPAS) = vec(P TP )T (AS ⊗AS)vec(P TP ) = vec(P TP )T (UT1 Λ1U1)vec(P TP ),

tr(ATMPASP
T ) = vec(P )T (AS ⊗AM )vec(P ) = vec(P )T (UT2 Λ2U2)vec(P ),

where AS ⊗ AS = UT1 Λ1U1 and AS ⊗ AM = UT2 Λ2U2 are eigen-decompositions. Finally,
Fu(P ; c1, c2) can further written as

Fu(P ; c1, c2) = vec(P TP )TUT1 (Λ1 + c1I)U1vec(P TP ) + vec(P )TUT2 (c2I − 2Λ2)U2vec(P )

−(c1 + c2)trJP. (10)
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Relaxing the feasible domain from Ω to Π, Fu(P ; c1, c2) becomes a concave relaxation
of Fu(P ) by setting c1 and c2 as

c1 = λc1u := −max{Λ1}, c2 = λc2u := 2min{Λ2},

where max{Λ} and min{Λ} denotes finding the maximal and minimal elements of Λ, respec-
tively. It is here and hereafter assumed that max{Λ1} > 0 and min{Λ2} < 0, or otherwise,
c1 or c2 can be just set as 0. Since the matrices UT1 (Λ1 + λc1u I)U1 and UT2 (λc2u I − 2Λ2)U2

are both symmetric and negative definite, and the linear term trJP does not affect the
convexity or concavity, Fu(P ;λc1u , λ

c2
u ) is a concave function. To verify that Fu(P ;λc1u , λ

c2
u )

is meanwhile a concave relaxation, we need further to validate whether Fu(P ;λc1u , λ
c2
u ) sat-

isfies the two equations in (4). The first equation is obviously satisfied due to (9). On the
other hand, it is easy to check that, as P ∈ Π, both trJP = NM ≥ vec(P TP )Tvec(P TP )
and trJP = NM ≥ vec(P )Tvec(P ), and meanwhile, both λc1u < 0 and λc2u < 0. Thus,
Fu(P ;λc1u , λ

c2
u ) ≥ Fu(P ). Consequently, it is verified that Fu(P ;λc1u , λ

c2
u ) is a concave relax-

ation of Fu(P ).
Moreover, since the term trJP remains a constant (NM ) for P ∈ Π, Fu(P ; c1, c2) above

can be equivalently simplified as follows,

Fu(P ; c1, c2) = vec(P TP )TUT1 (Λ1 + c1I)U1vec(P TP ) + vec(P )TUT2 (c2I − 2Λ2)U2vec(P ).

(11)

Similarly, we can get a convex relaxation Fu(P ;λv1u , λ
v2
u ) based on Fu(P ; c1, c2) by setting

c1 = λv1u := −min{Λ1}, c2 = λv2u := 2max{Λ2}.

λc1u , λ
c2
u , λ

v1
u and λv2u are straightforward to gotten, due to the fact that any eigenvalue

of A⊗B is the product of an eigenvalue of A (λi(A)) and B (λj(B)) (Golub and Van Loan,
1996). For instance, denoting by λSmin and λSmax the minimal and maximal eigenvalue
of AS , and assuming that λSmax > 0 and λSmin < 0, λc1u and λv1u can be calculated as

λc1u = −max{λSmin
2
, λSmax

2}, and λv1u = −λSminλSmax.

3.1.2. directed graphs

We then discuss the directed graphs, where asymmetric AS ⊗ AS and/or AS ⊗ AM make
the convexity and concavity of the relaxed function difficult to check. Thus, the function is
first equivalently rewritten taking a symmetric form as follows,

Fd(P ) = vec(P TP )T (AS ⊗AS)vec(P TP )− 2vec(P )T (AS ⊗AM )vec(P )

=
1

2
vec(P TP )T (AS ⊗AS +ATS ⊗ATS )vec(P TP )

−vec(P )T (AS ⊗AM +ATS ⊗ATM )vec(P ) (12)

Now, (AS ⊗AS +ATS ⊗ATS ) and (AS ⊗AM +ATS ⊗ATM ) become symmetric, and a similar
derivation as that on undirected graphs can be proceeded to get

Fd(P ; c1, c2) =
1

2
vec(P TP )T (AS ⊗AS +ATS ⊗ATS )vec(P TP )

−vec(P )T (AS ⊗AM +ATS ⊗ATM )vec(P )

+c1vec(P TP )Tvec(P TP ) + c2vec(P )Tvec(P ). (13)
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Then, a concave relaxation Fd(P ;λc1d , λ
c2
d ) and convex relaxation Fd(P ;λv1d , λ

v2
d ) can be

obtained by setting

λc1d := −1

2
max{Λ1}, λc2d =:= min{Λ2}, λv1d := −1

2
min{Λ1}, λv2d := max{Λ2},

where Λ1 and Λ2 are gotten by the eigen-decompositions (AS ⊗AS +ATS ⊗ATS ) = UT1 Λ1U1

and (AS ⊗AM +ATS ⊗ATM ) = UT2 Λ2U2, respectively.
Another issue on the directed graphs is how to figure out the minimal and maximal

element of Λ1 and Λ2, the eigenvalues of the two matrices with large sizes N2
S × N2

S and
NSNM ×NSNM respectively. It is usually computationally prohibited to directly calculate
them. In practice we may resort to some iterative technique such as the power method
(Golub and Van Loan, 1996), but we notice that an exact maximal or minimal eigenvalue is
unnecessary but we need only to estimate an upper/lower bound of them, a similar problem
faced by the extended path following algorithm (Liu et al., 2012). Therefore, we adopt the
same procedure in (Liu et al., 2012) to calculate the upper/lower bound. Specifically, letting
a and b denote the minimal and maximal elements of matrix M (with size n× n), a looser
lower bound λl of its smallest eigenvalue is gotten by (Zhan, 2006):

λmin(M) ≥


{
n(a− b)/2 if n is even,(
na−

√
a2 + (n2 − 1)b2

)
/2 otherwise,

if |a| < b,

na otherwise,

(14)

Then, a positive definite matrix Φ is constructed as Φ = M−λlI. Writing Φn in a partition

form as Φn =

[
Φn−1 d

dT c

]
a tight lower bound for the smallest eigenvalue of Φ can be

iteratively gotten by (Dembo, 1988),

ln =
1

2

(
c+ ln−1 −

√
(c− ln−1)2 + 4dTd

)
≤ λmin(Φn), (15)

where ln−1 denotes the lower bound of Φn−1. It is not difficult to check that all of Φn−1...Φ1

are symmetric positive definite matrices, thanks to the rather general lower bound given by
(14). Thus, we can iteratively find ln starting from l1, and consequently, a tight estimation
of of the smallest eigenvalue can be obtained by λ = ln+λl. The upper bound of the biggest
eigenvalue can also be gotten in a similar way.

3.2. CCRP and Algorithm

Based on the convex and concave relaxations found above, the objective function of CCRP
can be then constructed as,

Fγ(P ) = (1− γ)F∗(P ;λv1∗ , λ
v2
∗ ) + γF∗(P ;λc1∗ , λ

c2
∗ ), 0 ≤ γ ≤ 1, P ∈ Π,

= tr(P TPATSP
TPAS)− 2tr(ATMPASP

T ) + ((1− γ)λv1∗ + γλc1∗ )trP TPP TP

+((1− γ)λv2∗ + γλc2∗ )trP TP, (16)

where ∗ = {u, d} denotes the undirected or directed graphs.
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Algorithm 1 CCRP Subgraph Matching Algorithm

Input: AM , AS
Output: P
Initialize: γ ← 0, P ← 1NM×NS

/NS

repeat
repeat
X = arg min trXT∇Fγ(P ), s.t. X ∈ Π
α = arg minFγ(P + α(X − P )), s.t. 0 ≤ α ≤ 1
P ← P + α(X − P )

until P converges
γ ← γ + dγ

until γ ≥ 1 ∨ P ∈ Ω

Then, similar to the (extended) path following algorithms, for each fixed γ a frank-wolfe
algorithm is employed to minimize the objective function. The algorithm is summarized in
Algorithm 1. In the algorithm, X = arg min trXT∇Fγ(P ) can be solved by the Hungar-
ian algorithm (Kuhn, 1955), and α can be found by a backtracking algorithm (Boyd and
Vandenberghe, 2004).
∇Fγ(P ) in the algorithm is given by:

∇Fγ(P ) = 2P (ATSP
TPAS +ASP

TPATS )− 2(AMPA
T
S +ATMPAS) +

4((1− γ)λv1∗ + γλc1∗ )PP TP + 2((1− γ)λv2∗ + γλc2∗ )P. (17)

For each fixed γ, the convergence of P can be confirmed by checking whether

tr∇Fγ(P )T (P −X) < ε|Fγ(P ) + tr∇Fγ(P )T (X − P )|. (18)

The computational complexity of the proposed algorithm is roughly O(N3
S) due to matrix

multiplication, and the storage is O(N2
S). However, on directed graphs, both computational

and storage complexities become roughly O(N4
S) due to (15).

3.3. on Convex Relaxation

Because all of the minima of a concave function locate exactly in Ω, a concave relaxation
gotten by taking advantage of the properties of P ∈ Ω such as trP TP = NM will retain the
same minima as the original discrete matching problem. However, there is a quite different
situation for convex relaxation, whose minima are in general located in Π but not Ω. In
other words, the minima of the convex relaxation may deviate greatly from the originally
relaxed problem. From another viewpoint, the CCRP can be in some sense regarded as
a concave programming to approach the global minimum of the concave relaxation, i.e.,
the original problem, and the convex relaxation provides a reasonable initialization (as well
as some constraints during the procedure). Therefore, to evaluate the proposed convex
relaxation, it is worth comparing it with some other types of initializations (may even not
be a convex relaxation). Below we introduce two other initializations.

First, the smaller graph GM is expanded to the size NS by adding some dummy (null)
nodes. The new P̂ becomes exactly a permutation matrix which implies that P̂ T P̂ = I.
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Then, similar to the path following algorithm (Zaslavskiy et al., 2009), a convex relaxation
is gotten as follows,

F̂ 2
v (P̂ ) = tr

[
(ÂM P̂ − P̂AS)T (ÂM P̂ − P̂AS)

]
= vec(P̂ )T Q̂vec(P̂ ), (19)

where Q̂ = (I ⊗ ÂM −ATS ⊗ I)T (I ⊗ ÂM −ATS ⊗ I) is a positive definite matrix. Then, we
approximately use the function

F 2
v (P ) = vec(P )TQvec(P ), (20)

as the convex relaxation, where Q = (I ⊗AM −ATS ⊗ I)T (I ⊗AM −ATS ⊗ I) is also positive
definite. Thus, the objective function becomes

F 2
γ (P ) = (1− γ)F 2

v (P ) + γF∗(P ;λc1∗ , λ
c2
∗ ), 0 ≤ γ ≤ 1, P ∈ Π, (21)

and its gradient F 2
γ (P ) is given as follows,

∇F 2
γ (P ) = 2(1− γ)(ATMAMP + PASA

T
S )− 2AMPA

T
S − 2ATMPAS +

2γ
[
P (ATSP

TPAS +ASP
TPATS ) + 2λc1∗ PP

TP + λc2∗ P
]

(22)

Second, since as discussed above the minima of a convex relaxation may greatly deviate
from those of the originally relaxed problem, we directly use the relaxed function as the
initialization, though itself is in general no longer a convex function. The objective function
is now

F 3
γ (P ) = (1− γ)F0(P ) + γF∗(P ;λc1∗ , λ

c2
∗ ), 0 ≤ γ ≤ 1, P ∈ Π, (23)

and the gradient becomes

∇F 3
γ (P ) = 2(ATMAMP −ATMPAS −AMPATS + PASA

T
S ) + 4γλc1∗ PP

TP + 2γλc2∗ P. (24)

4. Experiments and Discussions

In this section we extensively compare the proposed CCRP based subgraph matching al-
gorithm, denoted by CCRP1 below, with some other typical algorithms. Specifically, the
other two types of CCRP algorithm with their convex relaxations given by (21) and (23)
are denoted by CCRP2 and CCRP3, respectively. Meanwhile, we will also introduce as
below a graduated assignment algorithm abbreviated as GA S to approximately minimize
(8). Three other algorithms include the path following (PATH) (Zaslavskiy et al., 2009)
and extended path following (EPATH) algorithms (Liu et al., 2012), for undirected graphs
and directed graphs respectively, and the original graduated assignment algorithm (GA)
(Gold and Rangarajan, 1996). All of the (E)PATH and GA algorithms are implemented by
expanding GM with the same size as GS by adding some dummy nodes, and finally their
matching errors are calculated via (8) by truncating the estimated permutation matrix P
from the size NS × NS to a partial permutation matrix with the size NM × NS . The pa-
rameters in GA and GA S are set the same as those in (Gold and Rangarajan, 1996), for
the CCRP algorithms, ε is set as 0.001, and the initialization of all of the algorithms except
for U is set as P 0 = 1NM×NS

/NS .
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Algorithm 2 Graduated Assignment Subgraph Matching Algorithm

Input: AM , AS
Output: P
Initialize: β ← β0, P ← 1NM×NS

/NS

repeat
repeat
Q← −∇F0(P )
P 0 ← exp(βQ)
repeat
P 1
ai ← P 0

ai/
∑

i P
0
ai

P 0
ai ← P 1

ai/
∑

a P
1
ai

until P converges
P ← NMP/NS

until P converges
β ← βrβ

until β > βf

4.1. a graduated assignment subgraph matching algorithm

Firstly, to get a comparative evaluation on the proposed CCRP based subgraph matching
algorithm, based on the graduated assignment schema we propose another algorithm to
approximately minimize (8). Specifically, given an initialization P 0, F0(P ) can be approxi-
mated around P 0 via a Taylor series as:

F0(P ) ≈ F0(P
0) + tr(P − P 0)T∇F0(P ), (25)

where ∇F0(P ) is given by

∇F0(P ) = 2P (ATSP
TPAS +ASP

TPATS )− 2(AMPA
T
S +ATMPAS). (26)

Therefore, minimization of the Taylor series of F0(P ) is approximated by maximizing
−trP T∇F0(P ). Similar to the graduated assignment algorithm (Gold and Rangarajan,
1996) and based on (26), the graduated assignment based subgraph matching algorithm is
proposed as listed in Algorithm 2. It is noted that, to make the double normalization pro-
cess applicable on the non-square matrix to guarantee P ∈ Π, in the algorithm we multiply
a factor NM/NS on the normalization results.

4.2. on artificial data

Four types of artificial graph data are generated for the experimental comparison: undi-
rected/directed uniform graph and undirected/directed scale-free graph. The uniform graph
is generated by setting its degree distribution as a uniform distribution. Specifically, a uni-
form graph model is generated by the following steps: Given a sparsity s ∈ [0, 1], for each
entry Aij of A generate a random number r which is uniformly distributed within [0, 1]; if
r > s, associate Aij a random weight, or otherwise Aij = 0. The degree distribution of a
scale-free graph follows a power law p(k) ∝ k−α (in the following experiments α is fixed
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at 1.5). The edge weights of the generated graphs follow an absolute normal distribution

(p(w) = 2√
2π
e−

w2

2 , w ≥ 0).

The first experiment compared the seven algorithms by randomly generating 100 graph
pairs on each graph type, with fixed NS = 16 and NM = 8. For uniform graphs, the
sparsity s = 0.5. The experiment results are listed in Table 1, from which we can notice
the following three points:

• The first three algorithms which realize the subgraph matching by adding some
dummy nodes in the smaller graph got much worse performance than the other four
algorithms based directly on (1), echoed by the previous discussions.

• All of the three CCRP algorithms outperforms GA S. This witnesses the superiority
of the CCRP framework.

• The proposed CCRP1 outperforms both CCRP2 and CCRP3.

Table 1: Comparative experimental results on 100 graph pairs with NS = 16 and NM = 6
error GA PATH EPATH GA S CCRP1 CCRP2 CCRP3

ave 24.34 22.82 - 18.55 7.272 8.775 8.773
uu

std 11.82 7.573 - 7.378 3.992 2.862 2.521

ave 38.67 - 28.47 23.52 11.20 17.67 11.92
du

std 10.32 - 7.858 6.416 2.705 3.914 3.733

ave 22.75 14.98 - 13.11 6.229 6.305 6.976
us

std 6.658 9.704 - 7.366 4.937 4.464 4.639

ave 26.87 - 19.97 16.12 6.912 9.220 7.809
ds

std 10.22 - 8.617 5.853 2.009 3.995 2.702

ave: average matching error; std: standard deviation; uu: undirected uniform graphs; du: directed
uniform graphs; us: undirected scale-free graphs; du: directed scale-free graphs

The second experiment was to evaluate the algorithms with respect to the scale of the
graph. First, the size of GS is fixed at 40, and the size of GM is increased from 4 to 40 by
a step size 4, and then the size of GM is fixed at 8, and the size of GS is increased from 8
to 40 by a step size 4. In the experiment, the sparsity s of the uniform graphs is set as 0.5.

The experiment results are plotted in Figs. 1 and 2, respectively, where the error bar
denotes the standard deviation. From the experimental results we can observed that, first,
CCRP1 got the best matching results in almost all cases; second, on equal-sized graph
matching problems, i.e., GM = 40 in Fig. 1 and GS = 8 in Fig. 2, the PATH or EPATH
got comparable results as the CCRP1. However, their performance declines quickly as the
problem becomes a subgraph matching problem.

The third experiment was to evaluate the noise resistant ability of the algorithms. For
each graph pair, the second graph was generated based on the first one by adding some
noises which are controlled by a noise level. Specifically, for uniform graphs, given a noise
level β ∈ [0, 1] and a randomly generated uniform graph GS (with NS = 16), the smaller
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Figure 1: Comparative experimental results on the four types of graphs summarized from
50 random runs. Size of the bigger graph GS is fixed at 40, and the size of the
smaller one GM is increased from 4 to 40 by a step size 4.

graph GM with NM = 8 is firstly gotten by randomly extracting out from GS eight nodes
as well as the edges belonging to them. Then, the noises are added by the following steps:

1. For each (AM )ij , i 6= j, generate two uniformly distributed random numbers r1 and
r2 ∈ [0, 1].

2. If (AM )ij > 0: if r1 < β, (AM )ij ← 0; or otherwise, (AM )ij ← (AM )ij + βr2.

3. If (AM )ij = 0: if r1 < β, (AM )ij ← r2.

4. Generate a random permutation matrix P , and set AM ← PAMP
T .

For the scale free graphs, the noise is added as follows. Generate GM̂ (NM̂ = 8) from a
scale-free GS (NS = 16) by randomly extracting out from GS eight nodes as well as the
edges belonging to them. Then, GM is generated by randomly adding βNE edges into GM̂ ,
where we denote by NE the number of edges of GM̂ .

The experimental results on the four types of graphs are shown in Fig. 3, which witnesses
once again that the proposed CCRP1 is the best one in almost all of the experiments.

The last experiment was to evaluate the algorithm with respective to the graph sparsities
(densities). The uniform graphs were used in the experiment, and the sizes of GS and GM

247



Liu Qiao

10 15 20 25 30 35 40
0

10

20

30

40

50

size of G
S
 (bigger graph)

m
at

ch
in

g 
er

ro
r

undirected uniform graph

10 15 20 25 30 35 40
0

10

20

30

40

50

size of G
S
 (bigger graph)

m
at

ch
in

g 
er

ro
r

directed uniform graph

10 15 20 25 30 35 40
0

10

20

30

40

50

size of G
S
 (bigger graph)

m
at

ch
in

g 
er

ro
r

undirected scale−free graph

10 15 20 25 30 35 40
0

10

20

30

40

50

size of G
S
 (bigger graph)

m
at

ch
in

g 
er

ro
r

directed scale−free graph

 

 

GA
(E)PATH
GA_S
CCRP1
CCRP2
CCRP3

Figure 2: Comparative experimental results on the four types of graphs summarized from
50 random runs. Size of the smaller graph GM is fixed at 8, and the size of the
bigger one GS is increased from 8 to 40 by a step size 4.

are fixed at 20 and 10 respectively. The sparsity s for both GS and GM is increased from
0.1 to 1 by a step size 0.1, and on each level of sparsity 50 graph pairs were randomly
generated. The experimental results are shown in Fig. 4, where it is witnessed that CCRP1
outperforms except only for undirected uniform graphs with s = 1, on which GA showed a
somehow surprisingly good performance.

4.3. on object matching

4.3.1. objective function

Feature correspondence (or point pattern matching) is a fundamental problem in computer
vision. The objective function of feature correspondence usually involves two terms, the
unary term related to the appearance cues and the pairwise term related to the geometric
relationship (Torresani et al., 2008; Philbin et al., 2011). Here we consider the problem of
matching a smaller structured model to a larger scene structure, i.e., a subgraph matching
problem. To formulate the problem under subgraph matching framework where the unary
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Figure 3: Comparative experimental results on the four types of graphs summarized from
50 random runs. The noise level is increased from 0 to 1 by a step size 0.1.

and pairwise terms actually respectively correspond the vertices and structure dissimilarity
in the context of graph matching, we first introduce the distance between the shape context
descriptor (Belongie et al., 2002) as the unary term as follows,

Fu(P ) = tr(CTP ), Cij =
1

2

k∑
k=1

[
hDi(k)− hMj(k)

]2
hDi(k) + hMj(k)

, (27)

where hDi and hMj denote the histogram of the shape context of the ith feature of image
D and jth feature of image M , respectively. Then, the pairwise term is formulated by the
normalized square of the difference between the distances between two feature locations as
follows,

Fp(P ) = ‖ AD − PAMP T ‖2F , Aij =

{
0 ifi = j,

‖ li − lj ‖F /maxmnAmn otherwise,
(28)
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Figure 4: Comparative experimental results on the four types of graphs summarized from
50 random runs. The density level is increased from 0.1 to 1 by a step size 0.1.

where li = (xi, yi)
T denotes the location of the feature i. The objective function for the

feature correspondence is finally given by

F (P ) = αFu(P ) + (1− α)F0(P ), P ∈ Ω, (29)

where α is a constant, which we set 0.1 in our experiments, implying that the matching is
dominated by the geometric cues. Due to the linearity of Fu(P ) which does not affect the
convexity/concavity of F (P ), the previously proposed CCRP and GA S algorithms can be
directly used, by adding a linear term as,

F (P ) = αFu(P ) + (1− α)F ∗γ (P ), P ∈ Ω, (30)

in which F ∗γ (P ) denotes the objective function of CCRP1, CCRP2, CCRP3 or GA S. Thus,
we need just modify the proposed algorithm by adding a constant term αC into the gradient
given by (17), (22), (24) or (12).

4.3.2. results

In the experiment we adopt the CMU hotel sequence data for the illustration, from which
we choose 6 frames, i.e., the frames 1, 21, 41, 61, 81 and 101 with a 20-frame interval. For
each frame we manually marked the same 26 feature points (typically the corner points) as
shown in Fig. 4.3.2 (the left-hand side one) and extracted their shape context descriptors.
A sub-structure with 14 nodes is selected as the sub-structure as shown in Fig. 4.3.2 (the
right-hand side one). There are totally 6 sub-structures (one for each frame), each of which
was matched to reminder 5 frames, and thus there are totally 60 matchings, which involves
totally 420 node pairs (0.5×60×14). We compare the GA S, CCRP1, CCRP2, and CCRP3,
and use the average matching error as well as the number of mismatched node pairs as the
criterion, as summarized in Tab. 2, from which it is witnessed that the proposed CCRP1
got the best matching results. It is also noticed that CCRP3 whose initialization is provided
by a non-convex function also got a promising performance.
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Figure 5: The scene structure (left-hand) and sub-structure model (right-hand).

Table 2: Comparative experimental results on feature correspondence
GA S CCRP1 CCRP2 CCRP3

average matching error 0.5850 0.0984 0.6106 0.1875
number of mismatched node pairs 38 12 46 16

5. Conclusions

In this paper we proposed a convex-concave relaxation procedure (CCRP) based subgraph
matching algorithm, which can be used on any types of graph provided that it can be
represented by an adjacency matrix. An extensive experimental comparison witness the
validity of the proposed algorithm.
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