
JMLR: Workshop and Conference Proceedings 25:253–268, 2012 Asian Conference on Machine Learning

Key Instance Detection in Multi-Instance Learning

Guoqing Liu liugq@ntu.edu.sg
Jianxin Wu jxwu@ntu.edu.sg
School of Computer Engineering, Nanyang Technological Univeristy, Singapore 639798

Zhi-Hua Zhou zhouzh@nju.edu.cn

National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210046, China

Editor: Steven C.H. Hoi and Wray Buntine

Abstract

The goal of traditional multi-instance learning (MIL) is to predict the labels of the bags,
whereas in many real applications, it is desirable to get the instance labels, especially the
labels of key instances that trigger the bag labels, in addition to getting bag labels. Such a
problem has been largely unexplored before. In this paper, we formulate the Key Instance
Detection (KID) problem, and propose a voting framework (VF) solution to KID. The key
of VF is to exploit the relationship among instances, represented by a citer kNN graph. This
graph is different from commonly used nearest neighbor graphs, but is suitable for KID.
Experiments validate the effectiveness of VF for KID. Additionally, VF also outperforms
state-of-the-art MIL approaches on the performance of bag label prediction.

Keywords: Key instance detection, multi-instance learning, neighborhood relation, voting
framework, iterative rejection

1. Introduction

Multi-instance learning (MIL) is a bag-level supervised learning task. The training data
is a set of labeled bags, and each bag contains several instances. Formally, we have a
dataset D = {(Bi, yi)}ni=1, where Bi = {Ij}ni

j=1, yi ∈ {+1,−1} is the label of Bi, n is the
number of training bags, ni is the number of instances in Bi. Each Ij ∈ I is an instance,
where I denotes the instance space. In MIL problems, yi = +1 if and only if at least
one Ij in Bi is a positive instance of the underlying concept; otherwise, yi = −1. Let
B+ (B−) denote a positive (negative) bag. The task of classic MIL is to train a classifier
that labels new bags, and has already been widely applied in various areas, such as text
categorization (Settles et al., 2008), image classification (Chen et al., 2006), and computer-
aided medical diagnosis (Fung et al., 2007).

Many real problems, however, ask for much more than bag labeling alone. Rather,
positive instances are expected to be identified. For example, stock selection was studied
by (Maron and Lozano-Pérez, 1998), trying to distinguish three types of stocks: those
who perform well for fundamental reasons (positive instances), who perform well because
of flukes (negative instances in positive bags), and those who underperform (instances in
negative bags). It is obviously desirable if we can label instances, which will explicitly
distinguish positive instances (stocks who perform well for fundamental reasons) from all the
rest negative instances. In this paper, we study the Key Instance Detection (KID) problem,

c© 2012 G. Liu, J. Wu & Z.-H. Zhou.

Liu Wu Zhou

whose aim is to detect positive instances (or equivalently, label all instances instead of only
bags.) We call the positive instances as key instances, to emphasize the fact that they are
more important than negative instances in various applications.

Computer vision is another potential application area of the KID problem. Suppose we
want to learn a classifier to detect the concept bride, and resort to the photo sharing service
Flickr for training data. It is easy to find tons of images with the tag wedding, but much
fewer for brides. If we take image sets tagged with wedding as an MIL bag, it is certain
that there should be at least one image in a bag with the bride (i.e., a key instance) in it. A
high quality KID solver will then automatically find key instances (bride), which removes
the costly manually labeling step, a key obstacle in current computer vision research and
systems.

Key instance detection, however, has not been paid enough attention in the literature.
The KID problem is more challenging than bag classification, since we can easily label
a bag once all the key instances have been detected. In several MIL methods, instance
labels are provided only as the by-products while learning bag classification models. EM-
DD (Zhang and Goldman, 2002), miSVM (Andrews et al., 2003) and RW-SVM (Wang et al.,
2006) are typical examples in this category. These methods usually assign labels to training
instances, which will lead to maximized bag classification accuracy. However, so long as one
key instance is correctly identified in a bag, labels of other key instances will not change the
bag classification accuracy. Thus, these methods are naturally biased to make the prediction
for “the most positive instance in a bag” to be correct, instead of emphasizing on correct
labels for all (key) instances. The emphasis on single most positive instance is explicitly
adopted by some MIL methods, for example, in RW-SVM, CkNN-ROI (Zhou et al., 2005b)
and KI-SVM (Li et al., 2009). CkNN-ROI (Zhou et al., 2005b) and KI-SVM (Li et al.,
2009) were proposed to locate regions of interest (ROI) in image analysis. Empirical study
showed that KI-SVM is successful in identifying ROI, that is, the most positive instance in
a bag. This emphasis, however, is different from the KID problem, which focuses on finding
all key instances. The lack of attention to the KID problem also leads to the rarity of MIL
datasets which are accompanied with groundtruth labels for all instances.

In this paper, we directly attack the key instance detection problem, that is, to label
all instances instead of bags. We first study the feasibility of KID, and propose a voting
framework for it in Section 2, which is based on exploring neighborhood relations among
instances. Specifically, we show that a citer kNN graph, different from commonly used
nearest neighbor relationship graphs, should be used in KID. Two major components in
the voting framework, a random walk based voting confidence function and an iterative
rejection algorithm that learns a vote vector, are presented in Section 3 and 4, respectively.
Algorithmic details are presented in Section 5. Empirical results (Section 6) show that our
voting framework has clear advantages in key instance detection, compared to existing MIL
methods. As a direct application of KID, we use inferred instance labels to train models
for labeling bags, which also outperforms state-of-the-art MIL methods.

For the convenience of presentation, we summarize the notations used in this paper in
Table 1.

254

Key Instance Detection

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Negative instance

Key instance

B

A

C D

Figure 1: Multi-dimensional scaling (MDS) 2D visualization of the first 100 instances in
the coast dataset, from two bags. MDS approximately preserves pairwise dis-
tances (Borg and Groenen, 2005).

Table 1: The Summary of Notations

Bi the i-th training bag yi label of Bi

Ij the j-th training instance Iq a testing instance
Ihj the h-th citer of Ij D the set {(Bi, yi)}
I the set {Ij} I instance space
R the set of real numbers G citer kNN graph

kNNj the set of k nearest neighbors of Ij dj the number of citers of Ij
f(Ij) confidence of Ij v vote vector
c(Ij) voting score of Ij vB bag label vector
(C)tr training confidence matrix P transition matrix of G

2. Feasibility and Solution Framework

It is natural to ask: is KID really feasible? In MIL, only bag labels are provided, beyond
the training bags and instances. It seems ill-posed to estimate the instance labels using the
bag labels alone.

2.1. KID Feasibility

KID, however, may become feasible if we exploit the relationships among training instances.
As shown in Fig. 1, the nearest neighbors of negative instances are mostly negative; and, the
probability that a key instance’s neighborhood contains other key instances is much higher
than the probability that a key instance appearing in the vicinity of a negative one. Thus,
exploiting the neighborhood relationship among instances and the bag labels, it is possible to
separate key and negative instances apart. For a new instance Iq, a simple majority vote
within its nearest neighbors in the training set may already lead to a reasonable instance
prediction for Iq, as the case in Fig. 1.

255

Liu Wu Zhou

It is, however, not trivial to choose a proper neighborhood relation. Different types
of neighborhood relation can give quite different performances in a specific task. Maier
and Luxburg (2009); Jebara et al. (2009) study this issue on graph-based clustering and
semi-supervised learning, respectively. In KID problems, we observed that commonly used
neighborhood relations are not suitable. For example, the commonly used ε-graph will
classify many key instances in Fig. 1 as negative. We argue that a citer kNN graph, which
we define below, will increase the feasibility of the KID problem.

Let I = {Ij}Nj=1 denote the set of all training instances, where N =
∑n

i=1 ni is the total
number of instances in the training set. A neighborhood graph G has I as its vertex set,
and there is an edge between Ii and Ij if and only if they are related to each other in
the neighborhood relation. Commonly used graphs are ε-graph and kNN graph (Zhu, 2007;
Zhou et al., 2005a). In an ε-graph, an undirected edge connects Ii and Ij when ‖Ii−Ij‖ ≤ ε.
In a kNN graph, a directed edge from Ii to Ij exists when Ij ∈ kNNi, where kNNi denotes
the set of k nearest instances of Ii within I. Following (Wang and Zucker, 2000), we can
name this kNN graph as referencer kNN graph. If we reverse all the directed edges in a
referencer kNN graph, we call the resulted graph a citer kNN graph, which is suitable for
key instance detection.

One common property in MIL is that the number of negative instances (N−) is much
larger than the number of key instances (N+). Assuming equal number of positive and
negative bags and equal size in each bag, it is obvious that N+ ≤ N− from the definition of
MIL. In particular, N+ � N− when the witness rate is low.1 Thus, the density of negative
instances is much higher than that of the key instances (cf. Fig. 1), and the average distance
between negative instances are correspondingly smaller than that between key instances.
This asymmetric property makes choosing a distance threshold ε very difficult. That is,
ε-graph is unsuitable for KID. The same property also prefers citer kNN graph to referencer
kNN graph. Take the key instance ‘A’ in Fig. 1 as an example, it relates only to negative
instances in a referencer 5-NN graph, since its 5 nearest neighbors are all negative. However,
key instance ‘B’ is related to ‘A’ in the citer 5-NN graph since ‘A’ is among the 5-NN of
‘B’. Similar observations apply to key instance pair ‘C’ and ‘D’. Because of the disparity
in density between negative and positive instances, the citer kNN graph makes it easier to
detect key instances.

2.2. Limitations and Future Directions

When the neighborhood relationships are not reliable (e.g., neighbors of most key instances
are negative), we expect that even the bag classification task will be difficult. In this case,
we do not know whether the KID problem is feasible or not. In this paper, the focus is
to promote the KID problem, and to show that a voting framework can successfully detect
key instances in many MIL problems. We leave to future work the theoretical analyses of
KID’s feasibility and performance bounds under different assumptions.

1. Witness rate (WR) is the ratio of the number of positive instances in a positive bag to the size of the
bag. Many MIL problems in the real world naturally have positive bags with low witness rate (Zhou
et al., 2009; Zhang and Goldman, 2002).

256

Key Instance Detection

2.3. The Voting Framework

Following this motivation, we propose a voting framework to capture both the citer neigh-
borhood relationship and the bag labels to identify key instances. Let Iq ∈ I be an arbitrary
instance, the task of KID is to learn l(Iq), where l : I → {+1,−1} determines the label of
an instance. We formulate KID as a voting process: every training instance Ij ∈ I, based
on its own label l(Ij), votes 1 or −1 to a test instance Iq, and l(Iq) is determined by these
votes and their confidences. Mathematically, we set l(Iq) = sign (c(Iq)), where c(Iq) is the
voting score of Iq, determined as

c(Iq) = f(Iq)
Tv. (1)

v ∈ {1,−1}N is a vote vector. Each component in v corresponds to one training instance in
I, and vj = l(Ij), i.e., a positive (negative) training instance will vote 1 (−1), respectively.
f(Iq) is the confidence function, whose component f(Iq)j measures the confidence of Ij ’s
vote.

Both v and f(Iq) play important roles in this framework. On one hand, as shown in
Fig. 1, the voting confidence must vary a lot based on the distance between Ij and Iq. The
confidence function is a measure to quantify the relationship strength between Iq and Ij .
We will formulate f(Iq) based on the citer kNN graph, to be presented in Section 3. On
the other hand, the ideal vote vector contains labels for all training instances, which is not
available in MIL. We propose an iterative rejection technique in Section 4, so that v can be
estimated from the training data, and subsequently applied to new test instances.

The proposed voting framework can be treated as a type of weighted nearest neighbor
(NN) approach. However, two characteristics distinguish it from the classic NN: first, the
confidence/weight is globally generated from the proposed citer kNN graph, which is a good
representation of neighborhood relation among instances; second, the vote vector is learnt
based on the confidence function cooperating with bag labels.

3. Random Walk Confidence Function

Given the training instances I and the citer kNN graph G, a straightforward way to compute
f(Iq) is

f(Iq)j =

{
1/dq if Iq ∈ kNNj

0 otherwise,
(2)

where dq is the number of citers of Iq. However, it is derived by mining only the local
structure around Iq. Considering the disparity in density between negative and positive
instances, we use random walk to compute f(Iq) globally. A random walk starts from Iq,
and consists of a trajectory in G, by taking successive random steps. Compared to the local
mining in Eq. 2, random walk on G makes it possible that a key instance Iq communicates
with the other key instances out of its own neighborhood relation. Such global computation
of f(Iq) is more suitable for handling the disparity in KID.

The limiting probability that an infinitely dedicated random walk visits an instance
Ij is a good choice to globally measure the strength of neighborhood relation between Ij
and Iq. A potential way is to formulate f(Iq) based on the transition matrix P corre-
sponding to G. Let the training confidence matrix Ctr ∈ RN×N be defined as Ctr ≡

257

Liu Wu Zhou

(f(I1), f(I2), . . . , f(IN))T , we capture the global structure among instances as

Ctr = I + P + P2 + · · · = (I−P)−1. (3)

Eq. 3 gives a closed form to compute the confidences of training instances. The limiting
probability (i.e., the inverse of matrix in Eq. 3) does not always exist, because the transition
matrix is not symmetric. Even if it exists, the computational complexity is O(N3), and is
inefficient with a large N . More importantly, when Iq is a testing instance, this method
cannot be directly applied.

Alternatively, we use a histogram built from the random walk trajectory to compute
the confidence. When Iq ∈ I, i.e., it is a vertex of G, we directly start a random walk from
Iq on G. After t steps, we obtain a random walk histogram to characterize the behaviors
of this random walk. Specifically, a random walk histogram has N cells, with the j-th
bin corresponding to the training instance Ij . It counts how many times each Ij is in
the trajectory. After normalization, f(Iq)j is defined to be equal to the j-th bin in the
histogram.

When Iq /∈ I, it is not in the citer kNN graph G. In this case, we compute f(Iq) with
the help of its citers. First, we associate a threshold θj with each training instance Ij ,
equal to the maximum distance between Ij and its k nearest neighbors. That is, θj =
max ‖Ij − x‖, x ∈ kNNj . For any Iq /∈ I, we consider an Ij ∈ I as a citer of Iq, if and

only if ‖Ij − Iq‖ ≤ θj . Then, let {Iiq}
dq
i=1 ⊆ I denote the set of citers of Iq in the training

instances, we start a random walk at each citer on G independently. So dq random walk
histograms with t steps are generated. Finally, we compute the random walk histogram for
Iq by averaging these dq citer histograms. Equivalently, when Ctr has been obtained, we

directly compute the confidence function by f(Iq) = 1
dq

∑dq
i=1 f(Iiq), where each f(Iiq) can

be looked up in Ctr.
This random walk based framework has a probabilistic interpretation. Let X be a

discrete random variable in the sample space I. Each instance generates a distribution,
characterized by the global structure among the training instances. Formally, for any Iq ∈ I,

Pr(X = Ij) = f(Iq)j , j = 1, . . . , N. (4)

Furthermore, we define a label function g : I→ {+1,−1}, which is a function of the random
variable X, corresponding to the instance labels, that is, vj = g(X = Ij). Then, the voting
mechanism Eq. 1 can be rewritten as

c(Iq) =

N∑
j=1

g(Ij)Pr(X = Ij) = E(g(X)). (5)

Hence, the voting score c(Iq) is the expectation of the label function of X following the
distribution generated by Iq.

4. Learning the Vote Vector

The next step is to learn or estimate the vote vector v. v is unknown, and the only relevant
inputs are the bag labels. Let us define a bag label vector vB ∈ {1,−1}N for the training

258

Key Instance Detection

instances, where vBj is 1 if Ij ∈ I is in a positive bag, and −1 if otherwise. We will then
estimate v, using vB as its initial value, and iteratively refine the estimation using the
neighborhood relation explored in Ctr.

The initial values vB is useful for its own sake. We first study the behaviors of

c̃(Ij) = (Ctr)j:vB, (6)

in positive and negative training bags, respectively, where Ij ∈ I, and (Ctr)j: denotes the
j-th row of the training confidence matrix. This term, c̃(Ij), can be used as a basis for
finding out negative instances in the positive training bags, and filtering out borderline
instances in the negative training bags. Thus, we use c̃(Ij) and an iterative procedure to
estimate the v.

Negative Instances in Positive Bags. If a training instance Ij satisfies both Ij ∈ B+

and c(Ij) ≤ 0, the voting framework should classify it as a negative instance. Although
c(Ij) is unknown, an upper bound is provided by c̃(Ij). Specifically, it is easy to check that
vB � v, and consequently CtrvB � Ctrv. Hence, for any Ij ∈ I, c̃(Ij) ≤ 0 ensures that
c(Ij) ≤ 0. Using this relationship, we can use c̃(Ij) to change such instances’ labels in v
from +1 to −1.

Algorithm 1 Iterative Rejection on Training Bags

1: Input: training instances I and vB, the number of neighbors k, the number of random
walk steps t

2: Let Ĩ = I, ṽ = vB

3: repeat
4: Initialize noChange = true.
5: Let N = |̃I|
6: Construct the citer kNN graph G from Ĩ
7: for j = 1 to N do
8: Generate t-steps random walk histogram of Ij ∈ Ĩ, and compute (Ctr)j:
9: Compute c̃(Ij) = (Ctr)j:ṽ

10: if ṽj = +1 and c̃(Ij) ≤ 0 then
11: Drop instance Ij out of Ĩ
12: Delete the j-th row of ṽ
13: noChange = false
14: end if
15: if ṽj = −1 and c̃(Ij) > 0 then
16: Drop instance Ij out of Ĩ
17: Delete the j-th row of ṽ
18: noChange = false
19: end if
20: end for
21: until noChange is true

259

Liu Wu Zhou

Borderline Instances in Negative Bags. In real MIL problems, the distributions
of positive and negative instances are usually overlapped (cf. Fig. 1). Some negative bags
may contain instances that are closely related to key instances in G. Such relationships are
harmful to KID. In the proposed voting framework, a mathematical definition of borderline
instances within a negative bag B− is naturally given, based on c̃(·), as: Ij is a borderline
instance, if Ij ∈ B− and c̃(Ij) > 0. Although we should not change the borderline instances’
label from −1 to +1 in v, removing such instances from the graph G will be helpful in finding
key instances in the positive bags.

Iterative Rejection. With the help of vB and c̃(Ij), we can then estimate v, which
is equivalent to identifying key instances in positive training bags. Based on the above
analyses, an Iterative Rejection (IR) algorithm is proposed.

The IR algorithm is presented in details in Algorithm 1. It begins with the training
data Ĩ = I. After constructing the citer kNN graph G from Ĩ, Ctr is computed from
the t-steps random walk histograms of training instances. For each training instance Ij ,
c̃(Ij) is obtained following Eq. 6. Following the discussions in this section, lines 10 to 14
and 15 to 19 detect negative instances in each B+ and borderline instances in each B−,
respectively. These instances are removed from Ĩ. We repeat the rejection process until Ĩ
is not changed, i.e., all instances of positive (negative) bags in Ĩ have c̃(Ij) > 0 (c̃(Ij) ≤ 0).
After convergence, an instance in I is positive, if and only if it is contained by a positive
bag in Ĩ. The vote vector v can be equivalently obtained from ṽ.

5. Implementation

To further improve the efficiency of KID, an ensemble is introduced in the proposed frame-
work. Training bags are randomly partitioned into s disjoint subsets Ii, i = 1, . . . , s, and⋃

i Ii = I. Using each Ii as the training instance set, we obtain a voting score ci(·) following
Algorithm 1. The final decision c(Iq) is defined as

c(Iq) = min (c1(Iq), . . . , cs(Iq)), (7)

that is, an instance Iq is labeled to be positive, if and only if it is positive in all s detections.
We initialize s = 1, and gradually increase s in the set {1, 2, 5, 10}. If a larger s does not
reduce the number of detected key instances in the training set by more than h, the larger s
value is used. We aim to obtain the best efficiency, while without hurting the KID accuracy.
For the threshold h, we always h = 20% according to the experiences in our experiments.

In Algorithm 2, the proposed voting framework of KID, referred to as VF, is briefly
summarized, where we give different approaches to label training and testing instances.

Labeling Training Instances with Voting Score. As described in Lines 3-10 in
Algorithm 2, we label training instances (i.e., learn the vote vector) based on the voting
framework. During ensembling (c.f. Lines 5-9 in Algorithm 2), we compute the voting
score of Iq ∈ I−j from Eq. 1, where I−j =

⋃
i 6=j Ii. Specifically, f(Iq) is derived in the way

presented in Section 3, and

c(Iq) =
1

dq

dq∑
i=1

f(Iiq)
Tv =

1

dq

dq∑
i=1

c(Iiq). (8)

260

Key Instance Detection

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

200

400

600

800

1000

1200

1400

1600

1800

2000

c(I)

F
re

q
u

e
n

c
y

Figure 2: The histogram of c(I) in the first iteration of the IR algorithm on the
comp.graphics dataset.

When t uses a large value (e.g., 1000), we empirically find that for I ∈ I, c(I) ≈ sign(c(I)).
The absolute values of c(I) almost always concentrate around 1 in the training set. Fig. 2
shows a histogram of c(I) on the comp.graphics dataset in Section 6. Hence, Eq. 8 is

approximated by c(Iq) = 1
dq

∑dq
i=1 sign(c(Iiq)) = 1

dq

∑dq
i=1 vi, in which vi is the i-th component

in the estimated vote vector v. This approach further improves efficiency of VF.
Labeling Testing Instances with SVM. Till now, the voting framework only exploits

the neighborhood relationships and bag labels. After obtaining instance label predictions in
the training set, supervised learning methods can be used to learn a model that distinguishes
key and negative instances. The final step in our voting framework converts the training
data D to a set of instances I labeled by the vote vector. Then KID becomes a standard
supervised learning. We train a RBF kernel SVM classifier (c.f. Line 11 in Algorithm 2),
and finally label testing instances using the learned SVM model.

Algorithm 2 The Voting Framework for KID

1: Input: training bags D = {(Bi, yi)}ni=1, the ensemble parameter s
2: Training:
3: Obtain training instances set I and vB based on D
4: Randomly partition I into s disjoint subsets Ij , j = 1, . . . , s; correspondingly, each vj

B

is segmented from vB based on Ij .
5: for j = 1 to s do
6: Run Algorithm 1 with input Ij and vj

B

7: Label I−j using Eq. 8’s approximation
8: Generate cj(·)
9: end for

10: Generate c(·) using Eq. 7, and further obtain v
11: Train a SVM instance classifier using I, and v

261

Liu Wu Zhou

6. Experimental Results

We validate the proposed VF method on two series of KID datasets. One previous MIL
dataset with groundtruth instance labels is the Reuters text, constructed in (Zhou et al.,
2009). In addition, we constructed a new KID dataset series for scene recognition, which
is generated from images of the MIT scene dataset (Oliva and Torralba, 2001). The data
contains images of 8 scene types, from which we constructed 8 MIL problems. Given a
specific scene type, one MIL problem treats images from this type as key instances, and
all other images as negative ones. A negative bag has 50 instances; a positive bag has 5
key instances and 45 negative ones. For each scene type, we created a MIL dataset with
50 positive and 50 negative bags. Every instance is a CENTRIST representation of an
image (Wu and Rehg, 2011).

6.1. Experiments on Key Instance Detection

As the witness rate of KID task is usually very low (for example, 10% on every dataset in
our experiments), classifying instances is imbalanced. In such imbalanced setup, accuracy
as the evaluation of KID becomes ill-posed, while precision and recall based measures are
preferred in literature of imbalanced classification (He, 2009). Furthermore, KID wants to
detect a large fraction of key instances, and only a small number of false positives. Hence,
it is natural to use the precision and recall metrics,

precision = tp/(tp+ fp), (9)

recall = tp/(tp+ fn), (10)

where tp, fp and fn are the number of true positives (key instances), false positives, and
false negatives in the instance level, respectively.

We compare with miSVM and KI-SVM, all with the RBF kernel. The parameter C ∈
{2−15, 2−13, . . . , 215} and RBF parameter γ ∈ {2−15, 2−13, . . . , 23} are selected by 3-fold
cross-validation on the training data. In VF, k is selected from {2, 10, 30, 50}, and t is fixed
to be 1000. In addition, we also compare VF (i.e., using the citer kNN graph) with VF
using the referencer kNN graph (VFr).

Tables 2 and 3 show the average precision and recall of each method using 10-fold
cross-validation on MIT scene and Reuters text datasets, respectively.

As shown in Table 2, KI-SVM gives higher precision than miSVM, but its recall is too
low. This might be explained by the fact that KI-SVM is designed to find the single most
positive instance in a bag, and our observations confirm this argument that KI-SVM can
provide comparable accuracies on the “most positive instances” with the proposed VF.
Differently, VF is designed to do its best in keeping all key instances. Indeed, it has very
high recall rate (0.82). Furthermore, its precision (0.85) is also much higher than both
miSVM and KI-SVM.

In Table 3, miSVM outperforms KI-SVM on Reuters text data: both precision and recall
of miSVM (0.55 and 0.72) are higher than KI-SVM (0.44 and 0.31). Similarly, VF provides
the best results again: although it is comparable with miSVM on recall, its precision is
improved by a large margin, from 0.55 to 0.75.

Table 2 and 3 also report the results from VFr, which has the same setup as VF except
using the referencer kNN graph to mine neighborhood relations. As we have analyzed in

262

Key Instance Detection

Table 2: Key instance detection performances of various methods on MIT scene data.

Dataset miSVM KI-SVM
Name Precision Recall Precision Recall
coast 0.51±0.12 0.69±0.11 0.70±0.24 0.28±0.17
forest 0.87±0.07 0.89±0.07 0.65±0.20 0.36±0.12
highway 0.96±0.06 0.62±0.08 0.79±0.18 0.31±0.18
insidecity 0.68±0.15 0.71±0.08 0.71±0.17 0.24±0.11
mountain 0.56±0.21 0.74±0.11 0.81±0.19 0.37±0.12
opencountry 0.28±0.15 0.53±0.13 0.52±0.27 0.12±0.08
street 0.51±0.17 0.57±0.16 0.52±0.41 0.05±0.04
tallbuilding 0.66±0.11 0.76±0.09 0.83±0.11 0.46±0.16
Ave. value 0.63±0.13 0.69±0.10 0.69±0.22 0.28±0.12
Dataset VF VFr
Name Precision Recall Precision Recall
coast 0.88±0.08 0.82±0.08 0.88±0.08 0.82±0.08
forest 0.95±0.06 0.88±0.07 0.93±0.06 0.86±0.05
highway 0.90±0.08 0.73±0.10 0.88±0.08 0.77±0.07
insidecity 0.92±0.12 0.75±0.12 0.91±0.12 0.79±0.14
mountain 0.75±0.17 0.91±0.06 0.75±0.16 0.82±0.06
opencountry 0.77±0.12 0.79±0.09 0.75±0.10 0.75±0.08
street 0.76±0.17 0.76±0.10 0.75±0.16 0.81±0.06
tallbuilding 0.87±0.10 0.91±0.06 0.87±0.10 0.80±0.10
Ave. value 0.85±0.11 0.82±0.09 0.84±0.11 0.80±0.08

Section 2.1, the asymmetric property makes the proposed citer kNN graph more suitable
for KID tasks. VFr gives inferior performance over VF on both datasets. Especially, on
Reuters text data, the average precision and recall of VFr are 0.65 and 0.32, which are much
lower than 0.75 and 0.72 of VF, respectively. For ε-graph, when we set ε = 0.001 on the
alt.atheism data of Reuters text, 94.12% of key instances have no neighbor, while 84.21%
of negative instances have more than 2500 neighbors. Obviously, this makes the ε-graph
unsuitable for KID.

The F -score is a harmonic mean of precision and recall:

F − score =
precision× recall

(1− α)× precision+ α× recall
, (11)

where α ∈ [0, 1] controls the relative importance of recall and precision. It is a succinct
summary of a method’s KID performance. In Table 4, we report the average F -score with
α = 0.7 of various methods on both datasets. α = 0.7 emphasizes recall more than precision,
which is suitable for evaluating key instance detection. On MIT scene, the F -score of VF
is 0.83, much higher than that of miSVM (0.67), and KI-SVM (0.34). Similarly, VF also
outperforms miSVM and KI-SVM on Reuters text. Besides, VF gives higher F -scores than
VFr on both datasets.

263

Liu Wu Zhou

Table 3: Key instance detection performances of various methods on Reuters text data.

Dataset miSVM KI-SVM
Name Precision Recall Precision Recall
alt.atheism 0.53±0.19 0.76±0.24 0.37±0.26 0.36±0.19
comp.graphics 0.61±0.28 0.74±0.11 0.38±0.26 0.37±0.19
comp.os.ms-windows.misc 0.55±0.33 0.58±0.21 0.39±0.37 0.14±0.15
comp.sys.ibm.pc 0.62±0.22 0.59±0.20 0.39±0.31 0.19±0.17
comp.sys.mac.hardware 0.78±0.17 0.62±0.22 0.32±0.33 0.12±0.12
comp.windows.x 0.55±0.28 0.74±0.18 0.40±0.30 0.14±0.16
misc.forsale 0.59±0.22 0.55±0.18 0.03±0.05 0.08±0.12
rec.autos 0.43±0.18 0.74±0.21 0.39±0.25 0.21±0.19
rec.motorcycles 0.40±0.30 0.76±0.19 0.71±0.41 0.34±0.20
rec.sport.baseball 0.46±0.21 0.80±0.14 0.63±0.26 0.34±0.11
rec.sport.hockey 0.45±0.31 0.84±0.21 0.83±0.32 0.34±0.18
sci.crypt 0.63±0.31 0.71±0.22 0.36±0.18 0.37±0.20
sci.electronics 0.95±0.08 0.85±0.13 0.39±0.26 0.30±0.20
sci.med 0.56±0.11 0.78±0.18 0.57±0.20 0.41±0.21
sci.space 0.37±0.27 0.76±0.16 0.30±0.21 0.33±0.22
soc.religion.christian 0.34±0.25 0.75±0.18 0.39±0.17 0.39±0.19
talk.politics.guns 0.52±0.31 0.61±0.26 0.36±0.22 0.31±0.16
talk.politics.mideast 0.73±0.28 0.78±0.15 0.66±0.28 0.47±0.24
talk.politics.misc 0.65±0.18 0.62±0.23 0.54±0.19 0.60±0.21
talk.religion.misc 0.30±0.23 0.74±0.25 0.38±0.25 0.30±0.20
Ave. value 0.55±0.24 0.72±0.19 0.44±0.25 0.31±0.18
Dataset VF VFr
Name Precision Recall Precision Recall
alt.atheism 0.73±0.24 0.60±0.24 0.58±0.43 0.32±0.30
comp.graphics 0.66±0.12 0.74±0.14 0.95±0.16 0.40±0.18
comp.os.ms-windows.misc 0.79±0.33 0.73±0.16 0.55±0.50 0.12±0.13
comp.sys.ibm.pc 0.85±0.16 0.67±0.22 0.68±0.47 0.27±0.23
comp.sys.mac.hardware 0.78±0.19 0.65±0.20 0.70±0.48 0.35±0.31
comp.windows.x 0.69±0.20 0.70±0.18 0.27±0.44 0.13±0.31
misc.forsale 0.66±0.26 0.66±0.14 0.85±0.34 0.29±0.17
rec.autos 0.78±0.16 0.71±0.19 0.79±0.15 0.56±0.26
rec.motorcycles 0.70±0.27 0.70±0.21 0.42±0.40 0.18±0.24
rec.sport.baseball 0.73±0.16 0.69±0.14 0.84±0.23 0.39±0.17
rec.sport.hockey 0.79±0.20 0.85±0.16 0.83±0.31 0.52±0.29
sci.crypt 0.79±0.23 0.77±0.20 0.40±0.52 0.13±0.19
sci.electronics 0.96±0.08 0.83±0.13 0.90±0.17 0.51±0.22
sci.med 0.73±0.10 0.74±0.24 0.54±0.38 0.38±0.27
sci.space 0.86±0.12 0.75±0.16 0.76±0.33 0.36±0.31
soc.religion.christian 0.84±0.18 0.62±0.14 0.64±0.30 0.42±0.20
talk.politics.guns 0.53±0.18 0.73±0.21 0.66±0.46 0.26±0.28
talk.politics.mideast 0.72±0.27 0.66±0.26 0.58±0.44 0.21±0.21
talk.politics.misc 0.72±0.20 0.75±0.22 0.65±0.40 0.42±0.34
talk.religion.misc 0.67±0.22 0.78±0.18 0.49±0.48 0.22±0.20
Ave. value 0.75±0.19 0.72±0.19 0.65±0.37 0.32±0.24

264

Key Instance Detection

Table 4: Average F -score (α = 0.7) of various methods.

Dataset miSVM KI-SVM VF VFr
MIT scene 0.67 0.34 0.84 0.83
Reuters text 0.65 0.34 0.73 0.50

AUC-PR (Area Under Precision-Recall Curve) (Davis and Goadrich, 2006) measures the
precision-recall performances in the entire parameter range. We also evaluate KID methods
using this metric. Table 5 reports the average AUC-PR. VF gives the highest AUC-PR
(0.87 and 0.67) on scene and text data, respectively. One interesting observation is that
although KI-SVM has the lowest average F -score, it has higher AUC-PR than miSVM on
both datasets .

Table 5: Average AUC-PR of various methods.

Dataset miSVM KI-SVM VF VFr
MIT scene 0.55 0.71 0.87 0.85
Reuters text 0.41 0.42 0.67 0.59

Finally, Table 6 shows the average running time (in seconds) used by each method.
We can see that VF is much faster than both miSVM and KI-SVM. Thus, VF has better
scalability.

Table 6: Average running time of various methods.

Dataset miSVM KI-SVM VF
MIT scene 381.31 >1000 211.89
Reuters text 61.43 >1000 33.27

6.2. Experiments on Bag Classification

An accurate instance label prediction method must lead to good bag classification. Thus,
the performance on classifying bags should also be used as an important measurements of
key instance detection performance. Once VF obtains labels for instances in testing bags,
we can use the MIL definition to determine labels for test bags. In this section, we compare
VF with state-of-the-art MIL bag classification methods.

In our experiments, miSVM and miGraph (Zhou et al., 2009) are used as baselines.
Table 7 reports the average accuracies of various methods on MIT scene. VF greatly
improves the bag accuracy to 0.95 from 0.81 of miSVM and 0.77 of miGraph. Similar
results can be observed in Table 8, where the accuracies of bag classification on the Reuters
text data are presented. The average accuracy of VF is 0.83, outperforms both miSVM
(0.75) and miGraph (0.81). VF’s superior performance demonstrates a direct application
of key instance detection: a good key instance detection method is able to improve bag
classification (that is, multi-instance learning).

265

Liu Wu Zhou

Table 7: Bag classification performances of various methods on MIT scene data.

Dataset miSVM miGraph VF
coast 0.80±0.16 0.89±0.09 0.98±0.12
forest 0.92±0.12 0.89±0.10 0.95±0.09
highway 0.95±0.13 0.80±0.15 0.97±0.10
insidecity 0.85±0.21 0.73±0.18 0.98±0.11
mountain 0.82±0.16 0.72±0.13 0.95±0.16
opencountry 0.59±0.11 0.64±0.13 0.93±0.14
street 0.76±0.15 0.61±0.13 0.87±0.14
tallbuilding 0.81±0.17 0.88±0.11 0.98±0.12
Ave. value 0.81±0.15 0.77±0.13 0.95±0.12

7. Conclusion

In this paper, we promote the study of key instance detection (KID), a problem that has
impact in many application domains. We proposed a voting framework (VF) as our solution
to KID. VF mines relations among all instances to form a citer kNN graph, and use them to
define confidences of votes of training instances. The bag labels are used within an iterative
rejection algorithm to determine what vote (+1 or −1) should be casted. The effectiveness
and efficiency of VF have been demonstrated by its superior performance in predicting
instance labels. Empirical results also confirm that a good key instance detection method
is able to improve bag classification. In the future, we will further analyze the feasibility of
KID in adverse scenarios, its performance bounds, and improved KID solutions. It is also
critical to create more MIL datasets with groundtruth instance labels.

Acknowledgments

This research was partially supported by the National Fundamental Research Program of
China (2010CB327903) and the National Science Foundation of China (61073097, 61105043).

266

Key Instance Detection

Table 8: Bag classification performances of various methods on Reuters text data.

data miSVM miGraph VF
alt.atheism 0.77 0.83 0.85
comp.graphics 0.80 0.83 0.84
comp.os.ms-windows.misc 0.73 0.69 0.72
comp.sys.ibm.pc 0.71 0.78 0.79
comp.sys.mac.hardware 0.81 0.77 0.83
comp.windows.x 0.76 0.81 0.88
misc.forsale 0.80 0.71 0.79
rec.autos 0.75 0.82 0.81
rec.motorcycles 0.72 0.78 0.88
rec.sport.baseball 0.74 0.88 0.88
rec.sport.hockey 0.70 0.93 0.91
sci.crypt 0.75 0.79 0.79
sci.electronics 0.94 0.94 0.94
sci.med 0.77 0.84 0.85
sci.space 0.68 0.83 0.85
soc.religion.christian 0.66 0.80 0.84
talk.politics.guns 0.72 0.75 0.77
talk.politics.mideast 0.77 0.84 0.79
talk.politics.misc 0.77 0.74 0.80
talk.religion.misc 0.64 0.78 0.78
Ave. value 0.75 0.81 0.83

References

S. Andrews, I. Tsochantaridis, and T. Hofmann. Support vector machines for multiple-
instance learning. In Advances in Neural Information Processing Systems 15, pages 557–
584, Cambridge, MA, 2003. MIT Press.

I. Borg and P. Groenen. Modern Multidimensional Scaling: theory and applications.
Springer-Verlag, New York, 2005.

Y. Chen, J. Bi, and J. Z. Wang. MILES: Multiple-instance learning via embedded instance
selection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(12):
1931–1947, 2006.

J. Davis and M. Goadrich. The relationship between Precision-Recall and ROC curves.
In the 23rd International Conference on Machine Learning, pages 233–240, Cambridge,
MA, 2006. MIT Press.

G. Fung, M. Dundar, B. Krishnappuram, and R. B. Rao. Multiple instance learning for
computer aided diagnosis. In Advances in Neural Information Processing Systems 19,
pages 425–432, Cambridge, MA, 2007. MIT Press.

H. He. Learning from imbalanced data. IEEE Transactions on Knowledge and Data Engi-
neering, 21(9):1263–1284, 2009.

267

Liu Wu Zhou

T. Jebara, J. Wang, and S.-F. Chang. Graph construction and b-matching for semi-
supervised learning. In the 26th International Conference on Machine Learning, pages
441–448, 2009.

Y.-F. Li, J.T. Kwok, I.W. Tsang, and Z.-H. Zhou. A convex method for locating regions of
interest with multi-instance learning. In the 20th European Conference Machine Learning,
pages 15–30, 2009.

M. Maier and U. Luxburg. Influence of graph construction on graph-based clustering mea-
sures. In Advances in Neural Information Processing Systems 20, pages 1025–1032, Cam-
bridge, MA, 2009. MIT Press.

O. Maron and T. Lozano-Pérez. A framework for multiple-instance learning. In Advances in
Neural Information Processing Systems 10, pages 570–576, Cambridge, MA, 1998. MIT
Press.

A. Oliva and A. Torralba. Modeling the shape of the scene: A holistic representation of the
spatial envelope. International Journal of Computer Vision, 42:145–175, 2001.

B. Settles, M. Craven, and S. Ray. Multiple instance active learning. In Advances in Neural
Information Processing Systems 20, pages 1289–1296, Cambridge, MA, 2008. MIT Press.

D. Wang, J. Li, and B. Zhang. Multiple-instance learning via random walk. In the 17th
European Conference Machine Learningg, pages 473–484, 2006.

J. Wang and J.-D. Zucker. Solving the multiple-instance problem: A lazy learning approach.
In the 17th International Conference on Machine Learning, pages 1119–1125, 2000.

J. Wu and J.M. Rehg. CENTRIST: A visual descriptor for scene categorization. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 33(8):1489–1501, 2011.

Q. Zhang and S. Goldman. EM-DD: An improved multiple-instance learning technique.
In Advances in Neural Information Processing Systems 14, pages 1073–1080, Cambridge,
MA, 2002. MIT Press.

D. Zhou, B. Schölkopf, and T. Hofmann. Semi-supervised learning on directed graphs. In
Advances in Neural Information Processing Systems 17, pages 1633–1640, Cambridge,
MA, 2005a. MIT Press.

Z.-H. Zhou, X.-B. Xue, and Y. Jiang. Locating regions of interest in cbir with multiinstance
learning techniques. In the 18th Australian Joint Conference on Artificial Intelligence,
pages 92–101, 2005b.

Z.-H. Zhou, Y.-Y. Sun, and Y.-F. Li. Multi-instance learning by treating instances as
non-i.i.d. samples. In the 26th International Conference on Machine Learning, pages
1249–1256, 2009.

X. Zhu. Semi-supervised learning tutorial. Technical report, Department of Computer
Sciences University of Wisconsin, Madison, USA, 2007.

268

	Introduction
	Feasibility and Solution Framework
	KID Feasibility
	Limitations and Future Directions
	The Voting Framework

	Random Walk Confidence Function
	Learning the Vote Vector
	Implementation
	Experimental Results
	Experiments on Key Instance Detection
	Experiments on Bag Classification

	Conclusion

