
JMLR: Workshop and Conference Proceedings 25:285–300, 2012 Asian Conference on Machine Learning

Learning and Model-Checking Networks of I/O Automata

Hua Mao huamao@cs.aau.dk

Manfred Jaeger jaeger@cs.aau.dk

Department of Computer Science, Aalborg University, Denmark

Editor: Steven C.H. Hoi and Wray Buntine

Abstract

We introduce a new statistical relational learning (SRL) approach in which models for
structured data, especially network data, are constructed as networks of communicating
finite probabilistic automata. Leveraging existing automata learning methods from the area
of grammatical inference, we can learn generic models for network entities in the form of
automata templates. As is characteristic for SRL techniques, the abstraction level afforded
by learning generic templates enables one to apply the learned model to new domains. A
main benefit of learning models based on finite automata lies in the fact that one can analyse
the resulting models using formal model-checking techniques, which adds a dimension of
model analysis not usually available for traditional SRL modeling frameworks.

Keywords: Automata Learning, Relational Learning, Probabilistic Model Checking, Net-
work Data

1. Introduction

In this paper we introduce a new type of probabilistic model that combines three distinct
lines of research: grammatical inference, formal verification by model checking, and sta-
tistical relational learning (SRL). As a result, we obtain a new SRL framework that can
be used to learn models for typical SRL domains (e.g., sensor networks, social networks,
multi-agent systems, biological systems), and which enables us to perform (model-checking)
types of analyses on the learned model that so far have not been utilized in SRL.

Grammatical inference (de la Higuera, 2010) is concerned with learning language spec-
ifications in the form of grammars or automata from data consisting of strings over some
alphabet Σ. Starting with Angluin’s seminal work (Angluin, 1987), methods have been
developed for learning deterministic, non-deterministic and probabilistic grammars and
automata. An efficient algorithm exists for learning probabilistic automata that are de-
terministic in the sense that from every state q of the automaton, and for every symbol
s ∈ Σ, there is at most one possible (i.e. non-zero probability) transition from q with label
s (Carrasco and Oncina, 1994). For this algorithm theoretical consistency results establish
that the data-generating automaton is identified in the large-sample limit (Carrasco and
Oncina, 1994).

Model Checking is a verification technique to determine whether a system model complies
with a specification provided in a formal language (Baier and Katoen, 2008). In the simplest
case, system models are given by finite non-deterministic or probabilistic automata, but
model-checking techniques have also been developed for more sophisticated system models,

c© 2012 H. Mao & M. Jaeger.

Mao Jaeger

e.g., timed automata (Kwiatkowska et al., 2004). Powerful software tools that are available
for model checking include UPPAAL (Behrmann et al., 2011) and PRISM (Kwiatkowska
et al., 2011). Traditionally, models used in model-checking are manually constructed, either
in the development phase as system designs, or for existing hard- or software systems from
known specifications and documentation. Since such model-construction can be extremely
time-consuming, or even infeasible in the case of insufficient documentation for an existing
system, there is an increasing interest in model learning (or specification mining) for formal
verification (Ammons et al., 2002; Sen et al., 2004; Mao et al., 2011; Chen et al., 2012).
The learning methods in this area often are adapted grammatical inference techniques.

Models for complex systems are typically constructed in the form of multiple interacting
components, each of which is a finite automaton itself. To model such individual system
components, one needs an automaton model that allows us to condition the probabilistic,
observable output of a system component on the inputs it receives from other components.
The standard learning approach for finite probabilistic automata has been extended to
learning of such I/O automata in (Mao et al., 2012). Moreover, complex systems can be
composed of multiple essentially identical components. Typical benchmark models from
the field of model checking that have this structure are for systems of multiple connected
processors (Itai and Rodeh, 1990; Herman, 1990).

Learning probabilistic models for complex systems composed of multiple identical com-
ponents can also be said to be the general theme of statistical relational learning. Even
though here a great variety of different modeling approaches is used – they all give rise to
probabilistic models for structured domains consisting of a number of objects, or entities,
which are described by attributes, and connected by relations. Furthermore, they all con-
struct such models out of instantiations of generic modeling templates for the individual
domain objects.

In the SRL approach we introduce in this paper, generic object (entity, component,
...) models consist of finite probabilistic input/output (I/O) automata templates. Complex
domains are modeled as networks of instantiations of these automata templates, typically
involving various types of objects described by different templates. Relations between the
objects determine how the inputs of one object are defined by the outputs of other objects.
Compared to other SRL models, the resulting framework has the following distinguishing
features:

• Probabilistic dependencies between related objects are induced by explicit (and ob-
servable) communication of I/O symbols.

• The models are inherently dynamic (temporal): they define a probability distribution
over discrete time series of observations of the relational system state.

• The models support analysis of the system dynamics by formal model checking of
properties expressed in linear time temporal logic.

This paper is intended as a proof-of-concept: we introduce the necessary conceptual
framework of networks of I/O automata in Section 2. In Section 3 we show how the learning
method for I/Oautomata can be used to learn automata templates. Section 4 illustrates our
approach on a small toy example for a social network model and the Ceará dataset. The
main contribution is to show the feasibility of learning SRL models consisting of interacting

286

Learning and Model-Checking Networks of I/O Automata

I/O automata, and to demonstrate the usefulness of model checking approaches for model
analysis.

2. IODPFA Networks

We begin by defining I/O deterministic finite automata, which will become the basic building
blocks of our relational models.

Definition 1 (IODPFA) An input/output deterministic probabilistic finite automaton (IODPFA)
is a tuple M = (Q,Σin,Σout, qs,P, L) where

• Q is a finite set of states.

• Σin is a finite input alphabet.

• Σout is a finite output alphabet, and L : Q→ Σout is a labeling function.

• qs is the initial state.

• P : Q× Σin ×Q→ [0, 1] is the transition probability function such that for all q ∈ Q
and all inputs α ∈ Σin,

∑
q′∈Q P(q, α, q′) = 1.

• For all q ∈ Q, σ ∈ Σout, and α ∈ Σin: there exists at most one q′ ∈ Q with L(q′) = σ
and P(q, α, q′) > 0. We then also write P(q, α, σ) instead of P(q, α, q′).

The existence of a unique initial state, and the last condition in the definition, together
make this model deterministic. If we omit the dependence on an input symbol from Σin,
one obtains what is known as a deterministic labeled Markov Chain (DLMC).

Example 1 (IODPFA)
In Figure 1 (a), two IODPFA T1 and T2 are given. For T1, the initial state is labeled by 0,

Σin
1 = {a, b}, and Σout

1 = {0, 1}. For T2, the initial state is labeled by a, Σin
2 = {0, 1}×{0, 1},

and Σout
2 = {a, b}. The edge label (1, 0)/(0, 1) : 1, for example, means that this transition is

taken for the two inputs (1, 0) and (0, 1) with probability 1.

We construct networks out of IODPFA components. A network will usually consist of
multiple identical IODPFAs, but it may also contain several distinct types of IODPFAs. In
the following, we refer to an IODPFA in the sense of Definition 1 also as an IODPFA template
to emphasize the fact that our final models contain multiple copies, or instantiations, of these
basic building blocks. Apart from specifying how many instantiations of which templates
are contained in the nework, one has to specify how the outputs of some components provide
the inputs of other components. This leads to the following definition.

Definition 2 (IODPFA Network)
Let T = {T1, . . . , Tm} be a set of IODPFA templates, i.e.,

Ti = (Qi,Σ
in
i ,Σ

out
i , qsi ,Pi, Li)

287

Mao Jaeger

is an IODPFA in the sense of Definition 1. Furthermore, for each Ti, there exists ki,1, . . . , ki,m ∈
N ∪ {0} such that

Σin
i =

m
×
j=1

(
Σout
j

)ki,j
An IODPFA Network for T (T -Network for short) is given by

• Sets of automata Ci = {C1
i , . . . , C

ui
i } for each IODPFA template Ti (ui ∈ N).

• An I/O mapping RI/O:

Cki →
m
×
j=1

{
C1
j , . . . , C

uj
j

}ki,j
Example 2 (IODPFA Networks)

In the network of Figure 1 (b), there are two templates T = {T1, T2}. T1 receives
the input from one component of T2, i.e., k1,1 = 0, k1,2 = 1. T2 receives the input from
two components of T1, i.e., k2,1 = 2, k2,2 = 0. There are two instance for T1, i.e., C1 =
{C1

1 , C
2
1}, and one instance for T2, i.e., C2 = {C1

2}. Both C1
1 and C2

1 receive inputs from C1
2 ,

and RI/O(C1
1) = RI/O(C2

1) = (∅, C1
2). C1

2 receives inputs from C1
1 , C2

1 , and RI/O(C1
2) =

((C1
1 , C

2
1), ∅).

Semantically, IODPFA networks are intended to model discrete time stochastic systems,
whose components make transitions simultaneously and independently (given the system
state at the previous time step). The overall system then can be seen just as a labeled
Markov Chain, formally defined as the synchronous product in the sense of the following
definition.

Definition 3 (Synchronous Product)

Let C :=
m
∪
i=1
Ci = {C1, . . . , Cu} be the set of all components in the system, Ch =

(Qh,Σ
in
h ,Σ

out
h , qsh,Ph, Lh). Each component may come from different IODPFA templates,

and here we omit the index of IODPFA type. Given the I/O relation of these components

RI/O : h→ {1, . . . , u}kh (i.e. kh =
m∑
j=1

ki,j if Ch ∈ Ci), the synchronous product of compo-

nents is defined as : M =
u
⊗
h=1

Ch = (
u
×
h=1

Qh,
u
×
h=1

Σout
h , qs,P, L), where

• qs = (qs1, . . . , q
s
u)

• the transition matrix P is defined by the following rule:

(q1, . . . , qu)

u
×

h=1
Ph(qh,αh,q

′
h)

−−−−−−−−−−−→ (q′1, . . . , q
′
u)

where qh ∈ Qh, and αh = ×
j∈RI/O(h)

L(qj) ∈ Σin
h .

• L(q1, . . . , qu) = (L(q1), . . . , L(qu))

288

Learning and Model-Checking Networks of I/O Automata

Example 3 (Synchronous Product)
Figure 1 (c) shows the synchronous product of the network in (b) with 3 components,

i.e., C1
1 , C2

1 and C1
2 . There are 8 states and 23 transitions in the product, the initial state is

labeled with symbols (0, 0, a). Each state is labeled by combined symbols from 3 components.
From the initial state qs a transition to the state labeled by (0, 1, a) is made with probability
P = P 1

1 (0, a, 0)× P 2
1 (0, a, 1)× P 1

2 (a, 00, a) = 0.125.

1
0.5

0.5

(1,1)/(0,0)
0.50.5

(1,0) /(0,1):1

1
0

10.5

0.5 b:1 a:1

0

a b

0,0,a

0,1,a

1,1,a

1,0,a

0,0,b

1,0,b

0,1,b

1,1,b
0.125

0.125

0.125

0.125

0.125
0.125

0.125

0.5

0.25 0.25

0.25

0.25

0.5

0.5
0.5

0.5

0.5

0.5

0.5

0.5

0.5

1

(a)

(c)

C1
1

C2
1

C1
2b:1 a:1

a/b

a/b

0/1

0/110.5
0.5

0

T1

b:1

(1,1)/(0,0)
0.50.5

(1,0) /(0,1):1

1

a b

T2

a:1

(b)

Figure 1: (a) Two IODPFA templates: T1 and T2. (b) A IODPFA network with 3 compo-
nents: C1

1 , C
2
1 and C1

2 . (c) The synchronous product of 3 components.

Apart from defining the semantics of an IODPFA network, the synchronous product
is also constructed in practice when exact model checking is performed for an IODPFA
network. Note that the size of the synchronous product is exponential in the number of
components of the IODPFA network, which limits the applicability of methods that require
a compilation into the synchronous product.

2.1. Probabilistic LTL

Linear time temporal logic (LTL) (Baier and Katoen, 2008) is a temporal logic that expresses
properties about the relation between the state labels in executions. The basic ingredients
of LTL-formulae are atomic propositions (state labels a ∈ Σout), the Boolean connectors
conjunction ∧, and negation ¬, and two basic temporal modalities © (“next”) and U (
“until”). Linear time temporal logic (LTL) over Σout is defined by the syntax

ϕ ::= true | a | ϕ1 ∧ ϕ2 | ¬ϕ | © ϕ | ϕ1Uϕ2 a ∈ Σout

Let ϕ be an LTL formula over Σout. For s = σ0σ1 . . . ∈ (Σout)ω, s[j . . .] = σjσj+1σj+2 . . .
is the suffix of s starting with the (j + 1)st symbol σj . Then the LTL semantics for infinite
words over Σout are as follows:

289

Mao Jaeger

• s |= true

• s |= a, iff σ0 = a

• s |= ϕ1 ∧ ϕ1, iff s |= ϕ1 and s |= ϕ2

• s |= ¬ ϕ, iff s 2 ϕ

• s |= © ϕ, iff s[1 . . .] |= ϕ

• s |= ϕ1Uϕ2, iff ∃j ≥ 0 s.t. s[j . . .] |= ϕ2 and s[i . . .] |= ϕ1, for all 0 ≤ i < j

The syntax of probabilistic LTL (PLTL) is:

φ ::= P./r(ϕ) (./ ∈ ≥, ≤, =; r ∈ [0, 1]; ϕ ∈ LTL)

We use (Σout)ω to denote the set of infinite strings over Σout. A LMC M defines a
probability distributionPM over (Σout)ω. A labeled Markov chain M satisfies the PLTL
formula P./(ϕ) iff PM (ϕ) ./ r, where PM (ϕ) is short for PM ({s | s |= ϕ, s ∈ (Σout)ω}).

3. Learning IODPFA Networks

3.1. Data

The data we learn from is generated by observing a running IODPFA network. At each
time step the output of all system components will be observed. Thus, data generated by
a run of the system shown in Figure 1 would be of the form

(0(C1
1), 0(C2

1), a(C1
2)), (0(C1

1), 1(C2
1), b(C1

2)), (1(C1
1), 0(C2

1), b(C1
2)), . . .

From this sequence we can extract multiple training sequences for learning the component
IODPFAs. For this it is required that we know the I/O relation in the network. Assuming
this to be as shown in Figure 1, one obtains from the network sequence above two training
sequences for the IODPFA T1:

0, a, 0, b, 1, b, . . .
0, a, 1, b, 0, b, . . .

and one training sequence for the the IODPFA T2:

a, (0, 0), b, (0, 1), b, (1, 0), . . .

These sequences, now, consist of alternating output and input symbols in the vocabularies of
the given IODPFA types. We note that due to the independence of the transitions taken in
the indivdual components of the network (more precisely: conditional independence given
the inputs), multiple training sequences for one component type obtained from a single
network sequence can be treated as statistically independent samples, even if the input
sequences are the same, as they are here in the two training sequences for T1.

Our learning algorithm for IODPFAs requires as input independently sampled I/O se-
quences S1, S2, . . . , Sn. In order to guarantee that the data-generating automaton is cor-
rectly identified in the limit n → ∞, the Si have to satisfy certain “richness” conditions:

290

Learning and Model-Checking Networks of I/O Automata

first, the Si must contain sequences of sufficient length, so as to guarantee that all states of
the data-generating automaton are represented in the data. In our data-generation protocol
for synthetic data we ensure this condition by sampling sequences whose length is randomly
determined according to an exponential distribution. This ensures that the length of se-
quences is unbounded, even though sequences of much larger length than the expected
value of the given exponential distribution will become very rare. Second, the input se-
quences must be sufficiently diverse (a property related to what is known as fairness in the
verification literature) so that data is collected for all possible inputs at all states.

3.2. IOalergia

This algorithm, named IOalergia, for learning IODPFA is an adapted version of the
Alergia algorithm (Carrasco and Oncina, 1994; de la Higuera, 2010). The algorithm starts
with the construction of the input and output frequency prefix tree acceptor IOFPTA which
is the representation of the set of strings S in the data. Each node in the tree is labeled
by an output symbol σ ∈ Σout, and each edge is labeled by an input action α ∈ Σin.
Every path from the root to a node corresponds to a string s ∈ prefix(S), where prefix(S)
is the set of all prefixes of all strings in the dataset. The node s is associated with the
frequency function f(s, α, σ) which is the number of strings in S with the prefix sασ, and
f(s, α) =

∑
σ∈Σout f(s, α, σ). An IOFPTA can be transformed to IODPFA by normalizing

frequencies f(s, α, ·) to P(s, α, ·). The IOFPTA in Figure 2 (a) is constructed from a small
sample dataset generated by C1

1 and C2
1 in Figure 1 (b).

0

11

10

1

1

0

0

0 0
1 1

a

6 8

b
a/2

4 2

b/2
a

2 2

b/2

b/2 a/4

2/b

0

11

10

1

1

0

0

0 0
1 1

a

6

8

b
a/2

4 2

b/2
a

2 2

b/2

b/2 a/4

2/b

0

1

10
1

1 0

0
1

1

a

8

8
b

4 2

b/4
a

2 2

b/4

b/2

a/4

(a) (c)

qr
qr

qb

(b)

Figure 2: (a) The IOFPTAconstructed from the dataset generated by C1
1 and C2

1 . (b) and
(C) illustrate the procedure of merging node qb to node qr.

The basic idea of this learning algorithm is to approximate the generating model by
grouping together nodes in IOFPTA which can be mapped to the same state in the gen-
erating model. Nodes which can be mapped to the same state in the generating model will
pass the compatible test based on the Hoeffding bound parameterized by ε. Formally, two
nodes qr and qb are ε-compatible (1 ≥ ε > 0), if it holds that:

1. L(qr) = L(qb)

2. For all α ∈ Σin, and σ ∈ Σout,

291

Mao Jaeger

∣∣∣∣f(qr, α, σ)

f(qr, α)
− f(qb, α, σ)

f(qb, α)

∣∣∣∣ <
(√

1

f(qr, α)
+

√
1

f(qb, α)

)
·
√

1

2
ln

2

ε

3. Nodes qrασ and qbασ are ε-compatible, for all α ∈ Σin, and σ ∈ Σout

Condition 1) requires two nodes in the tree to have the same label. Condition 2) defines the
compatibility between each outgoing transition with the same input action respectively from
nodes qr and qb. If two nodes in IOFPTA are compatible, then distributions for all input
actions should pass the compatibility test. The last condition requires the compatibility to
be recursively satisfied for every pair of successors of qr and qb.

If two nodes in the tree pass the compatibility test which means they can be mapped to
the same state in the generating model, then they will be merged, as well as their successor
nodes. Figure 2 (b) and (c) show the procedure of merging node qb with qr. In (b), the
transition from the node q′, i.e., qr, to qb is redirected to qr, then qr has a selfloop with
the action a. In (c), the subtree with the a action from qb is fold to the subtree of qr. For
another action b of the node qb, there is not b action from qr, so the subtree of the action b
from qr is added as a subtree of qr.

In our experiments, we tune the choice of ε so as to obtain the best approximation to the
real model by maximizing the Bayesian Information Criterion (BIC) score of the model,
or by cross-validation.

4. Experiments

In this section, we apply our approach on a small toy example for a social network model,
and the real Ceará dataset.

4.1. Aggregation Components

The definition of IODPFAs and IODPFA networks is somewhat rigid in the sense that each
IODPFA template has a fixed interface with other templates. In particular, the number
of inputs that a particular template receives is fixed. However, in many applications one
may want to be able to model a dependence on a varying number of inputs. For example,
in a social network model, where each person is represented by an IODPFA component, it
is natural that a person receives as input the output from all his or her neighbors in the
network. Such dependencies based on one-to-many relationships are quite commonly dealt
with in SRL frameworks by means of aggregation or combination operators.

To model dependencies on an arbitrary number of inputs in the IODPFA framework,
one can extend the definition of IODPFAs to allow infinite input alphabets, which then,
in particular, could be of the form (Σout)∗, thus allowing sequences of arbitrary length of
inputs from a basic (finite) output alphabet Σout. Also, the definition of the I/O mapping
RI/O for IODPFA networks can be generalized to allow a component whose input alphabet
is of the form (Σout)∗ to be mapped to an arbitrary number of input-providing components.
The resulting generalized form of IODPFA network still compiles as a synchronous product
into a simple labeled Markov Chain, and therefore does not give rise to fundamental new
issues in terms of semantics, or for the model checking algorithms. However, the IOalergia

292

Learning and Model-Checking Networks of I/O Automata

learning algorithm crucially relies on the fact that the input alphabets for IODPFAs are
finite, and, moreover, it will only work in practice for input alphabets of moderate size.

To combine the flexibility of modeling with aggregation operations with our learning
algorithms, we introduce aggregation components, which are IODPFAs in the generalized
sense, but which are assumed to be defined and fixed, not learned. As an example, Fig 3
shows an aggregation component we use for our toy social network model. This component
has as input alphabet (Σout)∗, where Σout contains the symbol share. The transitions of
the aggregation component only depend on how many components of its input string are
equal to share. In the figure, this is represented, for example, with s = 2 : 1, meaning that
if the input contains two share symbols, then this transition is taken with probability 1.
The output alphabet of the aggregation component is Σout

aggr = {N = 0, 3 > N > 0, N ≥ 3}
which represents the total count of share symbols seen in the past, binned into the three
intervals [0], [1, 2], [3,∞]. We can then model users in the network by IODPFAs with input
alphabet Σout

aggr, and which are connected to a single aggregation component, that serves as
an interface between users and their varying number of neighbors.

N=0 0<N<3

N≥3

s=1:1

s≥2:1

s=0:1

1

s≥3:1

s=0:1

0<N<3

s=0:1

s=2:1

s=1:1

s≥1:1

Figure 3: The aggregation model

(a) (b)

C1

Figure 4: Structures of social networks

4.2. Social Networks

In this section, we are going to show the applicability of learning algorithm by a case
study on the message spread in a social network. We will learn 2 types of user models
in the network, and use the learned models to built a new network. PLTL properties of
networks built by the real model and learned model will be checked by the probabilistic
model checking tool PRISM (Kwiatkowska et al., 2011).

We manually construct two types of users in the network represented by IODPFA tem-
plates Tp and Tu. The user from Tp has 6 possible observable behaviors, i.e., outputs: log
in, log out, update his own profile, view others’ profiles; comment on the message or share
it. When a specific message enters the network, a user in the network can view this message
only if at least one of his connected friends has shared it. When the user views the message,
the probability for sharing or only commenting on it depends on the number N of friends
who has shared the message, according to N = 0, 0 < N < 3, or N ≥ 3. The user who only
comments on the message may change his mind as the number N increases. The user will
not share the message again if he has already shared it before, but he can still update his
own profile, log in or log off the system.

Users of Tu will only update their own profiles or comment on the message from neigh-
bors, but never share it. The probability that they give comments on the message also

293

Mao Jaeger

log outlog in

update

log out

view

share

comment

0<N<3

N≥3

0.6
0.3

log in

update

0.4

0.5

0.5

N=0

0.5

0.8

0.2

0.6

0.6

0.4

1

0.6

0.3

0.3

0.7

1

0.5

0.9

0.1

view comment

0<N<3

N≥3

0.7

0.3

0.5

0.5

log in 0.3

0.7

0.1

log out

N=0
0.6

0.4

0.8

0.2

update
0.9

0.9

(a) (b)

0.1

N=0

0<N<3

N≥3

N=0

0<N<3
N≥3

0.7

0.7

0.3

0.3

0.7

0.3

0.5

0.5

0.1

0.1

Figure 5: (a) The model Tp. (b) The model Tu.

Table 1: Learning results for Tu
|S| |Seq| Time |Q| |Tran|
121 3 0.4 6 10

404 8 0.7 5 16

627 15 1.0 5 22

809 21 1.2 5 25

1000 26 1.3 5 26

4000 91 3.6 5 27

10000 249 7.7 5 28

20000 506 14 5 28

Table 2: Learning results for Tp
|S|(×103) |Seq| Time |Q| |Tran|

10 262 7.3 8 49

20 497 12.2 10 56

40 1001 26.4 15 82

80 2004 50.6 21 98

100 2523 52.2 12 66

200 4995 99.0 10 56

400 9946 268.1 10 56

600 15101 397.4 10 56

depends on N . These two types of users are represented as the IODPFAs shown in Fig-
ure 5. There are 3 inputs for Tp and Tu, i.e., Σin

p = Σin
u = {N = 0, 3 > N > 0, N ≥ 3}.

For Tp, Σout
p = {log in, update, view, log out, share, comment}, and for Tu, Σout

u = {log in,
update, log out, comment}.

The inputs for the user IODPFAs are provided by aggregation components from the
outputs of all neighbors, as described in Section 4.1. The structure of the network we use
to generate data is shown in Figure 4 (a). The 4 green circles are users from Tp and 1
red diamond is the user from Tu. For clarity, the aggregation components are not shown
separately in the figure. For the template Tu, the initial state is the one labeled with the
symbol log in, and there are 5 states and 28 transitions. For the template Tp, the initial
state is a special state not shown in the figure, from which there are transitions to the blue
nodes in Figure 5 (a). In this way we are effectively obtaining an initial state distribution,
rather than a unique start state. Note, though, that for the automaton to be deterministic,
we can only have an initial distribution that does not place nonzero probabilities on two
distinct states with the same label.

There are 10 states and 56 transitions in Tp. Learning results for two templates are in
table 1 and table 2: |S| is the number of symbols in the dataset, |Seq| is the number of
sample sequences, ‘Time’ is learning time (in seconds), including the time for constructing
IOFPTA and the time for optimizing the BIC score, |Q| is the number of states in the
learned model, and |Tran| is number of transitions. The structure of the model Tu was

294

Learning and Model-Checking Networks of I/O Automata

correctly identified from datasets of at least 10× 103 symbols, whereas exact learning of Tp
required 200× 103 symbols.

Using both the original and the learned templates, we construct a new network with
the structure in Figure 4 (b). We then model check the PLTL property: P (true U≤L C1 =
share), i.e., the probability that the user C1 shares the message in L steps. Figure 6
shows the model checking results for templates learned from different sample sizes, and
the original ones of Figure 5. One observes that models learned from smaller amounts of
data that do not exactly match the structure of the true model already provide reasonable
approximations for these PLTL queries. The model learned from 200× 103 symbols almost
exactly matches the true model (the two curves are overlaid).

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250

P
(

tr
ue

 U
<

=
L

C
1

sh
ar

e)

Steps L

learned 10 × 103

learned 20 × 103

learned 40 × 103

learned 80 × 103

learned 100 × 103

learned 200 × 103

real

Figure 6: Model checking results for user
templates.

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

P
(

tr
ue

 U
<

=
L

sh
ar

e)

Steps L

learned 10 × 103

learned 20 × 103

learned 40 × 103

learned 80 × 103

learned 100 × 103

learned 200 × 103

real

Figure 7: Model checking results for proba-
bilistic scheduler.

As the number of components increases, the size of the product grows exponentially,
and it becomes intractable for PRISM to model check properties of users in large networks.
However, we can still perform formal model checking analyses of learned user templates
with a view towards users in large networks by simulating a larger network environment
with simple IODPFAs that are designed to provide inputs for a user template. Adapting
standard concepts from the verification literature, we call IODPFAs of this kind schedulers.
In a first test, we construct a very simple scheduler that generates the outputs N = 0, 0 <
N < 3, N ≥ 3 randomly, with uniform probability. The scheduler itself does not require
any inputs. We can now model check PLTL properties of the user template in the two-
component network consisting of a single user and a scheduler component. Results for the
same PLTL queries as before are shown in Figure 7.

Often it will be difficult to design a full probabilistic specification of a scheduler repre-
senting a complex environment. In that case we can also construct schedulers in which only
possible transitions are specified, but not their probabilities, i.e., the scheduler is given by
a nondeterministic automaton model, not a probabilistic one (note that nondeterministic
here is not the negation of “deterministic” in the sense of Definition 1). Based on such a
nondeterministic scheduler, one can compute minimal and maximal probabilities for PLTL
properties that can be obtained by taking transitions according to specific policies.

We have constructed a nondeterministic scheduler that produces output sequences of
the form Σout

sched = ”N = 0”(”3 > N > 0” | ”N ≥ 3”)ω. Thus, it is only specified what

295

Mao Jaeger

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

P
m

ax
(

tr
ue

 U
<

=
L

sh
ar

e
| S

in
)

Steps L

learned 10 × 103

learned 20 × 103

learned 40 × 103

learned 80 × 103

learned 100 × 103

learned 200 × 103

real

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

P
m

in
(

tr
ue

 U
<

=
L

sh
ar

e
| S

in
)

Steps L

learned 10 × 103

learned 20 × 103

learned 40 × 103

learned 80 × 103

learned 100 × 103

learned 200 × 103

real

(b)

Figure 8: Model checking results for the nondeterministic scheduler

outputs the scheduler can produce, but not their relative probabilities. Figure 8 shows the
minimum and maximum probabilities for the PLTL queries P (trueU share|Sin) obtainable
by optimal choices of Sin ∈ Σout

sched. Again we observe that learned templates provide good
approximations for queries asked relative to partially specified environment models given
by nondeterministic schedulers.

4.3. Rainfall Occurrence over Brazil

We use daily rainfall data collected at 10 stations from the state of Ceará in Brazil over
the years 1975-2002, provided by FUNCEME. The dataset contains 24 sequences of 90
day observations (February, March and April) for each of 10 weather stations located in
northeast Brazil. The years 1976, 1978, 1984 and 1986 were omitted because of missing
data for certain months at one or more stations, yielding 24 complete 90-day (2160 days).

If the nearest station is wet/dry, then the current station will probable also be wet/dry.
We assume that the current station j will be affected by its nearest neighbor station i,
denoted as i → j. Then relation of these 10 stations are: 4 → 1, 7 → 2, 6 → 3, 8 → 4,
10 → 5, 3 → 6, 2 → 7, 4 → 8, 10 → 9, 9 → 10. Each station will receive input from its
nearest neighbor, and stations can be modeled as IODPFAs. In order to make each sequence
start from the same symbol, an artificial symbol ‘start’ is added at the beginning of every
sequences, and each sequence has 181 input and output symbols. There are 3 outputs for
each station, i.e., Σout = {start, rain, not-rain}, and two inputs Σin = {rain, not-rain}.

Following Taylor and Hinton (2009), under leave-6-out we train 4 models, one for each
set obtained by leaving out 1/4 non-overlapping consecutive sequences. Each model is then
evaluated on the corresponding left-out 1/4 sequences. The ε we used to learn the model
from all sequences is the average value of these four different values. For each station,
we learn 3 types of models. A) Learn a single template TA for all 10 stations. All 240
training sequences are then used to learn the structure and the parameters. B) Keep the
structure of TA, but learn individual transition distributions for each station. Parameter,
thus, are fitted for each station from 24 training sequences. C) The model for each station
will be learned separately from their own data (24 sequences) by the learning algorithm.

296

Learning and Model-Checking Networks of I/O Automata

Learning results for experiment A, B and C of 4 models are shown in table 3: LLi is the log
likelihood per-station, per-year and per-day for model i; LL is the average log likelihood of
LL1, . . . , LL4; |Q| and |Tran| are the number of states and transitions in the model learned
from all data.

Table 3: Learning results for the rainfall data.
LL1 LL2 LL3 LL4 LL |Q| |Tran|

A -0.623 -0.627 -0.641 -0.621 -0.628 4 14

B -0.6204 -0.626 -0.632 -0.612 -0.623 4 14

C -0.6209 -0.624 -0.630 -0.612 -0.622 3 10

The log-likelihood score obtained in our model is a little lower than that obtained in
HMMs (Taylor and Hinton, 2009). One reason is that HMMs can model the non-stationarity
of daily rainfall probability over the measuring period by means of a hidden state variable
that represents different time intervals. The IODPFA network model does not allow for such
a latent time variable. On the other hand, the I/O relations in our model enables us to
model the dependencies of rainfall among spatially neighboring stations, which is not taken
into account in the HMM model. While, thus, not being as accurate in terms of overall
likelihood score, we may investigate with out models local dependencies, as illustrated in
the following.

We build networks consisting of connected components according to the nearest-neighbor
relationship, and there are 4 connected networks:(1, 4, 8), (2, 7), (3, 6), and (5, 9, 10). Sta-
tions that are not in the same network have no influence on each other. We want to test
how well the observation at one station at time t predicts the observation at another station
at time t+ 1, t+ 2, by checking two kinds of PLTL properties on the network of stations
1, 4, and 8: P (ϕ1) = P (©L rain(j) | © rain(i)): the probability that station j has rain
at step L given station i has rain in the second step, and P (ϕ2) = P (©L rain(j)): the

probability that station j has rain at step L (©L =
L︷ ︸︸ ︷

©© . . .©
, i, j ∈ {1, 4, 8}). Differences

between ϕ1 and ϕ2, i.e., D(ϕ1, ϕ2) = P (ϕ1) − P (ϕ2), for experiments A and B are shown
in table 4.

Table 4: Differences between ϕ1 and ϕ2 for experiments A and B
Steps 1→ 4 1→ 8 4→ 1 4→ 8 8→ 1 8→ 4

D
A

(ϕ
1
,ϕ

2
)

L=2 0 0 0.1332 0.1332 0 0.1332
L=3 0 0 0.0489 0.0497 0.0225 0.0497
L=4 0 0 0.0402 0.0333 0.0122 0.0238
L=5 0 0 0.0143 0.0173 0.0067 0.0079
L=6 0 0 0.0056 0.0055 0.0026 0.0035

D
B

(ϕ
1
,ϕ

2
)

L=2 0 0 0.1316 0.1049 0 0.1212
L=3 0 0 0.0332 0.0233 0.0184 0.0338
L=4 0 0 0.0252 0.0144 0.0077 0.0176
L=5 0 0 0.0059 0.0109 0.0040 0.0034
L=6 0 0 0.0022 0.0013 0.0011 0.0020

297

Mao Jaeger

The information of rain in station 1 will not effect station 4 and 8 since station 1 will not
provide inputs for other stations. From table 4, we get the same result, i.e., the difference
of P (ϕ1) and P (ϕ2) for both networks built in experiments A and B are 0. The rain in
station 8 can not affect station 1 in the second since they are not directly connected with
each other, but the information can be propagated to station 1 through station 4 in the
third step. Then for L = 2, the difference is 0, and for L > 2, the differences for 8 → 1
are greater than 0. There are direct connections between 4 and 8, 1 and 4, i.e., 4 → 1,
8 → 4, and 4 → 8, and the rain from the neighbor has impact on the connected stations,
and differences are larger than 0. As the time increases, this impact of the nearest neighbor
will decrease, i.e., the difference decreases as L increases.

5. Related Work

The full system model given by the synchronous product of component I/O automata
can be understood as a special type of Hidden Markov Model: the states q ∈ ×ki=1Qi
of the synchronous product are hidden states of a HMM generating outputs in ×ki=1Σout

i .
Apart from the special structure of state and output space, the model is special in that the
observed output is a deterministic function of the current state, so that the system behavior
is characterized by the state transition probabilities only. However, it should be noted that
any HMM can be transformed into an equivalent one with deterministic observations by a
suitable extension of the hidden state space.

Several extensions of the basic HMM model have been proposed in which the unstruc-
tured hidden state space is replaced by a structured representation consisting of several
factors (Ghahramani and Jordan, 1997; Taylor and Hinton, 2009). The individual state
factors here have a completely different interpretation from our component automata, how-
ever, and the factorial structure of the state space is not reflected in an analogous structure
of the output space. Apart from generic model-selection techniques (for example by cross-
validation or by model scores such as BIC or MDL), no specialized learning methods for
the hidden state space structure are available for these models. This is in stark contrast
to our learning method for I/O automata with its strong theoretical identifiability guaran-
tees. These guarantees, however, depend crucially on the restrictive assumption that the
automata are deterministic, which in the general HMM perspective means that the next
state is uniquely determined by the current state and the next observed symbol.

An individual IODPFA is related to an Input/Output HMM (IOHMM) (Bengio and
Frasconi, 1994). Originally introduced as models for continuous inputs and outputs, discrete
versions of IOHMMs have also been used (Hochreiter and Mozer, 2001). Again, IODPFAs
are distinguished by the special structure and learning algorithm for their internal state
space.

Within the field of SRL, Logical Hidden Markov Models (LOHMMs) (Kersting et al.,
2006) have been proposed as a dedicated framework for modeling sequences of symbols
that have the same relational structure attribute(object) and relation(object1,object2) as
the observations in our framework. However, the underlying generative model for such
structured symbol sequences is very different from our IODPFA networks, and it supports
different types of inference tasks. A number of more expressive SRL frameworks exist
that could be used to encode IODPFA network models, but, once again, learning in these

298

Learning and Model-Checking Networks of I/O Automata

more general frameworks does not afford similar convergence guarantees as one obtains for
learning IODPFAs, and they do not support a type of model analysis corresponding to
PLTL model checking.

Various forms of Multi-Agent Markov Decision Processes are another type of models
that share some of the features of our networks of IODPFAs (Guestrin et al., 2001; Proper
and Tadepalli, 2009). They, too, are modular models of components that combine nonde-
terministic inputs (or actions) with probabilistic state transitions. Main objective in this
context, however, is to find policies for maximizing a reward function, whereas our models
are intended for the analysis of stochastic systems without a reward structure.

6. Conclusion

We have introduced IOPDAF networks as a new modeling framework that extends au-
tomata learning methods to complex, structured domains, and the kind of network data
often associated with statistical relational learning techniques. Main purpose of the present
paper was to demonstrate the general feasibility and potential benefits of the approach, and
especially, to illustrate the possibilities of model analysis using model checking techniques.
The results presented in this paper, obviously, are quite preliminary, and future work will
be directed at testing these methods on more substantial application scenarios.

Acknowledgments

We are grateful to Sergey Kirshner for his help with the Ceará dataset.

References

G. Ammons, R. Bod́ık, and J. R. Larus. Mining specifications. In Proceedings of POPL,
pages 4–16, 2002.

D. Angluin. Learning regular sets from queries and counterexamples. Information and
Computation, 75:87–106, 1987.

C. Baier and J. P. Katoen. Principles of Model Checking. The MIT Press, 2008.

G. Behrmann, A. David, K. G. Larsen, P. Pettersson, and Y. Wang. Developing uppaal
over 15 years. Softw., Pract. Exper., 41(2):133–142, 2011.

Y. Bengio and P. Frasconi. An input output hmm architecture. In Proceedings of NIPS 7,
pages 427–434, 1994.

R. Carrasco and J. Oncina. Learning stochastic regular grammars by means of a state
merging method. In Proceedings of Second International Colloquium on Grammatical
Inference and Applications, volume 862 of Lecture Notes in Computer Science, pages
139–152. 1994.

Yingke Chen, H. Mao, M. Jaeger, T. D. Nielsen, K. G. Larsen, and B. Nielsen. Learning
markov models for stationary system behaviors. In Proceedings of the 4th NASA formal
method symposium (NFM), pages 216–230, 2012.

299

Mao Jaeger

C. de la Higuera. Grammatical Inference — Learning Automata and Grammers. Cambridge
University Press, 2010.

Z. Ghahramani and M. Jordan. Factorial hidden markov models. Machine Learning, 29:
245–273, 1997.

C. Guestrin, D. Koller, and R. Parr. Multiagent planning with factored mdps. In Proceedings
of NIPS 14, pages 1523–1530, 2001.

T. Herman. Probabilistic self-stabilization. Information Processing Letters, 35(2):63–67,
1990.

S. Hochreiter and M. Mozer. A discrete probabilistic memory model for discovering depen-
dencies in time. In Proceedings of International Conference on Artificial Neural Networks
(ICANN’01), pages 661–668, 2001.

A. Itai and M. Rodeh. Symmetry breaking in distributed networks. Information and
Computation, 88(1), 1990.

K. Kersting, L. De Raedt, and T. Raiko. Logical hidden markov models. J. of Artificial
Intelligence Research, 25:425–456, 2006.

M. Kwiatkowska, G. Norman, J. Sproston, and F. Wang. Symbolic model checking for
probabilistic timed automata. In Proceedings of Joint International Conferences on For-
mal Modelling and Analysis of Timed Systems, and Formal Techniques in Real-Time and
Fault-Tolerant Systems (FORMATS/FTRTFT), volume 3253 of Lecture Notes in Com-
puter Science, pages 293–308, 2004.

M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of probabilistic
real-time systems. In Proceedings of CAV, volume 6806 of Lecture Notes in Computer
Science, pages 585–591, 2011.

H. Mao, Y. Chen, M. Jaeger, T. D. Nielsen, K. G. Larsen, and B. Nielsen. Learning
probabilistic automata for model checking. In Proceedings of the eighth international
conference onQuantitative Evaluation of Systems (QEST), pages 111 –120, 2011.

H. Mao, Y. Checn, M. Jaeger, T. D. Nielsen, K. G. Larsen, and B. Nielsen. Learning markov
decision processes for model checking. In Proceedings of the first workshop on Quantities
in Formal Methods (QFM),to appear, 2012.

Scott Proper and Prasad Tadepalli. Multiagent transfer learning via assignment-based
decomposition. In In Proceedings of the International Conference on Machine Learning
and Application (ICMLA’09), pages 345–350, 2009.

K. Sen, M. Viswanathan, and G. Agha. Learning continuous time markov chains from
sample executions. In Proceedings of the first international conference on Quantitative
Evaluation of Systems (QEST), pages 146–155, 2004.

G. W. Taylor and G. E. Hinton. Products of hidden markov models: It takes n>1 to tango.
In Proceedings of UAI’09, 2009.

300

	Introduction
	IODPFA Networks
	Probabilistic LTL

	Learning IODPFA Networks
	Data
	IOalergia

	Experiments
	Aggregation Components
	Social Networks
	Rainfall Occurrence over Brazil

	Related Work
	Conclusion

