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Abstract

Principal component analysis (PCA) can be regarded as approximating a data matrix with
a low-rank one by imposing sparsity on its singular values, and its robust variant further
captures sparse noise. In this paper, we extend such sparse matrix learning methods, and
propose a novel unified framework called sparse additive matrix factorization (SAMF).
SAMF systematically induces various types of sparsity by the so-called model-induced reg-
ularization in the Bayesian framework. We propose an iterative algorithm called the mean
update (MU) for the variational Bayesian approximation to SAMF, which gives the global
optimal solution for a large subset of parameters in each step. We demonstrate the useful-
ness of our method on artificial data and the foreground/background video separation.

Keywords: Variational Bayes, Robust PCA, Matrix Factorization, Sparsity, Model-
induced Regulariztion

1. Introduction

Principal component analysis (PCA) (Hotelling, 1933) is a classical method for obtaining
low-dimensional expression of data. PCA can be regarded as approximating a data matrix
with a low-rank one by imposing sparsity on its singular values. A robust variant of PCA
further copes with sparse spiky noise included in observations (Candes et al., 2009; Babacan
et al., 2012).

In this paper, we extend the idea of robust PCA, and propose a more general framework
called sparse additive matrix factorization (SAMF). The proposed SAMF can handle various
types of sparse noise such as row-wise and column-wise sparsity, in addition to element-wise
sparsity (spiky noise) and low-rank sparsity (low-dimensional expression); furthermore, their
arbitrary additive combination is also allowed. In the context of robust PCA, row-wise and
column-wise sparsity can capture noise observed when some sensors are broken and their
outputs are always unreliable, or some accident disturbs all sensor outputs at a time.

Technically, our approach induces sparsity by the so-called model-induced regularization
(MIR) (Nakajima and Sugiyama, 2011). MIR is an implicit regularization property of the
Bayesian approach, which is based on one-to-many (i.e., redundant) mapping of parameters
and outcomes (Watanabe, 2009). In the case of matrix factorization, an observed matrix
is decomposed into two redundant matrices, which was shown to induce sparsity in the
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Table 1: Examples of SMF term. See the main text for details.
Factorization Induced sparsity K (L′(k),M ′(k)) X : (k, l′,m′) 7→ (l,m)

U = BA> low-rank 1 (L,M) X (1, l′,m′) = (l′,m′)
U = ΓED row-wise L (1,M) X (k, 1,m′) = (k,m′)
U = EΓD column-wise M (L, 1) X (k, l′, 1) = (l′, k)
U = E ∗D element-wise L×M (1, 1) X (k, 1, 1) = vec-order(k)

singular values under the variational Bayesian approximation (Nakajima and Sugiyama,
2011).

We also show that MIR in SAMF can be interpreted as automatic relevance determi-
nation (ARD) (Neal, 1996), which is a popular Bayesian approach to inducing sparsity.
Nevertheless, we argue that the MIR formulation is more preferable since it allows us to
derive a practically useful algorithm called the mean update (MU) from a recent theoreti-
cal result (Nakajima et al., 2011): the MU algorithm is based on the variational Bayesian
approximation, and gives the global optimal solution for a large subset of parameters in
each step. Through experiments, we show that the MU algorithm compares favorably with
a standard iterative algorithm for variational Bayesian inference. We also demonstrate the
usefulness of SAMF in foreground/background video separation, where sparsity is induced
based on image segmentation.

2. Formulation

In this section, we formulate the sparse additive matrix factorization (SAMF) model.

2.1. Examples of Factorization

In ordinary MF, an observed matrix V ∈ RL×M is modeled by a low rank target matrix
U ∈ RL×M contaminated with a random noise matrix E ∈ RL×M .

V = U + E .

Then the target matrix U is decomposed into the product of two matrices A ∈ RM×H and
B ∈ RL×H :

U low-rank = BA> =

H∑

h=1

bha
>
h , (1)

where > denotes the transpose of a matrix or vector. Throughout the paper, we denote
a column vector of a matrix by a bold smaller letter, and a row vector by a bold smaller
letter with a tilde:

A = (a1, . . . ,aH) = (ã1, . . . , ãM )> ,

B = (b1, . . . , bH) = (b̃1, . . . , b̃L)>.

The last equation in Eq.(1) implies that the plain matrix product (i.e., BA>) is the sum
of rank-1 components. It was elucidated that this product induces an implicit regularization
effect called model-induced regularization (MIR), and a low-rank (singular-component-wise
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Figure 1: An example of SMF term construc-
tion. G(·;X ) with X : (k, l′,m′) 7→
(l,m) maps the set {U ′(k)}Kk=1 of
the PR matrices to the target ma-

trix U , so that U
′(k)
l′,m′ = UX (k,l′,m′) =

Ul,m.
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Figure 2: SMF construction for the row-
wise (top), the column-wise
(middle), and the element-wise
(bottom) sparse terms.

sparse) solution is produced under the variational Bayesian approximation (Nakajima and
Sugiyama, 2011).

Let us consider other types of factorization:

U row = ΓED = (γe1d̃1, . . . , γ
e
Ld̃L)>,

U column = EΓD = (γd1e1, . . . , γ
d
MeM ),

(2)

where ΓD = diag(γd1 , . . . , γ
d
M ) ∈ RM×M and ΓE = diag(γe1, . . . , γ

e
L) ∈ RL×L are diagonal

matrices, and D,E ∈ RL×M . These examples are also matrix products, but one of the
factors is restricted to be diagonal. Because of this diagonal constraint, the l-th diagonal
entry γel in ΓE is shared by all the entries in the l-th row of U row as a common factor.
Similarly, the m-th diagonal entry γdm in ΓD is shared by all the entries in the m-th column
of U column.

Another example is the Hadamard (or element-wise) product:

U element = E ∗D, where (E ∗D)l,m = El,mDl,m. (3)

In this factorization form, no entry in E and D is shared by more than one entry in U element.
In fact, the forms (2)–(3) of factorization induce different types of sparsity, through the

MIR mechanism. In Section 2.2, they will be derived as a row-wise, a column-wise, and an
element-wise sparsity inducing terms, respectively, within a unified framework.

2.2. A General Expression of Factorization

Our general expression consists of partitioning, rearrangement, and factorization. The
following is the form of a sparse matrix factorization (SMF) term:

U=G({U ′(k)}Kk=1;X ), where U ′(k) =B(k)A(k)>. (4)

Figure 1 shows how to construct an SMF term. First, we partition the entries of U into K
parts. Then, by rearranging the entries in each part, we form partitioned-and-rearranged
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(PR) matrices U ′(k) ∈ RL′(k)×M ′(k)
for k = 1, . . . ,K. Finally, each of U ′(k) is decomposed into

the product of A(k) ∈ RM ′(k)×H′(k)
and B(k) ∈ RL′(k)×H′(k)

, where H ′(k) ≤ min(L′(k),M ′(k)).
In Eq.(4), the function G(·;X ) is responsible for partitioning and rearrangement: It

maps the set {U ′(k)}Kk=1 of the PR matrices to the target matrix U ∈ RL×M , based on the
one-to-one map X : (k, l′,m′) 7→ (l,m) from indices of the entries in {U ′(k)}Kk=1 to indices
of the entries in U , such that

(
G({U ′(k)}Kk=1;X )

)
l,m

=Ul,m=UX (k,l′,m′) =U
′(k)
l′,m′ . (5)

As will be discussed in Section 4.1, the SMF term expression (4) under the variational
Bayesian approximation induces low-rank sparsity in each partition. Therefore, partition-
wise sparsity is induced, if we design a SMF term so that {U ′(k)} for all k are rank-1 matrices
(i.e., vectors).

Let us, for example, assume that row-wise sparsity is required. We first make the
row-wise partition, i.e., separate U ∈ RL×M into L pieces of M -dimensional row vectors
U ′(l) = ũ>l ∈ R1×M . Then, we factorize each partition as U ′(l) = B(l)A(l)> (see the top
illustration in Figure 2). Thus, we obtain the row-wise sparse term (2). Here, X (k, 1,m′) =
(k,m′) makes the following connection between Eqs.(2) and (4): γel = B(k) ∈ R, d̃l = A(k) ∈
RM×1 for k = l. Similarly, requiring column-wise and element-wise sparsity leads to Eqs.(2)
and (3), respectively (see the bottom two illustrations in Figure 2). Table 1 summarizes
how to design these SMF terms, where vec-order(k) = (1 + ((k − 1) mod L), dk/Le) goes
along the columns one after another in the same way as the vec operator forms a vector by
stacking the columns of a matrix (in other words, (U ′(1), . . . , U ′(K))>=vec(U)).

In practice, SMF terms should be designed based on side information. In robust PCA
(Candes et al., 2009; Babacan et al., 2012), the element-wise sparse term is added to the
low-rank term for the case where the observation is expected to contain spiky noise. Here,
we can say that the ‘expectation of spiky noise’ is used as side information. Using the SMF
expression (4), we can similarly add a row-wise term and/or a column-wise term when the
corresponding type of sparse noise is expected.

The SMF expression enables us to use side information in a more flexible way. In
Section 5.2, we apply our method to a foreground/background video separation problem,
where moving objects are considered to belong to the foreground. The previous approach
(Candes et al., 2009; Babacan et al., 2012) adds an element-wise sparse term for capturing
the moving objects. However, we can also use a natural assumption that the pixels in an
image segment with similar intensity values tend to belong to the same object and hence
share the same label. To use this side information, we adopt a segment-wise sparse term,
where the PR matrix is constructed based on a precomputed over-segmented image. We
will show in Section 5.2 that the segment-wise sparse term captures the foreground more
accurately than the element-wise sparse term.

The SMF expression also provides a unified framework where a single theory can be
applied to various types of factorization. Based on this framework, we derive a useful
algorithm for variational approximation in Section 3.

304



Sparse Additive Matrix Factorization for Robust PCA and Its Generalization

2.3. Formulation of SAMF

We define a sparse additive matrix factorization (SAMF) model as a sum of SMF terms
(4):

V =
∑S

s=1 U
(s) + E ,

where U (s) = G({B(k,s)A(k,s)>}K(s)

k=1 ;X (s)).
(6)

Let us summarize the parameters as follows:

Θ = {Θ(s)
A , Θ

(s)
B }Ss=1,

where Θ
(s)
A = {A(k,s)}K(s)

k=1 , Θ
(s)
B = {B(k,s)}K(s)

k=1 .

As in the probabilistic MF (Salakhutdinov and Mnih, 2008), we assume independent
Gaussian noise and priors. Thus, the likelihood and the priors are written as

p(V |Θ) ∝ exp

(
− 1

2σ2

∥∥∥V −
∑S

s=1 U
(s)
∥∥∥

2

Fro

)
,

p({Θ(s)
A }Ss=1) ∝ exp

(
− 1

2
·∑S

s=1

∑K(s)

k=1 tr
(
A(k,s)C

(k,s)−1
A A(k,s)>

))
,

p({Θ(s)
B }Ss=1) ∝ exp

(
− 1

2
·∑S

s=1

∑K(s)

k=1 tr
(
B(k,s)C

(k,s)−1
B B(k,s)>

))
,

(7)

where ‖ · ‖Fro and tr(·) denote the Frobenius norm and the trace of a matrix, respectively.
We assume that the prior covariances of A(k,s) and B(k,s) are diagonal and positive-definite:

C
(k,s)
A = diag(c(k,s)2

a1
, . . . , c(k,s)2

aH
),

C
(k,s)
B = diag(c

(k,s)2
b1

, . . . , c
(k,s)2
bH

).

Without loss of generality, we assume that the diagonal entries of C
(k,s)
A C

(k,s)
B are arranged

in the non-increasing order, i.e., c
(k,s)
ah c

(k,s)
bh
≥ c(k,s)

ah′ c
(k,s)
bh′

for any pair h < h′.

2.4. Variational Bayesian Approximation

The Bayes posterior is written as

p(Θ|V ) = p(V |Θ)p(Θ)
p(V ) , (8)

where p(V ) = 〈p(V |Θ)〉p(Θ) is the marginal likelihood. Here, 〈·〉p denotes the expectation
over the distribution p. Since the Bayes posterior (8) is computationally intractable, the
variational Bayesian (VB) approximation was proposed (Bishop, 1999; Lim and Teh, 2007;
Ilin and Raiko, 2010; Babacan et al., 2012).

Let r(Θ), or r for short, be a trial distribution. The following functional with respect
to r is called the free energy:

F (r|V ) =
〈

log r(Θ)
p(Θ|V )

〉
r(Θ)
− log p(V ). (9)
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The first term is the Kullback-Leibler (KL) distance from the trial distribution to the
Bayes posterior, and the second term is a constant. Therefore, minimizing the free energy
(9) amounts to finding a distribution closest to the Bayes posterior in the sense of the KL
distance. In the VB approximation, the free energy (9) is minimized over some restricted
function space.

Following the standard VB procedure (Bishop, 1999; Lim and Teh, 2007; Babacan et al.,
2012), we impose the following decomposability constraint on the posterior:

r(Θ) =
∏S
s=1 r

(s)
A (Θ

(s)
A )r

(s)
B (Θ

(s)
B ). (10)

Under this constraint, it is easy to show that the VB posterior minimizing the free energy
(9) is written as

r(Θ) =
∏S
s=1

∏K(s)

k=1

(
∏M ′(k,s)

m′=1 NH′(k,s)(ã
(k,s)
m′ ; ˜̂a(k,s)

m′ , Σ
(k,s)
A ) ·∏L′(k,s)

l′=1 NH′(k,s)(b̃
(k,s)
l′ ;

˜̂
b

(k,s)

l′ , Σ
(k,s)
B )

)
,(11)

where Nd(·;µ, Σ) denotes the d-dimensional Gaussian distribution with mean µ and co-
variance Σ.

3. Algorithm for SAMF

In this section, we first give a theorem that reduces a partial SAMF problem to the ordinary
MF problem, which can be solved analytically. Then we derive an algorithm for the entire
SAMF problem.

3.1. Key Theorem

Let us denote the mean of U (s), defined in Eq.(6), over the VB posterior by

Û (s) = 〈U (s)〉
r
(s)
A (Θ

(s)
A )r

(s)
B (Θ

(s)
B )

= G({B̂(k,s)Â(k,s)>}K(s)

k=1 ;X (s)).

Then we obtain the following theorem (the proof is omitted because of the space limitation):

Theorem 1 Given {Û (s′)}s′ 6=s and the noise variance σ2, the VB posterior of (Θ
(s)
A , Θ

(s)
B ) =

{A(k,s), B(k,s)}K(s)

k=1 coincides with the VB posterior of the following MF model:

p(Z ′(k,s)|A(k,s), B(k,s))∝exp

(
− 1

2σ2

∥∥∥Z ′(k,s) −B(k,s)A(k,s)>
∥∥∥

2

Fro

)
,

p(A(k,s))∝exp

(
−1

2
tr
(
A(k,s)C

(k,s)−1
A A(k,s)>

))
,

p(B(k,s))∝exp

(
−1

2
tr
(
B(k,s)C

(k,s)−1
B B(k,s)>

))
,

(12)

for each k = 1, . . . ,K(s). Here, Z ′(k,s) ∈ RL′(k,s)×M ′(k,s) is defined as

Z
′(k,s)
l′,m′ =Z

(s)

X (s)(k,l′,m′)
, where Z(s) =V −∑s′ 6=s Û

(s). (13)
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The left formula in Eq.(13) relates the entries of Z(s) ∈ RL×M to the entries of {Z ′(k,s) ∈
RL′(k,s)×M ′(k,s)}K(s)

k=1 by using the map X (s) : (k, l′,m′) 7→ (l,m) (see Eq.(5) and Figure 1).
When the noise variance σ2 is unknown, the following lemma is useful (the proof is

omitted):

Lemma 2 Given the VB posterior for {Θ(s)
A , Θ

(s)
B }Ss=1, the noise variance σ2 minimizing

the free energy (9) is given by

σ2 =
1

LM

{
‖V ‖2Fro− 2

S∑

s=1

tr

(
Û (s)>

(
V −

S∑

s′=s+1

Û (s′)

))

+
∑S

s=1

∑K(s)

k=1 tr
(

(Â(k,s)>Â(k,s) +M ′(k,s)Σ
(k,s)
A ) · (B̂(k,s)>B̂(k,s) + L′(k,s)Σ

(k,s)
B )

)}
.

3.2. Partial Analytic Solution

Theorem 1 allows us to utilize the results given in Nakajima et al. (2011), which give
the global analytic solution for VBMF. Combining Theorem 1 above and Corollaries 1–
3 in Nakajima et al. (2011), we obtain the following corollaries. Below, we assume that
L′(k,s) ≤ M ′(k,s) for all (k, s). We can always take the mapping X (s) so, without any
practical restriction.

Corollary 1 Assume that {Û (s′)}s′ 6=s and the noise variance σ2 are given. Let γ
(k,s)
h (≥ 0)

be the h-th largest singular value of Z ′(k,s), and let ω
(k,s)
ah and ω

(k,s)
bh

be the associated right
and left singular vectors:

Z ′(k,s) =

L′(k,s)∑

h=1

γ
(k,s)
h ω

(k,s)
bh

ω(k,s)>
ah

.

Let γ̂
(k,s)
h be the second largest real solution of the following quartic equation with respect

to t:

fh(t) := t4 + ξ
(k,s)
3 t3 + ξ

(k,s)
2 t2 + ξ

(k,s)
1 t+ ξ

(k,s)
0 = 0, (14)

where the coefficients are defined by

ξ
(k,s)
3 =

(L′(k,s) −M ′(k,s))2γ
(k,s)
h

L′(k,s)M ′(k,s)
,

ξ
(k,s)
2 = −


ξ3γ

(k,s)
h +

(L′(k,s)2 +M ′(k,s)2)η
(k,s)2
h

L′(k,s)M ′(k,s)
+

2σ4

c
(k,s)2
ah c

(k,s)2
bh


 ,

ξ
(k,s)
1 = ξ

(k,s)
3

√
ξ

(k,s)
0 ,

ξ
(k,s)
0 =


η(k,s)2

h − σ4

c
(k,s)2
ah c

(k,s)2
bh




2

,

η
(k,s)2
h =

(
1− σ2L′(k,s)

γ
(k,s)2
h

)(
1− σ2M ′(k,s)

γ
(k,s)2
h

)
γ

(k,s)2
h .
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Let

γ̃
(k,s)
h =

√
τ +

√
τ2 − L′(k,s)M ′(k,s)σ4, (15)

where

τ =
(L′(k,s) +M ′(k,s))σ2

2
+

σ4

2c
(k,s)2
ah c

(k,s)2
bh

.

Then, the global VB solution can be expressed as

Û ′(k,s)VB = (B̂(k,s)Â(k,s)>)VB =
H′(k,s)∑

h=1

γ̂
(k,s)VB
h ω

(k,s)
bh

ω(k,s)>
ah

,

where γ̂
(k,s)VB
h =

{
γ̂

(k,s)
h if γ

(k,s)
h > γ̃

(k,s)
h ,

0 otherwise.

Corollary 2 Given {Û (s′)}s′ 6=s and the noise variance σ2, the global empirical VB so-
lution is given by

Û ′(k,s)EVB =
H′(k,s)∑

h=1

γ̂
(k,s)EVB
h ω

(k,s)
bh

ω(k,s)>
ah

,

where γ̂
(k,s)EVB
h =

{
γ̆

(k,s)VB
h if γ

(k,s)
h > γ

(k,s)
h and ∆

(k,s)
h ≤ 0,

0 otherwise.

Here,

γ(k,s)
h

= (
√
L′(k,s) +

√
M ′(k,s))σ,

c̆
(k,s)2
h =

1

2L′(k,s)M ′(k,s)

(
γ

(k,s)2
h − (L′(k,s) +M ′(k,s))σ2

+

√(
γ

(k,s)2
h − (L′(k,s) +M ′(k,s))σ2

)2
− 4L′(k,s)M ′(k,s)σ4

)
,

∆
(k,s)
h = M ′(k,s) log

(
γ

(k,s)
h

M ′(k,s)σ2
γ̆

(k,s)VB
h + 1

)
+ L′(k,s) log

(
γ

(k,s)
h

L′(k,s)σ2
γ̆

(k,s)VB
h + 1

)

+
1

σ2

(
−2γ

(k,s)
h γ̆

(k,s)VB
h + L′(k,s)M ′(k,s)c̆

(k,s)2
h

)
,

and γ̆
(k,s)VB
h is the VB solution for c

(k,s)
ah c

(k,s)
bh

= c̆
(k,s)
h .

Corollary 3 Given {Û (s′)}s′ 6=s and the noise variance σ2, the VB posteriors are given by

rVB
A(k,s)(A

(k,s)) =
H′(k,s)∏

h=1

NM ′(k,s)(a
(k,s)
h ; â

(k,s)
h , σ(k,s)2

ah
IM ′(k,s)),

rVB
B(k,s)(B

(k,s)) =

H′(k,s)∏

h=1

NL′(k,s)(b
(k,s)
h ; b̂

(k,s)
h , σ

(k,s)2
bh

IL′(k,s)),
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where, for γ̂
(k,s)VB
h being the solution given by Corollary 1,

â
(k,s)
h = ±

√
γ̂

(k,s)VB
h δ̂

(k,s)
h · ω(k,s)

ah
, b̂

(k,s)
h = ±

√
γ̂

(k,s)VB
h δ̂

(k,s)−1
h · ω(k,s)

bh
,

σ(k,s)2
ah

=
1

2M ′(k,s)(γ̂
(k,s)VB
h δ̂

(k,s)−1
h + σ2c

(k,s)−2
ah )

{
−
(
η̂

(k,s)2
h − σ2(M ′(k,s) − L′(k,s))

)

+

√
(η̂

(k,s)2
h − σ2(M ′(k,s) − L′(k,s)))2 + 4M ′(k,s)σ2η̂

(k,s)2
h

}
,

σ
(k,s)2
bh

=
1

2L′(k,s)(γ̂
(k,s)VB
h δ̂

(k,s)
h + σ2c

(k,s)−2
bh

)

{
−
(
η̂

(k,s)2
h + σ2(M ′(k,s) − L′(k,s))

)

+

√
(η̂

(k,s)2
h + σ2(M ′(k,s) − L′(k,s)))2 + 4L′(k,s)σ2η̂

(k,s)2
h

}
,

δ̂
(k,s)
h =

1

2σ2M ′(k,s)c
(k,s)−2
ah

{
(M ′(k,s) − L′(k,s))(γ(k,s)

h − γ̂(k,s)VB
h )

+

√√√√(M ′(k,s) − L′(k,s))2(γ
(k,s)
h − γ̂(k,s)VB

h )2 +
4σ4L′(k,s)M ′(k,s)

c
(k,s)2
ah c

(k,s)2
bh

}
,

η̂
(k,s)2
h =




η

(k,s)2
h if γ

(k,s)
h > γ̃

(k,s)
h ,

σ4

c
(k,s)2
ah

c
(k,s)2
bh

otherwise.

When σ2 is known, Corollary 1 and Corollary 2 provide the global analytic solution of the
partial problem, where the variables on which {Û (s′)}s′ 6=s depends are fixed. Note that they
give the global analytic solution for single-term (S = 1) SAMF.

3.3. Mean Update Algorithm

Using Corollaries 1–3 and Lemma 2, we propose an algorithm for SAMF, called the mean
update (MU). We describe its pseudo-code in Algorithm 1, where 0(d1,d2) denotes the d1×d2

matrix with all entries equal to zero.
Although each of the corollaries and the lemma above guarantee the global optimality

for each step, the MU algorithm does not generally guarantee the simultaneous global
optimality over the entire parameter space. Nevertheless, experimental results in Section 5
show that the MU algorithm performs very well in practice.

4. Discussion

In this section, we first discuss the relation between MIR and ARD. Then, we introduce
the standard VB iteration for SAMF, which is used as a baseline in the experiments.

4.1. Relation between MIR and ARD

The MIR effect (Nakajima and Sugiyama, 2011) induced by factorization actually has a
close connection to the automatic relevance determination (ARD) effect (Neal, 1996). As-
sume that CA = IH , where Id denotes the d-dimensional identity matrix, in the plain MF
model (12)–(12) (here we omit the suffixes k and s for brevity), and consider the following
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Algorithm 1 Mean update (MU) algorithm for (empirical) VB SAMF.

1: Initialization: Û (s) ← 0(L,M) for s = 1, . . . , S, σ2 ← ‖V ‖2Fro/(LM).
2: for s = 1 to S do
3: The (empirical) VB solution of U ′(k,s) = B(k,s)A(k,s)> for each k = 1, . . . ,K(s), given

{Û (s′)}s′ 6=s, is computed by Corollary 1 (Corollary 2).

4: Û (s) ← G({B̂(k,s)Â(k,s)>}K(s)

k=1 ;X (s)).
5: end for
6: σ2 is estimated by Lemma 2, given the VB posterior on {Θ(s)

A , Θ
(s)
B }Ss=1 (computed by

Corollary 3).
7: Repeat 2 to 6 until convergence.

transformation: BA> 7→ U ∈ RL×M . Then, the likelihood (12) and the prior (12) on A are
rewritten as

p(Z ′|U) ∝ exp

(
− 1

2σ2
‖Z ′ − U‖2Fro

)
,

p(U |B) ∝ exp

(
−1

2
tr
(
U>(BB>)†U

))
,

(16)

where † denotes the Moore-Penrose generalized inverse of a matrix. The prior (12) on B is
kept unchanged. p(U |B) in Eq.(16) is so-called the ARD prior with the covariance hyper-
parameter BB> ∈ RL×L. It is known that this induces the ARD effect, i.e., the empirical
Bayesian procedure where the hyperparameter BB> is also estimated from observations
induces strong regularization and sparsity (Neal, 1996) (see also Efron and Morris (1973)
for a simple Gaussian case).

In the current context, Eq.(16) induces low-rank sparsity on U if no restriction on BB>

is imposed. Similarly, we can show that (γel )
2 in Eq.(2) plays a role of the prior variance

shared by the entries in ũl ∈ RM , (γdm)2 in Eq.(2) plays a role of the prior variance shared
by the entries in um ∈ RL, and E2

l,m in Eq.(3) plays a role of the prior variance on Ul,m ∈ R,
respectively. This explains the mechanism how the factorization forms in Eqs.(2)–(3) induce
row-wise, column-wise, and element-wise sparsity, respectively.

When we employ the SMF term expression (4), MIR occurs in each partition. Therefore,
low-rank sparsity in each partition is observed. Corollary 1 and Corollary 2 theoretically
support this fact: Small singular values are discarded by thresholding in Eqs.(16) and (16).

4.2. Standard VB Iteration

Following the standard procedure for the VB approximation (Bishop, 1999; Lim and Teh,
2007; Babacan et al., 2012), we can derive the following algorithm, which we call the standard
VB iteration:

Â(k,s) =σ−2Z ′(k,s)>B̂(k,s)Σ
(k,s)
A ,

Σ
(k,s)
A =σ2

(
B̂(k,s)>B̂(k,s)+L′(k,s)Σ

(k,s)
B +σ2C

(k,s)−1
A

)−1
,

B̂(k,s) =σ−2Z ′(k,s)Â(k,s)Σ
(k,s)
B ,

Σ
(k,s)
B =σ2

(
Â(k,s)>Â(k,s)+M ′(k,s)Σ

(k,s)
A +σ2C

(k,s)−1
B

)−1
.

(17)
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Iterating Eqs.(17)–(17) for each (k, s) in turn until convergence gives a local minimum of
the free energy (9).

In the empirical Bayesian scenario, the hyperparameters {C(k,s)
A , C

(k,s)
B }K(s)

k=1,
S
s=1 are also

estimated from observations. The following update rules give a local minimum of the free
energy:

c(k,s)2
ah

= ‖â(k,s)
h ‖2/M ′(k,s) + (Σ

(k,s)
A )hh,

c
(k,s)2
bh

= ‖b̂(k,s)
h ‖2/L′(k,s) + (Σ

(k,s)
B )hh.

(18)

When the noise variance σ2 is unknown, it is estimated by Eq.(14) in each iteration.
The standard VB iteration is computationally efficient since only a single parameter

in {Â(k,s), Σ
(k,s)
A , B̂(k,s), Σ

(k,s)
B , c

(k,s)2
ah , c

(k,s)2
bh

}K(s)

k=1,
S
s=1 is updated in each step. However, it is

known that the standard VB iteration is prone to suffer from the local minima problem
(Nakajima et al., 2011). On the other hand, although the MU algorithm also does not
guarantee the global optimality as a whole, it simultaneously gives the global optimal so-

lution for the set {Â(k,s), Σ
(k,s)
A , B̂(k,s), Σ

(k,s)
B , c

(k,s)2
ah , c

(k,s)2
bh

}K(s)

k=1, for each s in each step. In
Section 5, we will experimentally show that the MU algorithm gives a better solution (i.e.,
with a smaller free energy) than the standard VB iteration.

5. Experimental Results

In this section, we first experimentally compare the performance of the MU algorithm and
the standard VB iteration. Then, we demonstrate the usefulness of SAMF in a real-world
application.

5.1. Mean Update vs. Standard VB

We compare the algorithms under the following model:

V = ULRCE + E ,
where ULRCE =

∑4
s=1 U

(s) = U low-rank + U row + U column + U element.

Here, ‘LRCE’ stands for the sum of the Low-rank, Row-wise, Column-wise, and Element-
wise terms, each of which is defined in Eqs.(1)–(3). We call this model ‘LRCE’-SAMF. We
also evaluate ‘LCE’-SAMF, ‘LRE’-SAMF, and ‘LE’-SAMF models. These models can be
regarded as generalizations of robust PCA (Candes et al., 2009; Babacan et al., 2012), of
which ‘LE’-SAMF corresponds to a SAMF counterpart.

We conducted an experiment with artificial data. We assume the empirical VB sce-

nario with unknown noise variance, i.e., the hyperparameters {C(k,s)
A , C

(k,s)
B }K(s)

k=1,
S
s=1 and

the noise variance σ2 are also estimated from observations. We use the full-rank model
(H = min(L,M)) for the low-rank term U low-rank, and expect the MIR effect to find the
true rank of U low-rank, as well as the non-zero entries in U row, U column, and U element.

We created an artificial dataset with the data matrix size L = 40 and M = 100, and the
rank H∗ = 10 of the true low-rank matrix U low-rank∗ = B∗A∗>. Each entry in A∗ ∈ RM×H∗

and B∗ ∈ RL×H∗ follows N1(0, 1). The true row-wise (column-wise) part U row∗ (U column∗)
was created by first randomly selecting ρL rows (ρM columns) for ρ = 0.05, and then adding
a noise subject to NM (0, 100 · IM ) (NL(0, 100 · IL)) to each of the selected rows (columns).
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Figure 3: Experimental results with ‘LRCE’-SAMF for an artificial dataset (L = 40,M =
100, H∗ = 10, ρ = 0.05).

The true element-wise part U element∗ was similarly created by first selecting ρLM entries,
and then adding a noise subject to N1(0, 100) to each of the selected entries. Finally, an
observed matrix V was created by adding a noise subject to N1(0, 1) to each entry of the
sum ULRCE∗ of the four true matrices.

It is known that the standard VB iteration (given in Section 4.2) is sensitive to initial-
ization (Nakajima et al., 2011). We set the initial values in the following way: the mean

parameters {Â(k,s), B̂(k,s)}K(s)

k=1,
S
s=1 were randomly created so that each entry follows N1(0, 1).

The covariances {Σ(k,s)
A , Σ

(k,s)
B }K(s)

k=1,
S
s=1 and the hyperparameters {C(k,s)

A , C
(k,s)
B }K(s)

k=1,
S
s=1 were

set to the identity matrix. The initial noise variance was set to σ2 = 1. Note that we rescaled
V so that ‖V ‖2Fro/(LM) = 1, before starting iteration. We ran the standard VB algorithm
10 times, starting from different initial points, and each trial is plotted by a solid line
(labeled as ‘Standard(iniRan)’) in Figure 3.

Initialization for the MU algorithm (described in Algorithm 1) is simple. We just set
initial values as follows: Û (s) = 0L,M for s = 1, . . . , S, and σ2 = 1. Initialization of all other
variables is not needed. Furthermore, we empirically observed that the initial value for σ2

does not affect the result much, unless it is too small. Note that, in the MU algorithm,
initializing σ2 to a large value is not harmful, because it is set to an adequate value after
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the first iteration with the mean parameters kept Û (s) = 0L,M . The result with the MU
algorithm is plotted by the dashed line in Figure 3.

Figures 3(a)–3(c) show the free energy, the computation time, and the estimated rank,
respectively, over iterations, and Figure 3(d) shows the reconstruction errors after 250 iter-
ations. The reconstruction errors consist of the overall error ‖ÛLRCE −ULRCE∗‖Fro/(LM),
and the four component-wise errors ‖Û (s) − U (s)∗‖Fro/(LM). The graphs show that the
MU algorithm, whose iteration is computationally slightly more expensive, immediately
converges to a local minimum with the free energy substantially lower than the standard
VB iteration. The estimated rank agrees with the true rank Ĥ = H∗ = 10, while all 10
trials of the standard VB iteration failed to estimate the true rank. It is also observed that
the MU algorithm well reconstructs each of the four terms.

We can slightly improve the performance of the standard VB iteration by adopting dif-
ferent initialization schemes. The line labeled as ‘Standard(iniML)’ in Figure 3 indicates the

maximum likelihood (ML) initialization, i.e, (â
(k,s)
h , b̂

(k,s)
h ) = (γ

(k,s)1/2
h ω

(k,s)
ah , γ

(k,s)1/2
h ω

(k,s)
bh

).

Here, γ
(k,s)
h is the h-th largest singular value of the (k, s)-th PR matrix V ′(k,s) of V (such

that V
′(k,s)
l′,m′ = VX (s)(k,l′,m′)), and ω

(k,s)
ah and ω

(k,s)
bh

are the associated right and left singu-

lar vectors. Also, we empirically found that starting from a small σ2 alleviates the local
minima problem. The line labeled as ‘Standard(iniMLSS)’ indicates the ML initialization
with σ2 = 0.0001. We can see that this scheme tends to successfully recover the true rank.
However, the free energy and the reconstruction error are still substantially worse than the
MU algorithm.

We tested the algorithms with other SAMF models, including ‘LCE’-SAMF, ‘LRE’-
SAMF, and ‘LE’-SAMF, under different settings for L,M,H∗, and ρ. We empirically found
that the MU algorithm generally gives a better solution with lower free energy and smaller
reconstruction errors than the standard VB iteration.

We also conducted experiments with benchmark datasets available from UCI repository
(Asuncion and Newman, 2007), and found that, in most of the cases, the MU algorithm
gives a better solution (with lower free energy) than the standard VB iteration.

5.2. Real-world Application

Finally, we demonstrate the usefulness of the flexibility of SAMF in a foreground
(FG)/background (BG) video separation problem. Candes et al. (2009) formed the ob-
served matrix V by stacking all pixels in each frame into each column, and applied robust
PCA (with ‘LE’-terms)—the low-rank term captures the static BG and the element-wise
(or pixel-wise) term captures the moving FG, e.g., people walking through. Babacan et al.
(2012) proposed a VB variant of robust PCA, and performed an extensive comparison that
showed advantages of the VB robust PCA over other Bayesian and non-Bayesian robust
PCA methods (Ding et al., 2011; Lin et al., 2010), as well as the Gibbs sampling inference
method with the same probabilistic model. Since their state-of-the-art method is concep-
tually the same as our VB inference method with ‘LE’-SAMF (although the prior design is
slightly different), we use ‘LE’-SAMF as a baseline method for comparison.

The SAMF framework enables a fine-tuned design for the FG term. Assuming that the
pixels in an image segment with similar intensity values tend to share the same label (i.e.,
FG or BG), we formed a segment-wise sparse SMF term: U ′(k) for each k is a column vector
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consisting of all pixels within each segment. We produced an over-segmented image of each
frame by using the efficient graph-based segmentation (EGS) algorithm (Felzenszwalb and
Huttenlocher, 2004), and substituted the segment-wise sparse term for the FG term. We
call this method a segmentation-based SAMF (sSAMF). Note that EGS is very efficient: it
takes less than 0.05 sec on a laptop to segment a 192 × 144 grey image. EGS has several
tuning parameters, to some of which the obtained segmentation is sensitive. However, we
confirmed that sSAMF performs similarly with visually different segmentations obtained
over a wide range of tuning parameters. Therefore, careful parameter tuning of EGS is not
necessary for our purpose.

We compared sSAMF with ‘LE’-SAMF on the ‘WalkByShop1front’ video from the
Caviar dataset.1 Thanks to the Bayesian framework, all unknown parameters (except the
ones for segmentation) are estimated automatically with no manual parameter tuning. For
both models (‘LE’-SAMF and sSAMF), we used the MU algorithm, which has been shown
in Section 5.1 to be practically more reliable than the standard VB iteration. The original
video consists of 2360 frames, each of which is an image with 384× 288 pixels. We resized
each image into 192× 144 pixels, and sub-sampled every 15 frames. Thus, V is of the size
of 27684 (pixels) × 158 (frames). We evaluated ‘LE’-SAMF and sSAMF on this video, and
found that both models perform well (although ‘LE’-SAMF failed in a few frames).

To contrast the methods more clearly, we created a more difficult video by sub-sampling
every 5 frames from 1501 to 2000 (100 frames). Since more people walked through in this
period, BG estimation is more unstable. The result is shown in Figure 4.

Figure 4(a) shows an original frame. This is a difficult snap shot, because the person
stayed at the same position for a moment, which confuses separation. Figures 4(b) and 4(c)
show the BG and the FG terms obtained by ‘LE’-SAMF, respectively. We can see that
‘LE’-SAMF failed to separate (the person is partly captured in the BG term). On the other
hand, Figures 4(e) and 4(f ) show the BG and the FG terms obtained by sSAMF based on
the segmented image shown in Figure 4(d). We can see that sSAMF successfully separated
the person from BG in this difficult frame. A careful look at the legs of the person makes us
understand how segmentation helps separation—the legs form a single segment (light blue
colored) in Figure 4(d), and the segment-wise sparse term (4(f )) captured all pixels on the
legs, while the pixel-wise sparse term (4(c)) captured only a part of those pixels.

We observed that, in all frames of the difficult video, as well as the easier one, sSAMF
gave good separation, while ‘LE’-SAMF failed in several frames.

6. Conclusion

In this paper, we formulated a sparse additive matrix factorization (SAMF) model, which
allows us to design various forms of factorization that induce various types of sparsity.
We then proposed a variational Bayesian (VB) algorithm called the mean update (MU),
based on a theory built upon the unified SAMF framework. The MU algorithm gives
the global optimal solution for a large subset of parameters in each step. Through ex-
periments, we showed that the MU algorithm compares favorably with the standard VB
iteration. We also demonstrated the usefulness of the flexibility of SAMF in a real-world
foreground/background video separation experiment, where image segmentation is used for
automatically designing a SMF term.

1. http://groups.inf.ed.ac.uk/vision/CAVIAR/CAVIARDATA1/
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(a) Original (b) BG (‘LE’-SAMF) (c) FG (‘LE’-SAMF)

(d) Segmented (e) BG (sSAMF) (f ) FG (sSAMF)

Figure 4: ‘LE’-SAMF vs segmentation-based SAMF.
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