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Abstract

As digital communication devices play an increasingly prominent role in our daily lives, the
ability to analyze and understand our communication patterns becomes more important.
In this paper, we investigate a latent variable modeling approach for extracting information
from individual email histories, focusing in particular on understanding how an individual
communicates over time with recipients in their social network. The proposed model con-
sists of latent groups of recipients, each of which is associated with a piecewise-constant
Poisson rate over time. Inference of group memberships, temporal changepoints, and rate
parameters is carried out via Markov Chain Monte Carlo (MCMC) methods. We illustrate
the utility of the model by applying it to both simulated and real-world email data sets.

Keywords: Email analysis, Changepoint detection, Hidden Markov models, Poisson re-
gression

1. Introduction

With the ubiquity of modern communication channels, such as text messaging, phone calls,
email, and microblogging, there is increasing interest in the analysis of streams of user
communication data over time. In particular, in this paper we focus on analyzing egocentric
network data over time (and more specifically, email histories) consisting of time series of
counts of communication events between an ego and his or her alters. Our goal is to develop
a statistical model that can summarize the major characteristics of such data: who does
the ego communicate with? at what rates? and how do these patterns change over time?

As an example, Figure 1 shows the weekly email communication patterns from several
years of email history from one of the authors of this paper. In the right plot the x-axis
represents time and the y-axis represents different recipients, with dots representing which
recipients receive an email on which weeks. The patterns of communication are clearly non-
stationary. As the sender transitioned over time through different universities, projects,
collaborations, and social activities, the recipient patterns changed significantly over time,
as did the overall communication rates. This data is not easy to summarize or interpret,
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Figure 1: Personal email communication data for one of the authors. Left: Total number
of emails sent per week. Right: Points indicate an email sent to a particular
individual (y-axis) at a particular week (x-axis).

and there are multiple different aspects of the data that are difficult to disentangle. For
example, prior to 2008, recipients with IDs from 0 to 120 are rarely present. In addition,
during the middle of 2010 there is a large peak followed by a sharp drop in communication,
and it would be interesting to know which recipients are associated with this change in
behavior. Our goal is to develop an unsupervised learning approach based on a statistical
model that can explain such variations, in terms of both who we communicate with and the
rate at which we communicate.

There are several potential applications of such a model. Individual users can use this
type of model to better understand their digital behavior over time. An example is the re-
cent publication by Stephen Wolfram on his blog of detailed visualizations and commentary
on 13 years worth of his personal email data (Wolfram, 2012). Companies providing com-
munication services (such as email or social network channels) can analyze their users’ usage
of such services and potentially enhance the user experience from a better understanding
of user behavior over time. A simple example of this type is the Gmail “Got the wrong
Bob?” feature (Roth et al., 2010) which learns about co-appearance patterns in email re-
cipient lists and automatically suggests additional potential recipients to the sender. In the
social sciences, there is increasing interest in analyzing digital human communication data
to inform social theorists about human behavior in the context of modern communication
media (e.g., Butts, 2008).

In this paper we focus specifically on modeling daily recipient email counts over time,
sent from a single account. The focus on lists of recipients (with respect to emails sent
from the account of interest) is primarily a pragmatic one: it is a useful starting point and
simpler than modeling both senders and receivers. Of the two, sent emails are potentially
of more interest in informing us about the individual since they are the result of specific
actions by the individual, while received emails are not directly so. It is natural to think of
extensions to our approach here that can handle both sender and recipient information and
such a model could be developed as an extension of the recipient-only model we present
here.

Specifically, our proposed model consists of two interacting components:
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1. Group structure among recipients is modeled by a mixed membership model, similar
to that used in mixed membership models for social networks (Airoldi et al., 2008),
and in topic modeling or latent Dirichlet analysis for text (Blei et al., 2003). This
framework allows for modeling of recipients as members of multiple groups in a natural
and parsimonious manner.

2. The daily number of emails sent over time is modeled via a set of independent
piecewise-constant Poisson processes, one per group. The number of changepoints
between Poisson segments for each group is handled by a non-parametric Dirichlet
process, i.e., there are a potentially infinite number of changepoints and segments
in the prior for the model, from which we infer a posterior distribution over a finite
number of segments and changepoints given the observed data.

The primary novel contribution of this paper is a latent variable model that describes
both group structure and non-stationary rate behavior for communication count data over
time, with email data being the specific application focus. In Section 2 we discuss previous
work on modeling count time series in email and other communication data, where the
primary focus has been on segmentation and changepoint detection but without group
structure. Sections 3 and 4 outline the model and our inference algorithms. In Section 5 we
illustrate how the model works using simulated data. Section 6 illustrates the application
of the model to real-world email data sets, demonstrating how the model can be used to
better understand such data. Section 7 compares the predictive accuracy of the proposed
model to alternative baseline approaches. Section 8 contains discussion and conclusions.

2. Related Work

Prior work of relevance to our proposed approach can be broadly categorized into 3 areas:
(1) models of email communication data, (2), segmentation of time series of count data,
and (3) identification of group structure in dynamic social network data.

Earlier work on analysis of email communication data over time has focused primarily
on modeling of overall communication rates. For example, in a series of papers, Malmgren
and colleagues have investigated a variety of bursty and non-homogeneous Poisson models
to capture the overall rate at which an individuals send email (Malmgren et al., 2008, 2009).
Earlier work in a similar vein applied Markov-modulated Poisson processes to telephone call
and Web navigation data (Scott and Smyth, 2003; Scott, 2004). Our approach also uses
latent piecewise-constant Poisson processes for modeling temporal variation in individual
communication rates. We differ from prior work in that we show how the overall rate for
an individual can be explained by a combination of (a) grouping patterns among recipients,
and (b) time-varying rates for these groups—prior work focused on modeling just the overall
rate for an individual, without recipient information.

In the broader context of segmentation of time series of count data, statistical learning
approaches have been well studied. For example, Fearnhead (2006) models the number
and location of the changepoints by placing priors over them and obtaining posterior sam-
ples. Chib (1998) models the time series with a finite-state left-right hidden Markov model
(HMM), such that changepoints are represented as latent state transitions. Our approach
is similar to Chib (1998), but uses Dirichlet process priors in order to have a potentially
infinite number of latent states, allowing for an arbitrary number of changepoints. A signif-
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icant difference from previous work is that we do not detect changepoints in a single time
series, but in the decomposition of the time series according to the (simultaneously learned)
latent groups. Each latent group is associated with its own time series and changepoints.
Our approach is also inspired by advances in using non-parametric Bayesian methods for
other types of human communication, such as detecting changes in speaker from audio
recordings of meetings (Fox et al., 2011). These methods use a hidden Markov model with
a flexible number of latent states. In this work, we similarly use non-parametric techniques
for segmenting the time series for each of our K latent groups.

The third relevant strand of prior work is the topic of learning latent group structure
from dynamic social network data. There is a large literature on this topic, including
techniques based on optimizing a specific cost function or using statistical model-based
approaches. One distinction among these methods is whether individuals are allowed to
belong to one group or to several groups at a particular time. We take an approach akin to
mixed membership models (Airoldi et al., 2008; Choi et al., 2012), allowing individuals to be
members of multiple groups. In particular, we jointly model both the group memberships
and the rate of events involving a particular group, which contrasts to methods whose
sole focus is the progression of latent group memberships at discrete timesteps. Also of
relevance to our approach is prior work on community detection for dynamic social networks
based on node clustering techniques, e.g., detecting clusters of nodes (communities) in a
time-varying weighted graph. Such approaches include algorithms based on graph-coloring
(Tantipathananandh et al., 2007) and clustering methods based on smoothed “snapshots”
of a dynamic network (Xu et al., 2011). While one could in principle use these types of
approaches for the grouping component of our model, we have chosen instead the mixed
membership approach, which allows email recipients to belong to multiple groups at once.
The probabilistic semantics of such a model allows us to learn and reason about both groups
and communication rates in a coherent fashion.

3. The Model

We begin in Section 3.1 by describing our approach to learning changepoints from time
series data of counts using an infinite-state HMM, and then couple this with learning latent
group structure in Section 3.2.

3.1. Modeling Communication Rates

Let Nt represent the total number of emails the user sends on day t. The set of variables
{Nt : 1 ≤ t ≤ T} define a stochastic process. We assume that Nt ∼ Poisson(λt), where λt
is the rate at which the user sends emails on day t. Because λt is allowed to change across
days, this type of process is usually referred to as a non-homogeneous Poisson process.

Our model assumes that the user communicates with K separate groups of people. Each
email the user sends is sent to one of the K groups. We assume that the rate at which
emails are sent to each group are independent Poisson processes, i.e., a change in the rate
at which emails are sent to one group does not affect the rate at which emails are sent to
other groups. This assumption is clearly an approximation of what happens in practice—for
example there may be exogenous (external) events, such as the user going on vacation, that
affect most or all groups simultaneously. Nonetheless, we believe this independence model
is a useful (and computationally efficient) place to start, allowing us to capture “first-order”
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group behavior—models allowing dependence between groups and/or shared dependence on
exogenous events would be of interest as extensions of the simpler model we propose here.

Let Nk,t represent the (unobserved) number of emails the user sends to group k on day
t. We model Nk,t ∼ Poisson(λk,t), where λk,t is the rate at which the user sends emails to
group k on day t. Because of our independence assumptions, Nt is the superposition of
independent Poisson processes (Nt =

∑K
k=1Nk,t ∼ Poisson(

∑K
k=1 λk,t)).

The Poisson Process for a Single Group

We begin by describing (in the remainder of this subsection) the model for time-varying
communication rates for a single group, deferring discussion of how we learn the groups
themselves to Section 3.2. We model a user’s email rate to group k, {λk,t : 1 ≤ t ≤ T},
using a hidden Markov model. Under the HMM, the value of λk,t is dependent on a latent
state sk,t, and the value of sk,t is dependent on sk,t−1, the state of the previous day. Unique
states represent different modes of activity between the user and recipient groups.

We define a changepoint to be a time t where the HMM transitions between different
states (sk,t 6= sk,t+1). Changepoints will typically correspond to unobserved events through-
out the user’s history that change their communication rate with the group (such as vaca-
tions, research deadlines, changing schools, etc). We define the single, contiguous interval of
time betwen two adjacent changepoints to be a segment. Each segment represents a period
of constant mean activity for the user with respect to a particular group.

Traditional HMMs have a finite number of states, limiting the modes of activity a user
can have. Here we allow the HMM to have a countably infinite number of states, where
only a finite subset of those states are ever seen given the observed data (similar to Beal
et al. 2002). We enforce the restriction that the HMM cannot transition to previously
seen states (known as a left-to-right HMM), ensuring that each unique state spans a single
interval of time1. We model such a HMM by placing separate symmetric Dirichlet priors
over each row of the transition matrix. As the number of latent states tends to infinity, these
priors converge in distribution to Dirichlet processes (Neal, 2000). A property of Dirichlet
processes is that, after integrating out the parameters for the HMM transition matrix, the
transition probabilities between states become:

P (sk,t|sk,−t, γ, κ) =





0 if sk,t is a previous state
Vt+γ

Vt+γ+κ if sk,t = sk,t−1

κ
Vt+γ+κ if sk,t is a new state

where γ and κ are adjustable parameters, sk,−t = {sk,t′ : t′ 6= t} is the set of all other states
(not just the previous state, since the integration of the transition matrix introduces depen-
dencies between all latent states), and Vt =

∑t−1
t′=2 δ(sk,t′ = sk,t−1)δ(sk,t′−1 = sk,t−1) is how

long the HMM has been in state sk,t−1 up to time t.
The other dependence to model in the HMM is how group k’s rate at time t depends

on its latent state sk,t, namely λk,t|sk,t. We use Poisson regression to model the log of

1. The alternative approach of allowing the state transition matrix to be unconstrained (i.e., allowing the
HMM to return to earlier states, as in Fox et al., 2011) is also certainly feasible, and has the advantage
that segments could share parameters by representing recurring states and rates. We did not pursue
this approach primarily for computational reasons since inference in such a model is significantly more
complex than in the proposed changepoint left-to-right model.
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these rates, i.e., log λk,t = XT
k,tθ, where XT

k,t is a set of features for day t and θ is a vector

of regression parameters. We construct XT
k,t and θ such that log λk,t = βk,sk,t , where βk,m

is the log of the rate that the user is sending emails to group k while in time segment m
(corresponding to state m of the HMM). In the regression content, Xk,t is a binary vector
indicating the latent state of the HMM on day t, and θ = [βk,1, βk,2, · · · , βk,Mk

]T , where Mk

is the number of unique states. Because we are modeling λk,t with Poisson regression, we
can also include other features (which may or may not depend on group k). For example,
we can include day-of-week effects:

log λk,t = βk,sk,t + αwt (1)

where wt ∈ W represents different days of the week. We can use W = {0, 1} to represent
weekdays and weekends, or W = {0, · · · , 6} to represent each day of the week individually
(we use the latter for all results in this paper). The corresponding α terms capture routine
changes in behavior on a weekly basis. For example, if a user only sends emails on the
weekdays the αweekend term would have a large negative value, making λk,t ≈ 0 on weekends.

3.2. Modeling Recipient Groups

We now discuss how to model the K different groups that the user interacts with, where
a group is defined as a distribution over R possible recipients for an email. The goal is
to have different groups model different sets of people that share a common characteristic
with the user (such as common familial relationships, organizational relationships, common
interests, and so forth).

We assume each email is sent to one of the K latent groups. Let zt,n represent the latent
group that email n on day t was sent to. Given the latent group, the recipients of the email
are chosen from a vector of probabilities φzt,n of length R. The generative model for the
recipients given the latent group is

φk|ρ ∼ Dirichlet(ρ) yt,n|φ, zt,n ∼ Multinomial(mt,n, φzt,n)

where yt,n ∈ [0, 1]R is a binary vector indicating which recipients are in email n on day t,
mt,n is the number of recipients in the email, and ρ is a vector of length R corresponding to
the parameters of the Dirichlet prior that helps to smooth the probability estimates. In the
results below we set all ρr = 1. Note that a multinomial model allows for the unrealistic
possibility of the same individual receiving the same email more than once. However,
conditioned on the observed data, where each recipient is included in the recipient list for
an email only once, the multinomial likelihood is nonetheless a useful way to compute the
probability of a such a list for each group k. Alternatives to the multinomial that could be
used in this context include a conditional independence Bernoulli model or a multivariate
hypergeometric distribution. We chose to use the multinomial model for convenience.

Determining Latent Group Probabilities

The modeling of the latent group indicator variables zt,n is a key aspect of the model; the
distribution of zt,n connects the K separate HMMs from Section 3.1 and the generative
model of email recipients in Section 3.2. The multinomial probabilities over the latent
variables are a function of the daily rates λk,t, the rate at which the user is sending emails
to group k on day t. Because {λk,t : 1 ≤ t ≤ T} is a Poisson process and the time between
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Figure 2: The graphical representation of the model.

emails for a particular group follows an exponential distribution, it is straightforward to
show (using Equation 1) that the probability of the next email being sent to group k can
be written as:

P (zt,n = k|{λk,t : 1 ≤ k ≤ K}) =
λk,t∑K

k′=1 λk′,t
=

eαwte
βk,sk,t

∑K
k′=1 e

αwte
βk′,sk′,t

=
e
βk,sk,t

∑K
k′=1 e

βk′,sk′,t

Our approach is similar in some respects to the dynamic topic model approach of Blei
and Lafferty (2006). Instead of associating each latent topic variable with a word token,
in our model each latent variable is associated with the set of recipients in an email. In
addition, to model the changes in group behavior over time, we use a discrete-state Markov
process to explicitly model changepoints in the user’s behavior, instead of an autoregressive
approach.

Figure 2 shows the graphical model for representing the HMM part of the model in
2(a) and the group aspect of the model in 2(b). In the interests of interpretability, all
the HMM variables (latent states, transition matrix, regression parameters, and Dirichlet
process priors) are combined into a single supernode in Figure 2(b). Note that, since the
rate of sending emails λ is a deterministic function of the regression parameters α and β, λ
can be removed from the graphical model. We keep λ in the graphical model for clarity.

4. The MCMC Inference Algorithm

We use Markov chain Monte Carlo techniques to learn the parameters of our model from
observed data. We use Gibbs sampling to iteratively sample each of the variables from
their full conditional distributions. These conditional distributions can be derived using the
graphical models in Figures 2(a) and 2(b), since the joint distribution over all parameters
(which the conditional probabilities are proportional to) factors according to the graphical
model. We outline the sampling equations for each variable in the following subsections. To
keep the notation simple, variables without subscripts denote the set of all variables that
can be indexed by it, e.g., λ = {λk,t : 1 ≤ k ≤ K, 1 ≤ t ≤ T}.
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4.1. Sampling the latent groups

By taking advantage of the conjugacy between the multinomial and Dirichlet distributions,
we can integrate out the membership probabilities φ analytically. The conditional distribu-
tion for sampling zt,n given all other variables is

P (zt,n = k|·) ∝ P (z|λ)

ˆ
P (y|z, φ)P (φ|ρ)dφ ∝ λk,t∑K

k′=1 λk′,t

∏R
r=1(c

−(t,n)
k,r + ρr)

∏mt,n−1
i=0 (i+

∑R
r′=1(c

−(t,n)
k,r′ + ρr′))

where c
−(t,n)
k,r =

∑
t′ 6=t

∑
n′ 6=n yt′,n′,rδ(zt′,n′ = k) is the number of times recipient r was present

in an email sent to group k, ignoring email n on day t, and mt,n is the number of recipients
for email n on day t. The derivation of this conditional distribution is similar to that of the
standard collapsed Gibbs sampling equations for LDA.

4.2. Sampling the regression parameters

We place a non-conjugate Normal(µ, σ2) prior on each of the regression parameters. We
can sample from this conditional distribution, using the unnormalized log distribution, via a
technique known as slice sampling (Neal, 2003). The conditional distributions for sampling
the regression parameters {αw} and {βk,m}, are

logP (αw|·) ∝ logP (αw|µ, σ2)P (N |α, β, s)

∝ −(αw − µ)2

2σ2
+ αw

∑

t:wt=w

Nt − eαw
( ∑

t:wt=w

K∑

k=1

e
βk,sk,t

)

logP (βk,m|·) ∝ logP (βk,m|µ, σ2)P (N |α, β, s)P (z|s, β)

∝ −(βk,m − µ)2

2σ2
−

∑

t:sk,t=m

eαwteβk,m + gk,mβk,m

where gk,m =
∑T

t=1 δ(sk,t = m)
∑Nt

n=1 δ(zt,n = k), the number of times an email was sent to
group k when that group was in segment m. Note that updating both α and β automatically
updates the emailing rates λ.

4.3. Sampling the HMM hyperparameters

While it is possible to place priors over the Dirichlet process hyperparameters γ and κ,
we instead define priors over their ratio r = γ

γ+κ and magnitude m = γ + κ. The ratio
represents the probability of staying in a newly visited state, and the magnitude represents
the strength of the prior. As priors we use m ∼ Gamma(kg, θg) and r ∼ Beta(αb, βb). As
with the regression parameters, these priors are non-conjugate, so we use slice sampling over
the conditional unnormalized log probability. We first sample m, which deterministically
updates γ and κ. We then sample r, which updates γ and κ a second time. The conditional
probabilities depend only on the priors and the HMM latent state probabilities:

P (m|·) ∝ P (m|kg, θg)P (s|γ, κ) P (r|·) ∝ P (r|αb, βb)P (s|γ, κ)
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4.4. Sampling the segments

For each day t and group k we sample the latent state sk,t conditioned on (a) all other
latent states for group k, (b) the latent states for other groups on day t, and (c) the emails
sent on day t. We only sample sk,t where sk,t−1 6= sk,t+1, due to the restriction that the
HMM cannot transition back to previous states. If sk,t is sampled, its possible values are
the previous state sk,t−1, the next state sk,t+1, or a brand new state. The prior probability
of entering a new state is proportional to the HMM hyperparameter κ. The conditional
probability for sampling sk,t is

P (sk,t|·) ∝ P (N |λ)P (z|λ)P (s|γ, κ)

Note that in order to calculate the probability of sk,t being a brand new state, we first need a
new β regression parameter for that new state. We sample the value of sk,t by first sampling
this new regression parameter from its prior distribution, then using this new parameter
in the above equation. This is an example of sampling using auxiliary variables (Neal,
2000), where to sample from p(x), we sample from a distribution p(x, ξ) whose marginal
distribution is p(x). The auxiliary variable ξ is then discarded. In our case, x represents
the set of all model parameters, and ξ represents the newly sampled β parameter. If sk,t is
a singleton state (it is a segment of length one), it is possible for the segment to become
“absorbed” into one of its neighboring segments during sampling. When this occurs, the
corresponding β regression parameter no longer represents a segment. As is common in the
application of Dirichlet processes, such parameters are discarded.

5. An Illustrative Example Using Synthetic Data

As an illustration of the fitting procedure we created a synthetic data set with K = 2
groups, T = 350 days, and R = 10 possible recipients. The dark bars in Figure 3 show
the membership probabilities of the two groups; each group has 3 exclusive recipients, with
the remaining 4 recipients seen in both groups. The top-left plot in Figure 4 shows the
values of the β regression parameters, with each group being dominant during different
periods of time. Group 0 has two changepoints on days 100 and 300, and group 1 has three
changepoints on days 50, 120, and 210. The values for the α regression parameters were set
so that the email rates on weekends are 60% of the rates during the weekdays.

Given the parameters of the model, emails are simulated by first simulating the total
number of emails sent for each day; Nt ∼ Poisson(

∑K
k=1 λk,t). The bottom-right plot in

Figure 4 shows the sampled values for Nt. For each of the Nt emails, we simulate which
group the email was sent to; zt,n ∼ Multinomial(λ̂t), where λ̂t are the normalized λk,t, for
1 ≤ k ≤ K. Each email is equally likely to contain one or two recipients.
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Figure 3: The true and learned membership probabilities for the two different groups.
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To learn the parameters of the model, we iteratively sample the parameters of our model
as described in Section 4. The latent states for each HMM are initialized such that every
sk,t is its own unique state. In other words, each group has 350 segments, each of length 1
day. The regression and Dirichlet process parameters are initialized to a sample from their
prior distributions. The regression parameters have a Normal(0, 1) prior, the magnitude
γ + κ has a Gamma(0.5, 20) prior, and the ratio γ

γ+κ has a Beta(10, 1) prior. Lastly, the
group parameters φk have Dirichlet(ρ) priors, where ρ is a vector of ones of length R.
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Figure 4: The β regression parameters used to generate the email traffic. The model is able
to learn the correct values of β and locations of changepoints.

The latent group variables zt,n are initialized uniformly at random between the two
groups. After collecting 2100 samples, the first 100 are discarded as burnin, and every
tenth sample after that is kept (for a total of 200 kept samples).

Figures 3 and 4 show the learned parameters, alongside the true parameters. The cross-
hatched bars in Figure 3 show the learned groups. Membership probabilities are recovered
using the set of latent z variables from the sample that produced the largest log-likelihood
(maximum a posteriori (MAP) estimate). The top-right plot in Figure 4 shows the average
β regression parameters across the 200 samples, with dashed lines showing one standard
deviation. The model is able to learn the correct values of the regression parameters, even
when the email rates are relatively small for both groups. The model also learned the
correct α parameters (results not shown). The bottom-left plot in Figure 4 shows the
posterior probability of changepoints for the two groups. The posterior probability of a
changepoint on day t for group k is the fraction of samples where sk,t 6= sk,t+1.

The results in this section are intended to be illustrative and demonstrate that the
learning algorithm for the model is behaving as expected—the primary interest of course is
what happens when we use the model on real data, which we discuss in the next section.

6. Exploratory Analysis on Email Data

In this section we analyze data from the email accounts of the authors of this paper. For
each author’s email account, a script downloaded and parsed all the emails sent by that
author. Email addresses of the recipients were then converted to anonymous user ids. For
all of the email data sets we filtered out recipients that receive less than 10 emails.

For each data set, we learn the parameters of the model using K = 50 groups. We exper-
imented with values of K ranging from 10 to 100 and generally found that K in the range
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Figure 5: Exploratory analysis from fitting the model to real-world email data. Each column
corresponds to the email history of a specific individual. First row: Observed
weekly email volume. Second row: greater than average β values for each of
the K = 50 learned groups. Third row: Number of emails per week assigned to
two chosen groups, highlighted throughout as blue and orange. Fourth row: The
learned parameters β for the chosen groups. See text for details.

of 20 to 50 produced interpretable results on real-world data sets. An obvious extension to
the model would be to learn K, e.g., using Bayesian non-parameteric techniques. We use
the same initialization of model parameters and configurations of the hyperparameters as
the synthetic data in the previous section. The sampler does not discard any samples for
burnin and every 200th sample is kept until 500 samples are collected (a total of 100,000
samples are produced).

Figure 5 shows the learned parameters of the model for different email users. The top
row of plots consist of the number of emails sent each week by each user. The second row
shows the time intervals for which there was significant activity between the user and each
group, where activity is represented as horizontal bars along the x-axis. These intervals
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were determined by thresholding the value of the β regression parameters for each group.
The third row of plots show the number of emails the user had sent to two particular groups
over time. The last row shows the learned β regression parameters for these two groups,
again across time, using the same methodology we used for the simulated data. The three
columns correspond to three different users. The first and second columns correspond to
the email accounts of two of the authors of this paper and the third column is one of the
most active users from the Enron corpus (Klimt and Yang, 2004).

The left column of Figure 5 shows the learned parameters of the model for one of the
authors of this paper. There is clearly a major changepoint in this user’s behavior, around
the middle of 2009, when the user transitioned between institutions. This large-scale change
shows that, for this user, old connections faded and new connections were formed when
moving from one location to another. The bottom two figures in the first column show
email activity between this user and two learned groups, one from each university. All of
the emails in the blue group were directed to people who held administrative positions at
the pre-2009 institution. The emails in the orange group are sent to members in a specific
research project, with spikes in activity corresponding to different deadlines.

The center column of Figure 5 shows what the model learns for a different author of
this paper—this author sends considerably more emails than the user in the first column.
Email activity is low for the first year as the user was experimenting with new email client
software, followed by a sudden change and increase in activity as the user switched all email
activity to the new client. The second row shows a gradual accumulation of groups over
time (more horizontal bars start to appear), with groups that the author communicates
with on a regular basis as well as groups that are only active for specific intervals of time.

The bottom two plots of this column show the traffic and estimated β parameters for
two specific learned groups. The blue group corresponds to a project where the author is a
principal investigator for a large proposal and the recipients are 6 other faculty members at
a number of different institutions. There is increasing activity in mid-2007 due to proposal
preparation, then a spike at the proposal deadline itself in late 2007, followed by a quiet pe-
riod until early 2008 when the project was funded. The group activity is then characterized
by relatively low levels of activity for the next few years as the project proceeded, punc-
tuated by spikes of more intense activity once or twice a year around the times of project
review meetings. The activity of the orange group ramps up in mid 2010 as the author took
on organizational duties for a relatively large conference, followed by roughly 15 months
of relatively high activity until the actual conference in summer 2011. The multinomial
distribution for this group focused over 95% of the probability mass on about 15 recipients,
all of whom were involved in program organization for the conference.

The third column in Figure 5 illustrates results for an active user from the Enron
corpus. This user’s email activity ramped up in early 2001 and there appears to have
been a significant change in recipient groups around the same time—several of the groups
(horizontal bars) in the second row end and several new ones begin.

We found similar interesting patterns for the other author of the paper and for other
Enron users. As with other latent variable models such as LDA, while most groups were
focused on a small subset of the recipients and were active during specific intervals of time,
not all of the learned groups were completely intuitive or interpretable. For example, a few
“singleton” groups were learned for some users, consisting of just a few emails sent to a

328



Statistical Models for Exploring Individual Email Communication Behavior

single person. This is probably a result of the number of groups being too high for this user
and in effect the model is overfitting.

7. Experiments on Predictive Performance

In this section we measure the predictive performance of our model when recipients are
removed uniformly at random from emails in the training data. As an example, suppose
an email was sent to recipients A,B,C and we remove C in the training data. We then
test the model by computing the conditional probability of C as a recipient given that
A and B were observed. Let yobs

t,n be the observed recipients for email n on day t, and

ymiss
t,n be the missing recipients, such that yt,n = yobs

t,n + ymiss
t,n (these are binary vectors). If

all original recipients of an email are removed, that email is removed completely from the
observed data set (decreasing the value of Nt for that day). The model is then trained on
the remaining data, ignoring the missing recipients2. The predictive performance of the
model (and baselines) on missing data is evaluated using the test log-likelihood:

LLtest =
T∑

t=1

Nt∑

n=1

log

(
K∑

k=1

P (zt,n = k|λ, φ, yobs
t,n )P (ymiss

t,n |φk, yobs
t,n )

)

=
T∑

t=1

Nt∑

n=1

log

(
K∑

k=1

[
P (zt,n = k|λ, φ)P (yobs

t,n |φk)∑K
k′=1 P (zt,n = k′|λ, φ)P (yobs

t,n |φk′)

]
P (ymiss

t,n |φk)
)

In our experiments below we generated 10 training and test data sets in this manner,
randomly putting 20% of recipients in the test set each time, and computing the average
log-likelihood across the 10 test sets. For each training data set, the parameters of our
model were learned by collecting 750 MCMC samples. The first 250 were discarded for
burn-in, and every fifth sample was kept after that, leaving a total of 100 samples. The φk
above were estimated from the latent group variables {zt,n} in the sample that produced
the largest log-likelihood (MAP estimate), and the group rates {λk,t} were estimated by
taking the average value across the 100 samples. For each data set, the model was trained
to learn K = 50 groups (for synthetic data, K = 2).

We compare below the predictive power of our model with 4 baseline approaches. Uni-
form is a uniform distribution over all possible recipients. Single multinomial corresponds
to a maximum likelihood of a multinomial model over possible recipients. The sliding
window/no groups model is similar to the single multinomial model, except that the multi-
nomial is based on local time-windows, allowing the multinomial to adapt to changes over
time in recipient likelihood. We evaluated different sized windows up to 2 months and
used the one that gave the best results in the data reported here. The single segment with
groups model learns K = 50 groups in the same way as our proposed model, but is re-
stricted to only have a single time segment, i.e., no time variation in the relative rates of
groups. This baseline can be viewed as a probabilistic clustering of the recipients. For the
first 3 baselines, only one group exists; the test log-likelihood of these baselines reduce to
LLtest =

∑T
t=1

∑Nt
n=1 logP (ymiss

t,n |φ).

2. One could also explicitly model the missing data by averaging over the missing information during
MCMC sampling—however this would require a much more complex sampling algorithm so we opted
for the simpler approach of ignoring missing data during training.
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Figure 6: Predictive results from a missing data task for different users.

Figure 6 shows the results for the 4 baselines, relative to our model, across 5 different
users. The y-axis is the average test log-likelihood of our model minus the average test log-
likelihood of one of the baselines, averaged over 10 different randomly selected missing data
sets, where larger positive differences mean that the model outperformed the baseline. Each
log-likelihood score was normalized by dividing by the total number of missing recipients for
which predictions were made for that user. Users A, B, and C correspond to several years of
email data from each of the three authors of this paper, the fourth user is the same Enron
user described in Figure 5, and the last user uses the synthetic data set described in Section
5. This plot shows results obtained with 20% of recipients missing at random—almost
identical results were obtained with other fractions of missing data (not shown).

The results in Figure 6 for User A and the synthetic user show a clear ordering in terms
of the performance of different approaches, with our proposed model being systematically
more accurate in predictions than all of the baselines across all 4 data sets. The poor
performance of the uniform and multinomial approaches indicate that group information is
particularly important, e.g., there can be multiple “active” groups on any given day—this is
apparent for the synthetic data in Figures 3 and 4, where we can see significant group overlap
both in terms of membership and time. In contrast, Figure 6 shows that the sliding window
model is competitive with our proposed model for the other users, indicating that group
overlap is not a significant factor in modeling these users. These predictive experiments
illustrate that the model can capture useful information from the data, both in terms of
temporal variation and group structure, to different degrees for different users.

8. Discussion and Conclusion

While the model proposed in this paper is a useful starting point for modeling data such as
email histories, there are a wide variety of potential extensions and generalizations that are
worth exploring. For example, the Poisson regression framework we employ is quite flexible,
and one could use it to incorporate other exogenous covariates as well as detecting global
segment boundaries that affect all groups and not just a single group. Furthermore, the
real data often exhibits intermittent bursts of activity “embedded” within longer sequences
of lower-level activity, suggesting that a model allowing temporal bursts (as in Kleinberg,
2003), superposed on the segments, may be a useful avenue for further exploration. There
are also numerous opportunities to extend the modeling of groups. For example, in the
present work we fix the number of groups, K, but one could include a second non-parametric
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component to the group component of the model by allowing each email the opportunity to
be sent to a newly created group of recipients. It would also be natural to allow groups to
be related and dependent (e.g., via hierarchies) as well as to allow the group membership
probabilities to change over time, e.g., as new people join a project and others leave.

In conclusion, we have presented a statistical model for exploring and analyzing egocen-
tric email networks over time. This model can find interpretable groups of individuals by
leveraging both co-occurrence in individual emails as well as co-appearance during similar
times of activity. We illustrated the exploratory aspects of our approach by fitting the model
to data from multiple real email accounts and interpreting the composition of the learned
groups and the parameters governing their prevalence over time. In addition, predictive
experiments indicated that the model yields improved predictive accuracy over a variety of
baselines. While the model in the paper was described in context of sending emails, it can
be readily applied to broader types of multi-recipient directed communication data.
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