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Abstract

We introduce a novel discrete optimization method for training in the context of a boosting
framework for large scale binary classifiers. The motivation is to cast the training problem
into the format required by existing adiabatic quantum hardware. First we provide theo-
retical arguments concerning the transformation of an originally continuous optimization
problem into one with discrete variables of low bit depth. Next we propose QBoost as an
iterative training algorithm in which a subset of weak classifiers is selected by solving a hard
optimization problem in each iteration. A strong classifier is incrementally constructed by
concatenating the subsets of weak classifiers. We supplement the findings with experiments
on one synthetic and two natural data sets and compare against the performance of existing
boosting algorithms. Finally, by conducting a quantum Monte Carlo simulation we gather
evidence that adiabatic quantum optimization is able to handle the discrete optimization
problems generated by QBoost.

Keywords: adiabatic quantum computing, discrete optimization, machine learning, su-
pervised learning, boosting

1. Introduction

We perform binary classifier training using discrete optimization in a formulation adapted
to take advantage of emerging hardware that performs adiabatic quantum optimization
(AQO). AQO, first introduced by Farhi et al. (2000, 2001), is a quantum computing
model with good prospects for scalable and practically useful hardware implementations.
Aharonov et al. (2004) showed it to be polynomially equivalent to the gate model of quantum
computation. Theoretical and numeric studies of the purported computational superiority
of AQO over classical computing have repeatedly given encouraging results, e.g. Santoro
et al. (2002); Farhi et al. (2009); Amin and Choi (2009); Dickson and Amin (2011).

Significant investments are underway by the Canadian company D-Wave Systems to
develop a hardware implementation. A series of rigorous studies of the quantum mechanical
properties of the D-Wave processors, culminating in a recent Nature publication (Johnson
et al., 2011), have increased the excitement in the quantum computing community for
this approach. This was further fueled by news of Lockheed Martin purchasing a D-Wave
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machine. Most recently, benchmarking tests performed by D-Wave on their current chips
(Rose, 2011) have indicated that they are indeed capable of providing dramatic speedups
with respect to the best known classical algorithms for certain NP-hard problems.

For machine learning purposes, D-Wave’s implementation of AQO can be regarded as
a discrete optimization engine that accepts any problems formulated as quadratic uncon-
strained binary optimization (QUBO), also equivalent to the Ising model and Weighted
MAX-2-SAT. It should be noted that the training formulation we propose here is a good
format for AQO independently of D-Wave’s efforts since it can be physically realized as the
simplest possible multi-qubit configuration—an Ising system (Brush, 1967).

2. The Learning Task

We study binary classifiers of the form y = sign
(
wwwTxxx+ b

)
, where xxx ∈ RN is a general input

pattern1 to be classified, y ∈ {−1, 1} is the label associated with xxx, www ∈ RN is a vector
of weights to be optimized, and b ∈ R is the bias. Training, also known as regularized
risk minimization, consists of choosing www and b by simultaneously minimizing two terms:
empirical risk R(www, b) =

∑S
s=1 L (m (xxxs, ys,www, b)) /S and regularization Ω(www).

R, via a loss function L, estimates the error that any candidate classifier causes over
a set of S training examples {(xxxs, ys)|s = 1, . . . , S}. The argument of L is known as
the margin of example s with respect to the decision hyperplane defined by www and b:
m (xxxs, ys,www, b) = ys

(
wwwTxxxs + b

)
.

Ω controls the complexity of the classifier and is necessary for good generalization be-
cause classifiers with high complexity display overfitting—they can classify the training set
with low error but may not do well on previously unseen data. Training amounts to solving

(www, b)∗ = arg min
www,b
{R (www, b) + Ω (www)} . (1)

The most natural choice for L is 0-1 loss, which simply counts misclassifications:

L0-1(m) = (1− sign (m)) /2 (2)

The optimization problem (1) with L0-1 is NP-hard due to non-convexity (Feldman et al.,
2010). Also, because L0-1 does not enforce a margin, the generalization of classifiers trained
with it is bad even when regularization is applied (Vapnik, 1998). In order to avoid dealing
with NP-hard optimization problems and to build large-margin classifiers, in practice L0-1 is
replaced by some convex upper bound (e.g. square, logistic, exponential, hinge). This allows
arriving at convex optimization problems that can be rigorously analyzed and efficiently
solved by classical means. An example of a convex upper bound to L0-1 is square loss:

Lsquare(m) = (m− 1)2 (3)

The natural choice for Ω is `0-norm penalization of www because that explicitly drives
weights towards exact zero. This is not only associated with good generalization but also
fast execution during the performance phase. However, `0-norm regularization leads to
non-convex optimization problems. Again, to avoid computational hardness, `0-norm is

1. Any feature vector consisting of raw data, extracted features, kernel or weak classifiers outputs, etc.
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frequently replaced by convex alternatives such as the `2- or `1-norm. Regularization based
on `2-norm has the nicest mathematical form in the sense that the resulting optimization
problems are convex and differentiable. However, when continuous weight variables are used
in training, `2-norm regularization only decreases the magnitude of weights but does not
produce exact zeros. The reason for this effect is that in the optimization problem `2-norm
regularization results in vanishing gradient magnitudes in the direction of zero weights. The
alternative, `1-norm, under certain conditions may succeed at enforcing sparsity but leads
to more complicated convex optimization problems due to non-differentiability.

3. Low-Precision Discrete Variables

The D-Wave quantum optimization processor that we aim to deploy for training requires
problems to be discrete and formulated as QUBO. Further, the current hardware generation—
Vesuvius (Rose, 2011)—can handle a maximum of 512 binary variables, which imposes the
additional requirement of being frugal with the bit-depth of weight variables.

3.1. The Discrete Optimization Problem

We discretize the elements of www to some low bit-depth dw < 64. While this approach is
somewhat unconventional, in Subsection 3.2 we argue that the weights do not need high
precision. In fact we show a favorable condition dw ≥ log(S/N) in the case of binary features
such as the weak classifiers typically used in boosting. Even though analyzing classifiers
constructed out of more general sets of features appears to be more difficult, experiments
provide support for using low-precision weights. Finally, we also discretize the bias b with
some low bit-depth db < 64

Given the options for loss function and regularization discussed in Section 2, here we
study regularized risk minimization with Lsquare and `0-norm regularization over discrete
variables ẇww and ḃ of bit depth dw and db respectively. This leads to a QUBO-compatible
baseline optimization problem:

(ẇww, ḃ)∗ = arg min
ẇww,ḃ

{
1

S

S∑
s=1

Lsquare

(
ys(ẇww

Txxxs + ḃ)
)

+ λ‖ẇww‖0

}
, (4)

where λ ∈ R>0 controls the relative importance of regularization. The full QUBO derivation
for a similar learning formulation is illustrated in Appendix A of Denchev et al. (2012).

3.2. Bit-Depth of Weight Variables

It is evident from (2) that L0-1 enforces an inequality constraint per training example:

ys
(
wwwTxxxs + b

)
≥ 0 for s = 1, . . . , S (5)

Each training example brings about an inequality, which demands to choose weights that
are on one side of a diagonal hyperplane in N -dimensional space. If we restrict each xxxs ∈
{−1, 1}N , the hyperplane corresponding to example s is defined by a set of ±1 coefficients
depending on xxxs. Fig. 1 illustrates the situation for N = 3. The number of regions created
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Figure 1: Arrangement of the diagonal hyperplanes that define the solution spaces for se-
lecting www∗. Depicted is the situation for N = 3, which yields 14 regions. The
number of solution regions grows rapidly: N = 4 leads to 104 and N = 5 to 1882
regions. Here all possible hyperplanes are shown. However, in practice S training
examples invoke only a small subset of the 2N−1 possible hyperplanes. The blue
dots are the vertices of a cube placed in the positive quadrant with one vertex
coinciding with the origin. They correspond to weight configurations that can be
represented with one bit. Multi-bit weights give rise to a cube-shaped lattice.

by S hyperplanes is calculated using their characteristic polynomial (Orlik and Terao, 1992):

Nregions = (−1)N
∑
Sk

(−1)k(−1)dim(
⋂
Sk) , (6)

where Sk designates the k-element subsets of the S hyperplanes and dim(
⋂
Sk) is the

dimension of the intersection of Sk.
2 Due to linear dependencies among the hyperplanes,

which occur for N ≥ 4, we are not able to find a closed form expression for dim(
⋂
Sk) and

instead have to resort to an upper bound for Nregions (Orlik and Terao, 1992; Sauer, 1972):

Nregions ≤
N∑
k=0

(
S

k

)
(7)

2. In this calculation we ignored the fact that a hyperplane or parts of it can become a solution space itself.
This can occur when there are two training examples s′ and s′′ for which xxxs′ and xxxs′′ differ by a global
sign but have the same label ys′ = ys′′ . Since this case is exceedingly unlikely, the probability being
O(S/2(2N)), we can afford not to consider this situation.
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It is possible that multiple training examples generate identical inequality constraints for
www. So, (7) is a conservative estimate as the actual number of solution spaces is often lower.

Discrete weight configurations with a finite bit-depth dw lie on an N -dimensional hy-
percubic lattice with edges that have 2dw vertices. This gives a total of 2dwN vertices on
the lattice. If each solution region contains a lattice vertex then all classifiers that can be
attained with real-valued weights can also be realized by the discrete weight configurations.
Thus, one obtains the necessary bit-depth by demanding that the number of vertices on
the lattice is at least as large as Nregions, the number of solution regions created by the
hyperplanes:

Vertices on Lattice

Regions in Positive Quadrant
≈ (2dw)N

Nregions
≥ 2dwN∑N

k=0

(
S
k

) ≥ 2dwN

( eSN )N
=

2dwNNN

(eS)N
!
≥1

⇒
(

2dwN

eS

)N
=

(
2dwN

efN

)N
=

(
2dw

ef

)N
!
≥1

⇒ dw ≥ log2(f) + log2(e) ,

(8)

where e is the Euler number and f = S/N . In (8) we used a standard result regarding
binomial coefficients:

∑N
k=0

(
S
k

)
≤ ( eSN )N . This holds in the case of S ≥ N . Smaller

numbers of training examples lead to even better bounds than (8). This is an important
result as it shows that the required bit depth for weight variables only grows logarithmically
with the ratio of the number of training examples to the number of features. Thus for many
problems that arise in practice we can get away with very few bits, and often only a single
bit may suffice.

4. Comparison to AdaBoost

In the case of a finite dictionary of weak classifiers {hi(xxx)|i = 1, . . . , N}, AdaBoost can be
seen as a greedy minimization of the exponential loss (Zhang, 2008):

ααα∗ = arg min
ααα

(
S∑
s=1

exp

(
−ys

N∑
i=1

αihi(xs)

)
/S

)
, (9)

with αi ∈ R>0. There are two differences between the baseline objective (4) and the one
employed by AdaBoost. The first is that we use `0-norm regularization. Second, we employ
square loss, while AdaBoost works with the exponential loss.

It can be shown that including `0-norm regularization in the objective (4) leads to
improved generalization as compared to using square loss only. An upper bound for the
Vapnik-Chervonenkis dimension of a strong classifier of the form H(xxx) =

∑T
t=1 αtht(xxx) is

V CH = 2(V C{ht} + 1)(T + 1) log2(e(T + 1)) , (10)

where V C{ht} is the VC dimension of the weak classifiers (Freund and Shapire, 1995)—a
complexity measure of the class of functions the dictionary can represent. Then the strong
classifier’s generalization error has the upper bound (Vapnik and Chervonenkis, 1971):

Errortest ≤ Errortrain +

√
V CH ln( 2S

V CH
+ 1) + ln(9

δ )

S
. (11)
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A CB 

T=10 T=20 T=640

Figure 2: AdaBoost applied to a simple classification task. A shows the data, a sepa-
rable case consisting of a two-dimensional cluster of positive examples (blue)
surrounded by negative ones (red). B shows the random division into training
(saturated colors) and test data (light colors). The dictionary of weak classifiers
is constructed out of axis-parallel one-dimensional hyperplanes. C shows the op-
timal classifier for this situation, which employs four weak classifiers to partition
the input space into positive and negative areas. The lower row shows partitions
generated by AdaBoost after 10, 20, and 640 iterations. The configuration at
T = 640 is the asymptotic one, which does not change anymore in subsequent
iterations. The breakout regions outside the bounding box of the positive cluster
occur in areas in which the training set does not contain negative examples. This
problem becomes more severe for higher-dimensional data.

Apparently a more compact strong classifier that achieves a given Errortrain with a
smaller number T of weak classifiers—hence, with a smaller V CH—comes with a guarantee
for lower generalization error. Looking at the optimization problem (4), one can see that if
the regularization parameter λ is chosen weak enough, i.e. λ < 2

N + 1
N2 , then the effect of

regularization is merely to thin out the strong classifier without sacrificing training accuracy.
One arrives at the condition for λ by demanding that the reduction of the regularization term
∆Ω(ẇww) that can be obtained by switching a ẇi to zero is smaller than the smallest associated
increase in empirical risk ∆R(ẇww) that comes from incorrectly classifying a training example.
This condition guarantees that weak classifiers are not eliminated at the expense of a higher
training error. Therefore regularization keeps only a minimal set of components—those
which are needed to achieve the minimal training error that can be obtained when using
the loss term only. In this regime the VC bound of the resulting strong classifier is lower
than or equal to the VC bound of a classifier trained without regularization.

AdaBoost does not explicitly enforce sparsity, so the classifier may use a richer set of
weak classifiers than needed for the minimal training error, which in turn leads to degraded
generalization. Fig. 2 illustrates this fact for hand-crafted data with simple structure. Due
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to AdaBoost’s greedy approach, the optimal configuration for this data is not found despite
the fact that the weak classifiers necessary to construct the ideal classifier are generated.

In practice we do not operate in the weak λ regime but rather determine the regulariza-
tion strength by cross-validation. We measure the performance of the classifier for different
values of λ on a validation set and then choose the one with minimal validation error. In
this regime the optimization may perform a trade-off and accept some higher empirical loss
if the classifier can be kept more compact. In other words, it may choose to misclassify
training examples if the classifier can be kept simpler. This leads to increased robustness in
the case of noisy data, and indeed we observe the most significant gains over AdaBoost for
noisy data sets when the Bayes error is high. The fact that boosting in its standard formu-
lation with convex loss and no explicit regularization is not robust against label noise has
drawn attention recently (Long and Servedio, 2010; Freund, 2009). We also experimented
with a version of AdaBoost with explicit `1 regularization (Duchi and Singer, 2009), but
that did not perform better than plain AdaBoost on our data.

The second difference to the baseline objective, namely that it employs quadratic loss
while AdaBoost works with exponential loss, is of smaller importance. In fact, the dis-
cussion above about the role of regularization does not change if we replace square loss
by exponential loss. The literature agrees that the use of exponential loss in AdaBoost is
not essential and that other loss functions could yield classifiers with similar performance
(Friedman et al., 1998; Wyner, 2002). From a statistical perspective, square loss is satisfac-
tory since a classifier that minimizes it is Bayes consistent, i.e. with increasing numbers of
training examples it asymptotically approaches the Bayes-optimal classifier (Zhang, 2008).

5. Large Scale Classifiers by QBoost

The disadvantage of the baseline (4) is that it assumes a small enough fixed dictionary of
weak classifiers, so that all weight variables can be considered in a single AQO run. This
approach needs to be modified if the goal is to train a large-scale classifier. Large scale here
means that either the dictionary contains more weak classifiers than what can be considered
in a single AQO run, or the final strong classifier consists of a number of weak classifiers
that exceeds the number of variables that can be handled at once. Typical problem sizes
usually satisfy both conditions. The state-of-the-art commercial solver CPLEX operates in
heuristic mode for the problems we study (mixed integer quadratic programs) and can solve
problems in reasonable time for up to 103 variables. Existing quantum hardware currently
can handle 512-variable problems. In order to train a strong classifier we often sift through
millions of features. Moreover, dictionaries of weak learners are often dependent on various
continuous parameters, which makes their cardinality effectively infinite. We estimate that
typical classifiers employed in vision-based products today use thousands of weak learners.
Therefore, it is not possible to determine all weights in a single AQO run, but rather it is
necessary to break the problem into smaller chunks.

Let T denote the size of the final strong classifier and Q the number of variables that
a single optimization run can handle. Q is determined by the number of available qubits,
or if classical solvers such as CPLEX or Tabu search (Palubeckis, 2004) are employed,
then Q denotes the maximum problem size for which optimal solutions can be obtained in
reasonable time. QBoost Algorithms 1 and 2 consider two cases: T ≤ Q and T > Q.
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Algorithm 1 T ≤ Q (QBoost Inner Loop)

Require: Training and validation data {xxxs}, dictionary of weak classifiers {hi(xxx)}, regu-
larization parameters λmin, λstep, and λmax

Ensure: Strong classifier Hẇww∗(xxx)

1: Initialize: ∀s, dinner(s) = 1
S ; Tinner = 0; empty strong classifier Hẇww∗(xxx); storage for a pool of Q

candidate weak learners {hq}
2: repeat
3: Optimize the members of the dictionary {hi} according to the current dinner
4: From {hi} select the Q − Tinner weak classifiers that have the smallest training error rates

weighted by dinner and add them to the pool {hq}
5: for λ = λmin : λstep : λmax do

6: Optimize ẇww∗ = arg minẇww

{∑S
s=1

(
ys
∑Q

q=1 ẇqhq(xxxs)− 1
)2

+ λ‖ẇww‖0
}

7: Set Tinner = ‖ẇww∗‖0
8: Construct strong classifier Hẇww∗(xxx) = sign

(∑Q
q=1 ẇ

∗
qhq(xxx)

)
9: Measure validation error Errorval of Hẇww∗(xxx) on unweighted validation set

10: end for
11: Save ẇww∗, Tinner, Hẇww∗(xxx) and Errorval from the optimization run that has yielded the lowest

validation error so far

12: Update dinner(s) = dinner(s)
(
ys
∑Q

q=1 ẇ
∗
qhq(xxxs)− 1

)2
13: Normalize dinner(s) = dinner(s)∑S

s=1 dinner(s)

14: Delete from the pool {hq} the Q− Tinner weak learners for which ẇ∗
q = 0

15: until validation error Errorval stops decreasing

Algorithm 2 T > Q (QBoost Outer Loop)

Require: Training and validation data {xxxs}, dictionary of weak classifiers {hi(xxx)}, regu-
larization parameters λmin, λstep, and λmax

Ensure: Strong classifier Hẇww∗outer(xxx)

1: Initialize: ∀s, douter(s) = 1
S ; Touter = 0; empty strong classifier Hẇww∗outer

(xxx); storage for selected
weak learners {ht}

2: repeat
3: Run Algorithm 1 with {xxxs}, {hi(xxx)}, λmin, λstep, λmax, initializing dinner from douter, and

using an objective function that takes into account current Hẇww∗outer
(xxx):

ẇww∗ = arg minẇww

{∑S
s=1

(
ys

(∑Touter

t=1 ẇ∗
outer,tht(xxxs) +

∑Q
q=1 ẇqhq(xxxs)

)
− 1
)2

+ λ‖ẇww‖0
}

4: Hẇww∗outer
(xxx) = sign

(∑Touter

t=1 ẇ∗
outer,tht(xxx) +

∑Q
q=1 ẇ

∗
qhq(xxx)

)
5: Set ẇww∗

outer = [ẇww∗
outer, ẇww

∗]
6: Set {ht} = {{ht}, {hq}}
7: Set Touter = Touter + Tinner

8: Update douter(s) = douter(s)
(
ys
∑Touter

t=1 ẇ∗
outer,tht(xxx)− 1

)2
9: Normalize douter(s) = douter(s)∑S

s=1 douter(s)

10: until validation error Errorval stops decreasing
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A way to think about Algorithm 1 is to see it as an enrichment process. In the first
iteration the algorithm selects those Tinner weak classifiers out of subset of Q that produce
the optimal validation error. The subset of Q weak classifiers is preselected from a dictionary
with cardinality possibly much larger than Q. In the next step the algorithm fills the
remaining Q− Tinner empty slots in the solver with the best weak classifiers drawn from a
modified dictionary that was adapted by taking into account for which examples the strong
classifier constructed in the first iteration is already good and where it still makes errors.
This is the boosting idea (Freund and Schapire, 1999). Under the assumption that the
solver always finds the global minimum, it is guaranteed that for a given λ the solutions
found in the subsequent round have lower or equal objective value, i.e. they achieve lower
empirical risk, represent a more compact strong classifier, or stay the same. The fact that
the algorithm considers groups of Q weak classifiers simultaneously (instead of augmenting
the strong classifier by one) and then tries to find a subset that produces low empirical
risk, allows it to find good configurations more efficiently. If the validation error cannot
be decreased any further using the inner loop, one may conclude that more weak classifiers
are needed for constructing the strong one. In this case QBoost Algorithm 2 “freezes” the
classifier obtained so far and adds another partial classifier trained by the inner loop.

6. Experimental Results

In this section we present experimental results from training with QBoost on three different
data sets. The first two can be considered toy problems of limited practical importance,
so we train classifiers for them by a classical heuristic algorithm serving as a stand-in for
quantum hardware. The third data set represents a truly difficult large-scale practical
problem, and for it we use an actual quantum chip consisting of 52 operational qubits.

6.1. Optimization by Classical Heuristic

We assess the performance of classifiers trained by QBoost Algorithm 2 on synthetic and
natural data sets. The synthetic data was sampled in 30 dimensions from
P (xxx, y) = 1

2δ(y − 1)N(xxx|µµµ+, III) + 1
2δ(y + 1)N(xxx|µµµ−, III/2), where N(xxx|µµµ,ΣΣΣ) is a spherical

Gaussian having mean µµµ and covariance ΣΣΣ. This data captures generic characteristics of
classification problems via the usage of an overlap coefficient that determines the separation
of the two Gaussians. The natural data consists of 30-dimensional vectors of Gabor wavelet
amplitudes extracted at eye locations in images showing faces. The data sets consist of
2 · 104 input vectors, which we divide evenly into training, validation, and test sets. We use
Tabu search as a classical heuristic stand-in for quantum hardware, discretize the weight
variables with dw = 1, and employ a dictionary of decision stumps:

h1
l,p(xxx) = sign ((−1)pxl −Θp,l) for l = 1 : M ; p ∈ {0, 1}
h2
l,p(xxx) = sign ((−1)pxixj −Θp,i,j) for l = 1 : M(M − 1)/2; i, j = 1 : M ; i < j; p ∈ {0, 1}

Here M is the dimensionality of the input vector xxx; xl, xi, xj are elements of xxx; and Θp,l,
Θp,i,j are optimal thresholds. For the 30-dimensional input data the dictionary employs 930
weak classifiers, and for the 96-dimensional data it consists of 9312 weak learners.
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Figure 3: Test errors for the synthetic data set. We ran the outer loop algorithm for three
different values of Q: 64, 128, 256. The plots show means over 100 runs and the
error bars indicate the corresponding standard deviations. All three versions out-
perform AdaBoost. The gain increases as the classification problem gets harder
i.e. as the overlap between the two Gaussians increases. “Overlap Coefficient” =
1 means that µµµ+ = µµµ−, and the Bayes error rate for this case is ≈ 0.05. One can
also see that there is a benefit to being able to run larger optimizations since the
error rate decreases with increasing Q. For comparison we also included results
for a classifier trained on a fixed dictionary (QP 2) for which the training was
performed as per (4).

Table 1: Results obtained from the eye data. Similarly to the synthetic data, we compare
the outer loop algorithm for three different optimization sizes (Q = 64, 128, 256) to
AdaBoost. The means and standard deviations are obtained from 103 runs. Here
QBoost leads to only sightly lower test errors but obtains those with a significantly
reduced number of weak classifiers. Also, the number of iterations needed in
training is more than 4 times lower than what is required by AdaBoost.

AdaBoost
QBoost Outer Loop

Q = 64 Q = 128 Q = 256

Test error 0.258± 0.006 0.254± 0.010 0.249± 0.010 0.246± 0.009
Weak classifiers 257.8± 332.1 116.8± 139.0 206.1± 241.8 356.3± 420.3
Reweightings 658.9± 209.3 130.8± 65.3 145.6± 65.5 159.8± 63.7
Training error 0.038± 0.054 0.185± 0.039 0.170± 0.039 0.158± 0.040
Outer loops 11.9± 5.0 12.2± 4.6 12.6± 4.4
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Test results for the synthetic data are shown in Fig. 3, and Table 1 displays results
obtained from the natural data. We use a validation set to determine the optimal size T of
the strong classifier generated by AdaBoost.

6.2. Optimization by Quantum Hardware

In this experiment we applied QBoost to the training of a detector for cars in digital images
and employed an early-generation D-Wave chip (Rainier) to solve optimization problems of
size Q = 52 by AQO. The training and test sets consist of 2·104 images with roughly half the
images in each set containing cars in side-view positions and the other half containing city
streets and buildings without cars. The images containing cars are human-labeled ground
truth data with tight bounding boxes drawn around each car. The actual data seen by the
training system is obtained by randomly sampling subregions of the input training and test
data to obtain about 105 patches.

Starting from a highly tuned training system implementing cascaded confidence-rated
boosting (Schapire and Singer, 1998; Viola and Jones, 2004), we replaced its feature-selection
routine by QBoost. For each stage the original system calls the feature-selection routine,
requesting a fixed number T of features for that stage. The numbers of features for different
stages are determined by experience and typically involve smaller numbers for earlier stages
and larger numbers for later stages in order to achieve the optimal tradeoff between accuracy
and processing time during evaluation of the final detector. The guiding principle is to
reduce the false positives by 50% at each stage of the cascade.

Consequently, for each stage of the cascade QBoost is invoked with a request for selecting
T weak classifiers out of the several million weak classifiers that compose the dictionary for
this problem. We keep the optimization size Q fixed at 52, which is the maximum problem
size that the available quantum hardware could handle. Since T can be both smaller and
larger than 52, early stages utilize only Algorithm 1, while later stages invoke Algorithm 2.

We found that training using the quantum hardware led to a classifier that produces
useful classification accuracy. But more importantly, as shown in Fig. 4, the accuracy
obtained by the hardware solver is better than the accuracy of the classifier trained with
Tabu search. However, the classifier obtained with the hardware solver—even though it
is sparser by about 10%—has a false negative rate approximately 10% higher than the
boosting framework we employed as a point of departure. A possible reason for that is the
extremely small Q relative to the number of weak learners as here we do selection from a
dictionary consisting of several million weak classifiers. Future training runs with larger
hardware are expected to produce drastically better results.

7. Scaling Analysis via Quantum Monte Carlo Simulation

We used the quantum Monte Carlo (QMC) simulator of Farhi et al. (2009) to estimate the
time complexity of AQO on the optimization problems that QBoost generates. According
to the adiabatic theorem (Messiah, 1999), the ground state of the problem Hamiltonian
HP is found with high probability by AQO, provided that the evolution time T from the
initial Hamiltonian HB to HP is Ω(g−2

min), where gmin is the minimum gap. Here HB =∑N
i=1(1− σxi )/2, where σx is a Pauli matrix. The minimum gap is the smallest energy gap

between the ground state E0 and first excited state E1 of the time-dependent Hamiltonian
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Figure 4: Error rates and sparsity levels for Tabu search as compared to the quantum hard-
ware solver. The training consisted of 24 cascaded stages. Each stage is trained on
the false negatives of the previous stage as its positive examples complemented
with true negative examples unseen so far (Viola and Jones, 2004). The error
rates of the hardware solver are superior to the ones obtained by Tabu search
across all stages. The reported error rates are per pixel errors. The cumulative
number of weak classifiers employed at a certain stage does not suggest a clear
advantage for either method.

H(t) = (1− t/T )HB + (t/T )HP at any 0 ≤ t ≤ T . For notational convenience we also use
H̃(s) = (1 − s)HB + sHP with 0 ≤ s ≤ 1. More details can be found in the seminal work
Farhi et al. (2000).

To find the time complexity of AQO for a given objective function, one needs to estimate
the asymptotic scaling of the minimum gap as observed on a collection of average-case
instances of corresponding problems. As noted in Amin and Choi (2009), the task of
analytically extracting the minimum gap scaling has been extremely difficult in practice,
except for a few special cases. The only alternative is to resort to numerical methods, which
consist of diagonalization and QMC simulation. Unfortunately, diagonalization is currently
limited to about N = 30, and QMC to about N = 256, where N is the number of binary
variables (Young et al., 2010). Hence, the best that can be done with the currently available
tools is to compute the minimum gap via QMC simulations on small problem instances and
attempt to extrapolate the scaling of the time complexity for larger instances.

Using the QMC simulator of Farhi et al. (2009), we indirectly measured the minimum
gap by estimating the magnitude of the second derivative of the ground state energy with
respect to s, which is related to the minimum gap (Young et al., 2008). This quantity is an
upper bound on 2|V01|2/gmin, where V01 = 〈Ψ0| dH̃/ds |Ψ1〉 and Ψ0,Ψ1 are the eigenstates
corresponding to the ground and first excited states of H̃. However, the quantity we seek for
the time scaling of AQO is |V01|/g2

min. Nevertheless, assuming that the matrix element V01 is
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Figure 5: Left: The quantity |d2E0
ds2

s2(1 − s)2| determined by quantum Monte Carlo sim-
ulation as well as exact diagonalization for a training problem with 20 weight
variables. For small problem instances with less than 30 variables we can deter-
mine this quantity via exact diagonalization of the Hamiltonian H̃(s). As one
can see, the results obtained by diagonalization coincide very well with the ones
determined by QMC. The training objective is given by (4) using the synthetic
data set with an overlap coefficient of 0.95. Right: A plot of the peaks of the
mean of |d2E0

ds2
s2(1− s)2| against the number of qubits for values in [10, 100]. The

error bars indicate standard deviation. Each point of the plot represents 20 QMC
runs. The data is well fitted by a linear function. From the fact that the scaling
is at most polynomial in the problem size we can infer that the minimum gap
and hence the run time of AQO are scaling polynomially as well.

not extremely small, the scaling of the second derivative—polynomial or exponential—can
be used to infer if the time complexity of AQO is polynomial or exponential in N .

Fig. 5 shows our scaling analysis for the synthetic data set. The result is encouraging
as the maxima of |d2E0

ds2
s2(1 − s)2| seem to only scale linearly with the problem size. This

implies that the runtime of AQO on this data set is likely to scale at most polynomially.
It is not possible to judge how typical this data set and scaling behavior are. We know

from related experiments with known optimal solutions that Tabu search often fails to obtain
the optimal solution for training problems of sizes as small as 64 variables. Obviously,
scaling should depend on the input data. In fact, it is possible to take a hard problem
known to defeat AQO (Amin and Choi, 2009) and encode it as a training problem, which
would cause the scaling to become exponential. Nevertheless, the minimum gap between
ground and first excited state energies shrinking exponentially with increasing problem size
only implies that the system is unlikely to be found in its ground state at the end of the
adiabatic evolution if completed in polynomial time. But this does not say anything about
the quality of the resulting approximate solutions. Due to quantum tunneling, approximate
solutions found by AQO can still be significantly better than those found by classical solvers.
Further, results from approximability theory (Zuckerman, 2006) imply that obtaining such
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approximate solutions may still be NP-hard, i.e. finding a low-lying excited state of HP

may still be difficult for classical algorithms but not for AQO. Finally, alternative versions
of AQO—e.g. Farhi et al. (2009)—may be overcoming the known failure cases.

8. Conclusion

We presented AQO as a discrete optimization method for training binary classifiers. The
proposed algorithm, QBoost, enables handling training tasks of large sizes as they occur in
production systems today. QBoost offers gains over standard AdaBoost in three aspects:
i. lower generalization error; ii. faster classification (employing fewer weak classifiers); iii.
smaller computational effort for training (fewer boosting iterations).

In all experiments we find that the classifier constructed with discrete optimization
is significantly more compact. The gain in accuracy however is more varied. The good
performance of a large scale binary classifier trained using iterated discrete optimization in
a form amenable to AQO but solved with classical heuristics shows that it is possible to
map the training of a classifier to AQO with negative translation costs. Any improvements
by AQO to the solution of the training problem will directly increase the advantage of the
algorithm proposed here over conventional approaches. Access to emerging hardware that
realizes AQO is needed to establish the size of the gain over classical solvers. We already
completed the first such experiment with 52 operational qubits, but processors with larger
qubit numbers will be needed in order to see a more pronounced effect.

Further, we conclude that bit-constrained learning machines can be expected to ex-
hibit better generalization than what is obtained when the weight variables are represented
with higher precision. To the best of our knowledge this has not been studied before.
Bit-constraining can be regarded as intrinsic regularization that contributes to keeping the
model complexity low. Our finding that the bit-depth needed for realizing the optimal
classifier only grows logarithmically with the ratio of training examples to features, sup-
plies insight into why few-bit learning machines work. The competitive performance of
bit-constrained classifiers suggests that training benefits from being treated as an integer
program. This has a twofold implication. First, it is good news for hardware-constrained
implementations such as cell phones, sensor networks, or early quantum chips with small
numbers of qubits. Second, this renders the training problem manifestly NP-hard, thus
further motivating the application of quantum algorithms that may generate better ap-
proximate solutions than classically available.

We close with the remark that the study of bit-constrained learning may have implica-
tions for understanding plasticity in the nervous system, where it is still unknown how a
synapse can store information reliably over a long period of time (Kandel et al., 2000).
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