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Abstract

A fully probabilistic approach to reconstructing Gaussian graphical models from distance
data is presented. The main idea is to extend the usual central Wishart model in traditional
methods to using a likelihood depending only on pairwise distances, thus being independent
of geometric assumptions about the underlying Euclidean space. This extension has two
advantages: the model becomes invariant against potential bias terms in the measurements,
and can be used in situations which on input use a kernel- or distance matrix, without
requiring direct access to the underlying vectors. The latter aspect opens up a huge new
application field for Gaussian graphical models, as network reconstruction is now possible
from any Mercer kernel, be it on graphs, strings, probabilities or more complex objects.
We combine this likelihood with a suitable prior to enable Bayesian network inference. We
present an efficient MCMC sampler for this model and discuss the estimation of module
networks. Experiments depict the high quality and usefulness of the inferred networks.

Keywords: Network inference, Gaussian graphical models, pairwise Euclidean distances,
MCMC

1. Introduction

Gaussian graphical models (GGMs) provide a rigid formalism to represent high-dimensional
distributions of random variables (objects). Using GGMs one infers the network of depen-
dencies amongst these objects through their pairwise partial correlations. The partial cor-
relations are seen as a measure of conditional dependence between objects and are obtained
from the inverse of the covariance matrix. Conditional independence is asserted between
any two objects if the pairwise partial correlation is zero and this indicates the absence of
an edge between these objects in the network. Identifying networks is a challenging prob-
lem when the unknown network structure has to be learnt from observed measurements
that tend to be noisy and also when the number of objects are far more larger than the

c© 2012 S. Prabhakaran, K.J. Metzner, A. Böhm & V. Roth.
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measurements themselves. Further, traditional network inference models depend on ge-
ometric translations of the data which can pose problems as explained in Section 2. In
many real-world scenarios one rarely has access to the objects’ underlying vectorial repre-
sentations but only to their pairwise distances implying that the geometric translations are
entirely lost. In the current paper, we introduce a novel sparse network inference mechanism
called the Translation-invariant Wishart Network (TiWnet) model that is designed solely
to work on pairwise distances. To the best of our knowledge this is the first paper that
deals with network structure discovery using pairwise distances. Additionally, to deal with
noisy measurements and situations where the number of measurements are much smaller
than the objects, we present the construction of module networks where networks are learnt
on groups of variables called modules. To set the stage, we begin with a description of the
classical framework for estimating sparse GGMs. One usually starts with a n× d observed
data matrix Xo (the superscript o means “original” and is used here only for notational
consistency), its d columns interpreted as the outcome of a measuring procedure in which
some property of the n objects of interest is measured. In a biological setting, for instance,
the objects could be n genes and one set of measurements (one column) could be gene
expression values from one microarray. All d columns in Xo are assumed to be i.i.d. accord-
ing to N (0,Σ). Then, the inner product matrix So = Xo(Xo)t follows a central Wishart
distribution Wd(Σ) in d degrees of freedom (if d ≥ n, otherwise So is pseudo-Wishart 1),
and its likelihood as a function of the inverse covariance Ψ := Σ−1 is

L(Ψ) ∝ |Ψ|
d
2 · exp

[
−1

2 tr(ΨSo)
]
. (1)

Every algorithm for network reconstruction relies on some potentially interesting sparsity
structure garnered within the inverse covariance matrix Ψ := Σ−1. Ψ contains the (scaled)
partial correlations between the n random variables forming the nodes in the network: a
zero entry in Ψij concurs to no edge prevailing between the pair of random variables (i, j)
in the network.

Related work. To infer the underlying network, it is straightforward (at least from a
methodological viewpoint) to maximize the Wishart likelihood while ensuring that Ψ is
sparse. This is exactly the approach followed in “graph lasso” (Friedman et al., 2007),
where a `1 sparsity constraint on Ψ is used. A methodologically similar, but simplified
approach that decouples this joint estimation problem into n independent neighborhood-
selection problems is dealt in Meinhausen and Bühlmann (2006). The model presented
in Kolar et al. (2010a) employs a logistic regression model with a `1/`2 penalty for the
neighborhood-selection problem while additionally assuming a conditioning variable that
holds information about the associations between nodes to steer sparsity. Another method
to extract networks called “walk-summable graphs” is introduced in Johnson et al. (2006)
where a neighborhood is constructed based on walks accumulated by every node in the
graph and weighted as a function of the edgewise partial correlations present in Ψ.

1. The names of the Wishart distribution are inconsistent in the literature. We use the notation in Dı́az-
Garćıa et al. (1997).
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Figure 1: Assumed Underlying Generative Process. Black arrows indicate the workflow
when drawing samples from this model; n, d: matrix dimensions. The dashed red
arrows highlight the same distance matrix D produced from either the “original”
data Xo or the “mean-shifted” data X.

2. Underlying Problems with Existing Methods

The above papers and related approaches, however, have been built on an assumption that
the d columns in Xo are i.i.d. This particular assumption of considering columns to be
identically distributed might be too restrictive: even if the underlying Gaussian generative
process is a valid model, different column-wise bias terms are common in practice. In
the above biological example, there might be global expression differences between the d
microarrays. For valid network inference, it is therefore essential to model these unknown
shifts and by doing so, one relaxes the column i.i.d. assumption 2. To model this, such
column-wise biases are included in the generative model by introducing a shifting operation
in which scalar bias terms b(i=1,...,d) are added to the “original” column vectors xoi , which
results in a mean-shifted vector xi, forming the i-th column in X, cf. Figure 1. Hence the
columns come from different distributions i.e. they cease to be identically distributed. In the
classical case of not considering column biases, Xo is distributed as N (0,Σ), but in TiWnet
which now accommodates these column biases, the joint distribution of all matrix elements
is expressed, that here is matrix normal X ∼ N (M,Ω) with mean matrix M := 1nb

t
d and

covariance tensor Ω := Σn×n ⊗ Id. This model implies that S = XXt follows a non-central
Wishart distribution S ∼ W(Σ,Θ) with non-centrality matrix Θ := Σ−1MM t. Practical
use of the non-central Wishart for network inference, however, is severely hampered by its
complicated form and more so, the problem of estimating the unknown non-centrality matrix
Θ based on only one observation of S which is problematically analogous to identifying the
mean of any distribution given only a single data point.

It is, thus, desirable to use a simpler distribution. One possible way of handling such
column biases is to “center” the columns by subtracting the empirical column means b̂i, and
using the matrix SC = (X − 1b̂t)(X − 1b̂t)t in the standard central Wishart model. Since
the entries in the i-th column, {x1i, · · · , xni}, are not independent but coupled via the Σ-
part in Ω, this centering, however, brings about undesired side effects; apart from removing

2. Network inference based on non-i.i.d. data has been studied previously, for example in Kolar et al.
(2010b), Zhou et al. (2010) but these do not deal with data having different column-wise biases.
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the additive shift, the original columns are modified with the resulting column-centered
matrix SC being rank deficient. As a consequence, SC 6∼ W(Σ). Instead, SC follows the
more complicated translation invariant Wishart distribution, see Equation (2) below. Our
experiments show that the presence of column-wise shifts is not only a theoretical problem
of model mismatch but also a severe practical problem for inferring the underlying network.

Another problem-arising situation is where even observing Xn×d is not valid, instead
one assumes access to a measuring procedure which directly returns pairwise relationships
between n objects. Two variants are considered: either a positive definite similarity matrix
identified with the matrix S is measured, or pairwise squared distances arranged in a matrix
D is measured, defined component-wise as Dij = Sii + Sjj − 2Sij . In the first case with
S or in the second case with D, column-centering is still possible by the usual “centering”
operation in kernel PCA: SC = QSQt = −(1/2)QDQt, with Qij = δij − 1

n . However, using
this matrix in the standard Wishart model induces obviously the same problems related to
model mismatch as in the vectorial case above.

3. Novel Solution to Network Inference

The proposed solution to overcome the above intertwined problems of having to work with
column-wise shifts and the complicated non-central Wishart is to use a likelihood model in
TiWnet that depends only on squared Euclidean distances D where these distances are not
affected by any column-wise shifts, cf. the red dashed arrows in Figure 1. The likelihood
model invariant to shifts has been studied before in the Translational-invariant Wishart
Dirichlet (TiWD) cluster process (Vogt et al., 2010). This is a fully-probabilistic model for
clustering and is specifically devised to work with pairwise Euclidean distances by suitably
encoding the translational and rotational invariances. Although the TiWD clustering model
and TiWnet use identical likelihoods, the priors in both models are different. We develop
a new prior construction that enables network inference. This prior is similar to the spike
and slab model introduced in Mitchell and Beauchamp (1988).

The TiWD clustering model uses a Dirichlet-Multinomial type prior over clusters with
the priors being restricted to block-diagonal form. This kind of prior construction is in-
competent for network inference since if such a prior is used, all networks would always
decompose into separated clusters which are fully connected within themselves. There-
fore, to enable network recovery an enhanced prior construction is necessary and to this
end, TiWnet uses a prior that relaxes the block-diagonal form. The TiWnet prior is de-
signed to ensure sparsity of network edges and the resulting Ψ is constructed to be a sparse
diagonally-dominant matrix. The prior construction is further elaborated in Section 4.2.

We illustrate the difference between the TiWnet and TiWD prior constructions in Figure
2. The top panel of Figure 2 depicts the original network generated using Ψ (no longer
block-diagonal) meant for network inference and the inferred network using TiWnet. The
black/green edges depict the positive/negative partial correlations between the nodes. The
bottom panel of Figure 2 shows different views of the network obtained using the TiWD
clustering method: the left plot shows that the network is densely connected bearing no
resemblance to the original network and the right plot highlights that the network gets
decomposed into separate fully-connected clusters. Moreover, the network fails to capture
the positive/negative partial correlations between the nodes since the inferred Σ in the case
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Figure 2: Illustration of the difference between TiWnet and TiWD clustering (Vogt et al.,
2010) using data generated from Ψ (no longer block-diagonal) designed for net-
work inference. Top: Left: Original network. Right: Inferred sparse network us-
ing TiWnet. The black/green edges denote positive/negative partial correlations
between nodes. Bottom: Left: Densely-connected network obtained using the
block-diagonal Σ inferred from TiWD clustering. The edges do not differentiate
between positive/negative partial correlations. Right: The same network as on
the left now showing that the network decomposes into separate fully-connected
clusters. Here the network decomposes into 5 clusters viz. 3 fully-connected and
2 singletons.

of TiWD clustering only contains information regarding the cluster structure but without
signs. From the above discussion, it is obvious that clustering is a specialized case of network
inference and that general networks cannot be recovered using the TiWD clustering model
of Vogt et al. (2010).

Combining this enhanced prior suitable for network reconstruction with the likelihood,
we are able to perform Bayesian network inference in TiWnet. For inference we devise a
Metropolis-within-Gibbs sampler where the Metropolis-Hastings step proposes an appro-
priate Ψ matrix and the Gibbs iteration involves repeating the Metropolis-Hastings step
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for every node. We refer the reader to Section 4.3 for complete details of our inference
mechanism.

Below we present the major contributions of TiWnet as against other related network
inference approaches. “Graph lasso” was devised for estimating a truly sparse network from
the data. Since TiWnet is fully probabilistic, on output we not only obtain a single network
but a distribution of networks explaining the data. For many cases in reality, this is more
meaningful since one has access to possible structural variations of the extracted networks.
Further, if required, our method has the flexibility to yield a single MAP-estimate network
by simulated annealing. Such a sparse annealed network has desirable properties which
seem to be difficult to achieve by “graph lasso”. It is necessary to point out that the central
Wishart model is only justified for zero column-shifts. All of the earlier methods, to our
knowledge, have solely relied on this and not catered to the inherent column-shifts, and
might generate biased networks. Instead, TiWnet based on D is shift-invariant and we
show that in practical applications this shift invariance is essential for recovering correct
networks. Due to this, network reconstruction is possible using any D induced by a Mercer
kernel 3.

4. The TiWnet Model

4.1. Likelihood model

One starts with a given matrix D containing pairwise squared distances between row vectors
of an unobserved matrix X ∼ N (M,Ω). This means that in addition to the classical
framework for GGMs, arbitrary column biases b(i=1,...,d) are now allowed which “shift” the
columns in X but leave the pairwise distances unaffected.

Since by assumption D contains squared Euclidean distances, there is a set of inner
product matrices S that fulfill Dij = Sii + Sjj − 2Sij (McCullagh, 2009). If S∗ is one
(any) such matrix, the equivalence class of these matrices mapping to a single D is formally
described as set S(D) = {S|S = S∗ + 1vt + v1t, S � 0,v ∈ Rn}. This S is exactly the set
of inner product matrices that can be constructed by arbitrarily biasing the column vectors
in X. Shifting the viewpoint from column to row vectors, this invariance means that the
density does not depend on the origin of the coordinate system in which the n objects are
represented as vectors containing d different measurements. Column-wise biases referred
to before reduce in this view to simple shifts of the origin of an underlying coordinate
system. And the idea of column centering reduces to selecting one specific representative
SC from the set of all possible S ∈ S(D), namely the one whose origin is at the sample
mean. Since such column centering, however, destroys the central Wishart property of S
(assuming it was a Wishart matrix before), the strategy is therefore to avoid the selection
of a representative S ∈ S altogether. Instead, a probabilistic model for D is used. It turns
out that the distribution of an arbitrary S ∈ S can be derived analytically as a singular
Wishart distribution with a rank-deficient covariance matrix (McCullagh, 2009; Vogt et al.,

3. This statement does not necessarily imply that it is meaningful to use any Mercer kernel for reconstructing
a Gaussian graphical model. The main focus here is not on kernels as a means for mapping input vectors
to high-dimensional feature spaces in order to exploit nonlinearity in the input space. Rather, kernels
are viewed as similarity measures between structured objects having no direct vectorial representation.
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2010), and its likelihood in the rank-deficient inverse covariance Ψ̃ is

L(Ψ̃) ∝ det(Ψ̃)
d
2 exp

(
− 1

2tr(Ψ̃S)
)

= det(Ψ̃)
d
2 exp

(
1
4tr(Ψ̃D)

)
,

(2)

with Ψ̃ = Ψ̃(Ψ) = Ψ − (1tΨ1)−1Ψ11tΨ. Although the matrix S appears in the first
term in Equation (2), the likelihood is constant on all S ∈ S(D), hence it depends only
on D. Further Ψ̃ has rank r = n − 1, and S also contains rank-deficient matrices (like
the column-centered SC of rank q ≤ n − 1). In fact, Equation (2) represents the marginal
likelihood based on the statistic (X − 1b̂t). On further exclusion of scalar multiples by
basing the marginal likelihood on the standardized statistics (X − 1b̂t)/‖(X − 1b̂t)‖, one
arrives at the shift- and scale-invariant likelihood, cf. Tunnicliffe-Wilson (1989); McCullagh
(2009):

L(Ψ̃) ∝ det(Ψ̃)
d
2 tr(Ψ̃S)−(n−1)d/2

= det(Ψ̃)
d
2 tr(−(1/2)Ψ̃D)−(n−1)d/2.

(3)

Thus, there is a valid probabilistic model underlying Equation (3), and with a suitable prior
Bayesian inference for Ψ is well-defined.

The reader should notice that Equation (3) can be computed either from the distances
D, or from any inner product matrix S ∈ S(D). The practical advantage of this property
is as follows: in the literature one finds a large “zoo” of Mercer kernels for many objects
ranging from graphs to probability distributions to strings etc. These kernels represent
elements in S(D) where D is induced by Dij = Sii + Sjj − 2Sij . Most of the methods used
for constructing kernels have no information about the origin of the kernel’s underlying
space, meaning that the exact form of the kernel matrix is irrelevant as long as it belongs to
set S(D). Most supervised kernel methods like SVMs are invariant against choosing different
representatives in S, and in common unsupervised kernel methods like kernel PCA the rows
of X are considered i.i.d. implying that subtracting the empirical column means (leading
to SC) is the desired centering procedure for selecting a candidate in S(D). However, the
sampling model for GGMs is not invariant against choosing S ∈ S, and even the centered
SC does not work properly in a central Wishart model. With TiWnet based on D, we can
now use these Mercer kernels for reconstructing GGMs without being dependent on the
choice of S ∈ S.

4.2. Prior construction

For network inference in a Bayesian framework, we complement the likelihood (3) with a
prior over Ψ. In principle, any distribution over symmetric positive definite matrices can be
used. The likelihood has a simple functional form in Ψ̃, but our main interest is in Ψ, since
zeros in Ψ determine the topology. Unfortunately, the likelihood in Ψ is not in standard
form making it plausible to use a MCMC sampler. For any two Σ matrices, Σ1 and Σ2 that
are related by Σ2 = Σ1 + 1vt + v1t, the likelihood is the same for Σ1 and Σ2 (McCullagh,
2009). This means that Ψ is non-identifiable and a sampler will have problems with such
constant likelihood regions by continuing to visit them unless a prior is used that breaks
this symmetry.
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To deal with this problem, we quantize the space of possible Ψ-matrices such that any
two candidates have different likelihood. This is achieved with a two-component prior:
P1(Ψ) is uniform over the discrete set A of symmetric diagonally-dominant matrices with
off-diagonal entries in {−1,+1, 0}, and diagonal entries are deterministic, conditioned on
the off-diagonal elements i.e. Ψii =

∑
j 6=i |Ψij | + ε where ε is a positive constant added to

ensure full rank of Ψ. Thus A = {Ψ|Ψij ∈ {−1,+1, 0},Ψji = Ψij ,Ψii =
∑

j 6=i |Ψij | + ε}.
Note that we treat only the off-diagonal entries as random variables. Note also that in this
simple model we differentiate only between positive, negative and zero partial correlations,
but it is straightforward to use more levels. Enforcing such a diagonally-dominant matrix
construction ensures that the matrix will be positive definite. The usage of diagonally-
dominant matrices for network reconstruction is further justified since these matrices form a
strict subclass of GGMs that are walk summable (Johnson et al., 2005) and in Anandkumar
et al. (2011) theoretical guarantees are provided establishing that walk-summable graphs
make consistent sparse structure estimation possible. The second component of the prior is
a sparsity-inducing prior P2(Ψ). This corresponds to a Laplacian prior over the number of
edges for each node and is given by P2(Ψ|λ) ∝ exp(−λ

∑n
i=1(Ψii−ε)) where (Ψii−ε) denotes

the number of edges for the ith node and λ is equivalent to the regularization parameter
controlling the sparsity of the connecting edges.

4.3. Inference in TiWnet

To enable Bayesian inference in our model, we make use of the likelihood given in Equation
(3) and the two-component prior described in Section 4.2. For analyzing the posterior of Ψ
we iteratively sample one row/column in the upper triangle part of Ψ, conditioning on the
rest, using a Metropolis-within-Gibbs sampler.

The proposal distribution defines a symmetric random walk on the row/column vector
taking values in {−1,+1, 0} by randomly selecting one value and resampling it with iden-
tical probability to the two other possible values. After updating the i-th row/column in
the upper triangle matrix and copying the values to the lower triangle, the corresponding
diagonal element is imputed deterministically as Ψii =

∑
j 6=i |Ψij |+ε. This creates Ψ̃proposed

which is then accepted according to the usual Metropolis-Hastings equations based on the
posterior ratio P (Ψ̃proposed|•)/P (Ψ̃old|•). The acceptance threshold is given by just the
posterior ratio since we implement a symmetric random walk Metropolis sampling. The
entire Metropolis-within-Gibbs sampler is described in Algorithm 1.

Algorithm 1 Metropolis-within-Gibbs sampler

in ith row/column vector in upper triangle of Ψ
1: Uniformly select index k, k ∈ {1, · · · , i− 1, i+ 1, · · · , n}
2: Resample value at Ψik by drawing with equal probability from {−1,+1, 0}
3: Set Ψki = Ψik and update Ψii and Ψkk (to ensure diagonal dominance). This is Ψ̃proposed

4: Compute P (Ψ̃|•) ∝ L(Ψ̃)P1(Ψ)P2(Ψ)

5: Calculate the acceptance threshold a = min (1,
P (Ψ̃proposed|•)
P (Ψ̃old|•)

)

6. Sample u ∼ Unif(0, 1)
7: if (u < a) accept Ψ̃proposed, else reject.
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Since the proposal distribution, Ψ̃proposed, defines a symmetric random walk on set A
consisting of diagonally-dominant matrices, one can reach any other element in A with
non-zero probability after a sufficient number of n(n−1)

2 steps that account for number of
elements in the upper triangle of Ψ. This construction ensures ergodicity in the Markov
chain.

Note that the (usually unknown) degrees of freedom d in the shift- and scale-invariant
likelihood (Equation (3)) appears only in the exponents and, thus, has the formal role of
an annealing parameter. We use this property during the burn-in period, where d is slowly
increased to “anneal” the system until the acceptance probability reaches below a certain
threshold, and then the sampled Ψ-matrices are averaged to approximate the posterior
expectation. If a truly sparse solution is desired, the annealing is continued until a network
is “frozen”.

Implementation & complexity analysis. Presumably the most efficient way to
recompute P (Ψ̃|•) after a row/column update of Ψ is through the identity: det(Ψ̃) =
(det(Ψ)/1tΨ1)·n (McCullagh, 2009). Assume now we have a QR factorization of Ψold before
the update. Then the new Ψ = Ψold + viv

t
i + vjv

t
j where i,j are the row/column indices of

Ψold to be updated along with the corresponding diagonal elements and this accounts for two
rank-one updates. Thus the QR factorization of the new Ψ̃ can also be computed in O(n2)
time and det(Ψ̃) is then derived as

∏
iRii. The trace tr(Ψ̃D) is also computed in O(n2)

time, as it is the sum of the element-wise products of the entries in Ψ̃ and D. An entire
sweep of the Gibbs sampler involves n such updates adding up to a total time complexity of
O(n3) per sweep. It is clear that this scaling behavior is prohibitive for very large matrices,
but matrices of size in the hundreds can be easily handled, and for larger matrices with
a “complex” inverse covariance structure the statistical significance of the reconstructed
networks is questionable anyway, unless a really huge number of measurements is available.
Moreover there is an elegant way of avoiding such large matrices by reconstructing module
networks as outlined in the next section.

5. Inferring Module Networks

A particularly interesting property of TiWnet is its applicability to learning module net-
works. We define a module as a completely connected sub-graph, forming nodes in a module
network. As a motivating example we refer to our gene-expression example of Xn×d where
the measurements consist of d microarrays for n genes. In usual situations having far more
objects than measurements, one should not be too optimistic to reconstruct a meaningful
network, in particular if the measurements are noisy and if the underlying network has
“hubs”– nodes with high degrees. Generally when the node neighborhoods are small, net-
works can be learnt well whereas when the neighborhoods tend to grow larger as in the case
with hubs, learning networks gets difficult due to the higher-order dependencies existing
between nodes. Unfortunately, both high noise and existence of hubs are common in such
data. To address these issues, we present the computationally-attractive method of initially
creating clusters of objects, that we connote as modules, over which networks are learnt.
Considering the gene-expression example, there are usually groups of genes which have
highly correlated expressions and can often be jointly represented by one cluster without
losing too much relevant information, due to high noise. To create clusters, we begin with
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the d-dimensional expression profile vectors, x ∈ Rd, of the n genes and use a mixture model
to cluster these expression vectors into “modules”, reducing n to the effective number of
modules. The mixture model density is given by p(x ) =

∑K
k=1 πkpk(x ) where πk is the mix-

ing coefficient and pk(x ) is the component distribution of the kth module. The link to learn
networks on top of these modules goes via kernels defined on probability distributions. We
can use kernels like Bhattacharyya kernel : KB(k, j) =

∫
(
√
pk(x )

√
pj(x )) dx (Jebara et al.,

2004) over the component distributions of the modules to compute an inner-product matrix
of the modules. Network inference is then performed using this resulting inner-product
matrix.

Usually, there is no information available about the origin of the underlying space, and
by reconstructing networks from such kernels we heavily rely on the geometric invariance
encoded in the TiWnet model. This elegant solution for inferring module networks over-
comes statistical problems, and is also a principled way of applying the TiWnet to large
problem instances. An example of this strategy is presented in Section 6.

6. Experiments

Toy examples. The TiWnet is compared with two lasso-based methods: “graph lasso”
(Friedman et al., 2007) and “logistic lasso” (Kolar et al., 2010b) on artificial data. For this
we implemented a data generator that mimics the assumed generative model as shown in
Figure 1. First, a sparse inverse covariance matrix Ψ ∈ Rn×n with n = 25 is sampled.
Networks with uniformly sampled node degrees are relatively easy to reconstruct for most
methods, while networks with “hubs” are better suited for showing differences. Hubs are
nodes with high degrees that appear naturally in many real networks since they often
are scale-free i.e. their node degrees follow a power law. We simulate such networks by
drawing node degrees from a Pareto distribution and use these values as parameters in a
binomial model for sampling 0/1 entries in the rows/columns of Ψ. The sign of these entries
is randomly flipped, and scaled with samples from a Gamma distribution. The diagonal
elements are imputed as the row-sums of absolute values plus some small constant to ensure
full rank. We draw d vectors xoi ∈ Rn from N (0n,Ψ), and arrange them as columns in Xo.
So = Xo(Xo)t is then a central Wishart matrix. To study the effect of biased measurements,
we randomly generate biases b(i=1,...,d), resulting in the mean-shifted vectors xi in Fig. 1.
The resulting matrix S is non-central Wishart with non-centrality matrix Θ = Σ−1MM t,
and M = 1bt.

In a first experiment we tune all parameters (the `1 regularization parameter in the
lasso-based methods and the corresponding λ-parameter in the prior P2(Ψ) of TiWnet)
to maximize the Wishart-likelihood on an independent test matrix Sotest sampled from the
same underlying normal distribution used for So. This enables the application of predictive
likelihood for model selection on which our synthetic experimental results are based (Fig. 3).
The optimal parameters are found by averaging over 20 such training/test instances. The
quality of the reconstructed networks is measured as follows: A binary vector l of size
n(n − 1)/2 encoding the presence of an edge in the upper triangle matrix of Ψ is treated
as “true” edge labels, and this vector is compared with a vector l̂ containing the absolute
values of elements in the reconstructed Ψ̂ after zeroing those elements in l̂ which are not
sign-consistent with those in Ψ. The agreement of l and l̂ is measured with the F-score,
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i.e. the highest harmonic mean of precision and recall under thresholding the elements in
l̂. The top left panel in Fig. 3 shows boxplots of F-scores obtained in 50 experiments with
randomly generated Ψ-matrices for “graph lasso”, “logistic lasso” and TiWnet, and the top
right panel shows the outcome of a statistical test for significance of the differences, see
figure caption for further details. From the results we conclude that (i) column bias indeed
severely reduces the performance of methods relying on a central Wishart distribution (ii)
column centering does not overcome this problem and (iii) TiWnet performs as well as
“graph lasso” on the original (not shifted) data. For (iii) “graph lasso” should be highly
appropriate since the model assumptions are exactly met.

Analyzing the reconstructed networks in the central row of Figure 3, it is obvious that
the original “graph lasso” network is very dense, and that thresholding the edge weights is
essential for a high F-score. The TiWnet representing averaged Ψ̂-matrices from the MCMC
sampler is also dense, but it seems that most of the “true” edges are clearly accentuated.
Further studying this effect leads us to a second experiment, where we directly compare
the lasso-type networks reconstructed using a sequence of `1 regularization parameters with
the “frozen” TiWnet after annealing the Markov chain. In this comparison, however we
do not allow for further thresholding the edge weights when computing the F-score (i.e. we
replace the entries in l̂ by their sign). The bottom left panel in Figure 3 shows that TiWnet
clearly outperforms the lasso methods, even though the best F-score among all tested `1
regularization parameters is reported. We conclude that the lasso methods have problems
to reconstruct such networks with hubs, and that the annealing mechanism in our MCMC
sampler produces sparse networks of very high quality. To test the dependency of these
results on the validity of the model assumptions, in a third experiment we substitute the
Gaussian to produce Xo with a Student-t. The resulting plot of F-scores (Figure 4) has the
same structure as in Figure 3 (top row) with globally smaller median values. Thus, these
results obtained above do not qualitatively vary under such model mismatches.

A Module network of Escherichia coli genes. For inferring module networks in
a biological context, we applied the TiWnet to a published dataset of promoter activity
data from ≈ 1100 Escherichia coli operons (Zaslaver et al., 2006). The promoter activ-
ities were recorded with high temporal resolution as the bacteria progressed through a
classical growth curve experiment experiencing a “diauxic shift”. Certain groups of genes
are induced or repressed during specific stages of this growth curve. Cluster analysis of
the promoter activity data was performed using a spherical Gaussian mixture model with
shared variance σ: p(x) =

∑
k πkN (x|µk, σ) along with a Dirichlet-process prior to au-

tomatically select the number of clusters. This revealed the presence of 14 distinct gene
clusters (see expression profiles of nodes in Figure 5). Network inference with TiWnet
was carried out on a Bhattacharyya kernel KB computed over the Gaussian clusters where
KB(k, j) = exp−||µk−µj ||

2/ 8σ2
(see Jebara et al. (2004)). When the clusters were analyzed,

genes known to be co-regulated were predominantly found in the same or nearby clusters
with positive partial correlations. For example, during the diauxic shift experiment, the
transcriptional activator CRP induces a certain set of genes in a specific growth phase (Ke-
seler et al., 2011). Strikingly, of the 72 known CRP regulated operons in the dataset, 43
genes are found in cluster 6 or the four neighboring clusters (3,9,11,13). Likewise, genes
involved in specific molecular functions (those coding for proteins involved in amino acid
biosynthesis pathways) were found in close proximity in the network, for example in nodes 1
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Figure 3: Top. Left: structure recovery measured by the maximum F-score under thresh-
olding the edge weights. The methods are “graph lasso” (Friedman et al., 2007,
2009) (prefix “F”), “logistic lasso” (Kolar et al., 2010b) (“X”) and TiWnet. Box
colors encode the data used: red = original Xo, cyan = X, magenta = S, green
= D. Suffixes denote centering used: no suffix means directly using the empiri-
cal covariance computed from Xo; “.c”: column-centered mean-shifted X; “.C”:
column-centered S; “.S”: uncentered S. Right: boxplot of pairwise differences. A
green box means that a statistical test (Friedman with post-hoc) assigns a p-value
< 0.05 to this comparison. Middle. Example networks. Black/green edges =
positive/negative partial correlation. Left to right: “true” graph, “graph lasso”
network with parameters tuned to maximize test likelihood, optimally thresholded
“graph lasso”, TiWnet from averaged sampled matrices, optimally thresholded
TiWnet. Bottom. Structure recovery as in top left, but without thresholding
the estimated edge weights. The networks show one example of a “true” graph,
the best graph found with “graph lasso” and the annealed (or MAP-estimate)
TiWnet respectively.

and 2 (Figure 5). Physiologically, this co-regulation makes sense since protein biosynthesis
(carried out by the ribosome) depends on a constant supply of synthesized amino acids.
Thus TiWnet can successfully identify connections between genes co-regulated by the same
molecular factor, or are involved in interlinked molecular processes.
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Figure 4: Results of artificial data using a multivariate Student-t distribution in three de-
grees of freedom instead of a normal distribution to generate the columns in Xo.
Left: structure recovery measured by the F-score on binarized edge weights. The
methods are “graph lasso” (Friedman et al., 2007, 2009) (prefix “F”), “logistic
lasso” (Kolar et al., 2010b) (“X”) and TiWnet (“TiW”). Box colors encode the
data used: red = original Xo, cyan = “mean-shifted” X, magenta = similarities
S, green = distances D. Suffixes denote centering used: no suffix means di-
rectly using the empirical covariance computed from Xo; “.c”: column-centered
mean-shifted X; “.C”: column-centered S; “.S”: uncentered S. Right: boxplot
of pairwise differences. A green box means that a statistical test (Friedman with
post-hoc) assigns a multiple testing corrected p-value < 0.05 to this comparison.
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Figure 5: Module Network of Escherichia coli Genes.

“Landscape” of chemical compounds with in vitro activity against HIV-1.
As a second real-world example TiWnet is used to reconstruct a network of chemical com-
pounds. We enriched a small list of compounds identified in an AIDS antiviral screen by

361



Prabhakaran Metzner Böhm Roth

NCI/NIH available at http://dtp.nci.nih.gov/docs/aids/searches/list.html#NPorA
with all currently available anti-HIV drugs, yielding a set of 86 compounds. Chemical
hashed fingerprints were computed from the chemical structure of the compounds that was
encoded in SMILES strings (Weininger, 1988). The Tanimoto kernel, a similarity matrix S
of inner-product type, is constructed by the pairwise Tanimoto association scores (Rogers
and Tanimoto, 1960) between the compounds. Since the geometric position of the un-
derlying Euclidean space is unclear, we again relied heavily on the geometric invariance
inherent in TiWnet. The resulting network (Figure 6) shows several disconnected compo-
nents which nicely correspond to chemical classes (the node colors). Currently available
anti-HIV drugs are indicated by their chemical and commercial names alongside their 2D-
structures depicting the chemical similarity underlying this network. These drugs belong to
the functional groups “Nucleoside reverse transcriptase inhibitors (NRTI)”, “Non-nucleoside
reverse transcriptase inhibitors (NNRTI)”, “Protease inhibitors”, “Integrase inhibitors”, or
“Entry inhibitors”, and most compounds of a certain functional type cluster together in
the graph. Medically, this network can be very useful to predict “cross resistance” be-
tween resistant HIV-1 variants and drugs and is especially distinctive for NRTIs. The pairs
lamivudine-emtricitabine, tenofovir -abacavir, and d4T -zidovudine(ZDV) show almost the
same resistance profiles (Johnson et al., 2010). This similarity is very well reflected by our
network where these pairs are in close proximity.

It is worth noting that “graph lasso” has similar difficulties on this dataset as in the toy
examples. When following the solution path by varying the penalty parameter, it is difficult
to find a good compromise between sparsity and connectivity: either the obtained graphs
are very dense being difficult to plot and harder to interpret, or are increasingly sparse
in which, however, several interesting structural connections are lost since many singleton
nodes are created (for a graphical depiction, refer Figures 1-3 in the Supplement available
at http://bmda.cs.unibas.ch/TiWnet).

7. Conclusion

The TiWnet model is a fully probabilistic approach to inferring GGMs from pairwise Eu-
clidean distances obtained from inner-product similarity matrices (i.e. kernels) of n objects.
Traditional models for reconstructing GGMs, for example lasso-type methods, are based
on the central Wishart likelihood parametrized by the inverse covariance, and sparsity of
the latter is usually enforced by some penalty term. Assuming a central Wishart, how-
ever, is equivalent to assuming that the origin of the coordinate system is known. If these
methods use on input only kernel matrices, then usually only the kernels’ pairwise distance
information is truly relevant. Since traditional methods solely rely on the origin implicitly
encoded in any such kernel, they might generate biased networks. Our TiWnet method is
specifically designed to work with pairwise distances since the likelihood used in inference
depends only on these distances. Combining this likelihood with a prior suited for sparse
network recovery, we are able to extract sparse networks using only pairwise distances. This
property opens up a huge new application field for GGMs, because network inference can
now be carried out on any such distance matrix induced by a Mercer kernel on graphs,
probability distributions or more complex structures. We also present an efficient MCMC
sampler for TiWnet making it applicable to medium-size instances, and the possibly re-
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Figure 6: “Landscape” of Chemical Compounds with In Vitro Activity against HIV-1.

maining scaling issues may be overcome by inferring module networks using kernels defined
on probability distributions over groups of nodes. Comparisons with competing methods
demonstrate the high quality of networks obtained from TiWnet, evoking the effectiveness
of working with pairwise distances. TiWnet is also robust to model mismatches unlike
existing methods. The two real-world examples provide an insight into the huge variety of
possible applications.
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