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Abstract

Independent component analysis (ICA) is a method to estimate components which are as
statistically independent as possible. However, in many practical applications, the esti-
mated components are not independent. Recent variants of ICA have made use of such
residual dependencies to estimate an ordering (topography) of the components. Like in
ICA, the components in those variants are assumed to be uncorrelated, which might be a
rather strict condition. In this paper, we address this shortcoming. We propose a generative
model for the source where the components can have linear and higher order correlations,
which generalizes models in use so far. Based on the model, we derive a method to estimate
topographic representations. In numerical experiments on artificial data, the new method
is shown to be more widely applicable than previously proposed extensions of ICA. We
learn topographic representations for two kinds of real data sets: for outputs of simulated
complex cells in the primary visual cortex and for text data.

Keywords: independent component analysis, topographic representation, higher order
correlation, linear correlation, natural image statistics, natural language processing.
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1. Introduction

A simple yet powerful approach to analyze some data & = (1, 22,...,24) " is to decompose
it into

x = As, (1)
where A is an unknown mixing matrix and s = (s1, s2, . . ., sq) " is the source vector consist-

ing of latent non-Gaussian random variables. A special instance of this generative model
is independent component analysis (ICA) where the sources s; are additionally assumed to
be statistically independent (Hyvérinen and Oja, 2000). The goal of ICA and its related
methods is to estimate A and s based on the observations of @ only. The ICA model
was shown to be identifiable up to the order, the signs and the scales of the components
s; (Comon, 1994). ICA has been applied to a wide range of fields such as computational
neuroscience (Hyvérinen et al., 2009) or natural language processing (Kolenda et al., 2000;
Honkela et al., 2010).

However, the estimated components may not be independent in many practical situa-
tions. Hence, one may want to relax the independence assumption of the s;, and further an-
alyze the relationship between the components. This was done in topographic ICA (TICA)
where the sources s; are allowed to have correlated variances (“energies”) (Hyvérinen et al.,
2001). The dependencies were further used to fix the order-indeterminacy of ICA: the
sources s; were ordered on a topographic grid such that close-by components had correlated
variances while distant components were as statistically independent as possible. Related
models were proposed by Osindero et al. (2006); Bach and Jordan (2003); Karklin and
Lewicki (2005); Zoran and Weiss (2010).

In TICA, the sources s; were constrained to be uncorrelated. However, linear correlations
occur in many practical situations. One example is the outputs of co-linearly aligned Gabor
filters for natural image inputs. Since natural images contain many long contours, the
outputs of such Gabor filters are linearly correlated. Another practical situation occurs in
MEG and EEG analysis where coherent sources can be linearly correlated due to neural
interactions (Gémez-Herrero et al., 2008). As we will see in this paper, another example
occurs in the analysis of text data.

In this paper, we propose a method to capture both linear and higher-order correlations
of the components s;. Like in TICA, we make use of the dependencies of the components,
linear or not, to order them. We start in Section 2 with discussing the motivation for
ordering the components, or as we also say, learning a topographic representation of .
Then, we propose a model to generate sources s; where neighboring components, for example
s; and s;11, have linear and higher-order correlations. This model contains ICA and TICA
as special cases. Based on the model, we derive a simple objective function to estimate the
mixing matrix A and the order of the components in (1). In Section 3, we use artificial
data to verify that our objective function works as intended, and compare the performance
of our method to ICA and TICA. We show that our new method, which we call correlated
topographic analysis (CTA), is a generalization of TICA in terms of topographic estimations.
In Section 4, we learn a topographic representation for two kinds of different data sets:
outputs of simulated complex cells in the primary visual cortex and text data. Section 5
concludes the paper.
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Figure 1: Generative model for the sources s appearing in the mixing model in (1). The
generative model is discussed in Section 2.

2. Correlated Topographic Analysis

2.1. Motivation for Estimating Topographic Representations

By a topographic representation, we mean one in which the components s; are ordered on
a one- or two-dimensional lattice, such that components which are next to each other (or
nearby) on that topographic lattice have special relationships to each other. In our case,
the relationships are based on statistical dependencies.

The basic motivation for such representations is twofold. The foremost motivation is
visualization. A topographic arrangement of the latent components s; allows us to easily
understand the relationships between them. A second motivation is that for natural data
like images, sound, or text, the learned topography might be related to the cortical repre-
sentation of the data. The reason is that, in order to minimize wiring length, neurons which
tend to interact with each other are located near to each other (Hyvirinen et al., 2009).

2.2. The Generative Model for Sources

We consider here the situation where the sources s in (1) are generated according to
s =00z, (2)

where ® denotes element-wise multiplication. & = (01, 09,...,04)" and z = (21, 22,...,24) "
in (2) are statistically independent. If the elements of o are all positive and z is a multivari-
ate Gaussian with mean 0, the marginal distributions of the sources s are super-Gaussian,
i.e., the sources are sparse (Hyvérinen et al., 2001). Their joint distribution depends on
the correlation between the elements of z and the distribution of . We can distinguish
between the following four cases:

Case 1 If the elements of z are uncorrelated and the elements of o are independent, the
sources s; are independent. This gives ICA with sparse sources.

Case 2 If the elements of z are uncorrelated and topographically nearby elements of o are
dependent, the sources are linearly uncorrelated but have correlated variances. This
gives TICA.
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Case 3 If topographically nearby elements of z are correlated and the elements of o are
independent, the sources can be made linearly but possibly very weakly higher-order
correlated.

Case 4 If topographically nearby elements of z are correlated and the elements of o are
dependent as in case 2, the sources are both linearly and higher-order correlated.
We call the estimation of the model in (1) with this type of dependencies correlated
topographic analysis (CTA).

We see that the generative model in (2) can define sparse sources where each source may
have dependencies within a certain neighborhood. These dependencies can be estimated
from the data and used to order the components.

2.3. Approximation of the Likelihood and the Objective Function

In order to allow for dependencies in a neighborhood, we make, as shown in Figure 1, the
following assumptions for o and z: For z, we assume that the precision matrix A has a
tridiagonal shape with a ringlike boundary, namely z;4+q = z;, so that the distribution of z
is

AlL/2 1 A2 4 1
e = oo (-32s) = i e {5 (e f @
i=1

For o, we assume that each o; has been created via
o = (w1 + u; +v;) V2, (4)

where u; and v; are statistically independent nonnegative random variables. Nonzero u;
create energy correlations between the sources, like in TICA. The v; account for source-
specific variances. We assume inverse Gamma distributions for w and v,

d — —3/2 ; d b, — bi
p(v,uia,b) =TTL, /oo exp (_2(17) xITim Fui” exp (_2w> ' ®)

The a; and b; are positive scale parameters. If a scale parameter approaches zero, the
corresponding variable converges (in distribution) to zero. For example, if b; — 0 for all 7,
the u; approach zero, which decouples the o; from each other.

By inserting (2) and (4) into (3), the conditional distribution for s given w and v is

A2 Lo 9, 2, 2
H VUui—1 + u; +v; exp 5 {visi + (s + sip1)ui

(2m)4/2 i=1

p(slv,u; A) =

+ 2)\2'\/(%'—1 + u; + vi) (u; + uip1 + vi+1)8i81+1H .

Computation of the marginal of s, that is integrating (6) with respect to u and v using (5)
as prior, is analytically intractable. We resort to two simple approximations,

Vui—1 + ui + v = \Jug,
V(i1 4w 4+ v) (Wi + i1 + i) & u;.

(6)
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Both approximations above are similar to what has been done for TICA (Hyvéarinen et al.,
2001, Equation (3.7)). This gives the following approximation for (6),

1/2
(s|v,u; A) |A‘ 2 Hul/Qe Xp [— {82v; + (57 + sT1q + 2\i8i8i41) Uz}:| . (7)

Integrating out the w; and v;, we obtain the following approximative distribution for s

p(s; A, a,b) x Hexp (—@]si] — \/bj\/sf + 8?+1 + 2)\isisi+1> . (8)

We use the proportionality sign because we do not know the partition function which
normalizes p(s; A, a,b).!

We discuss now the relation between (8) and the four cases outlined above. In the limit
where b; — 0, p becomes the distribution of independent Laplacian random variables, as
often used in ICA with sparse sources (case 1). In the limit where a; — 0 and A\; = 0 for
all 7, we obtain TICA (case 2). Case 3 is not explicitly covered by this model. However, we
will show in the next section that CTA identifies its sources as well. In order to allow the
components to have strong linear correlations and to be able to obtain closed-form solutions,

we use the fixed values a; = b; = 1 and A\; = —1, which give
d
s) o [ exp (=Isi| = |si — sital)- (9)
i=1

The distribution corresponds to case 4 with positively correlated sources. Note that this
distribution is used as prior for the regression coefficients in the fused lasso (Tibshirani
et al., 2005). Since in this paper, we are not interested in regression but in unsupervised
learning, we do not explore this connection any further.

Using the distribution in (9) as prior for s, we can compute the log-likelihood for W =
(w1, ws, ..., wy)" = A~ This gives the CTA objective function .J,

J(W) = Ji(W) + J2(W),

T d
1 T
W) = = E E |lw, x(t)] + log | det W],

t=1 i=1 (10)

L L
_TZZ lw] x(t) — wl  z(t)].
=1

The vector x(t) denotes the t—th observation of the data, ¢ = 1,2,...,7. Note that J; is
the log-likelihood for an ICA model and that J; is sensitive to the order and signs of the
w;. For numerical reasons, we approximated | - | in two summations by logcosh(-) in all
simulations in this paper.

1. Since p(s; A, a,b) < [, exp (—+/ailss

function exists.

) we know, however, that p is integrable so that the partition
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3. Validation on Artificial Data and Optimization Procedure

In this section, we investigate whether the proposed objective function J(W) can be used to
estimate topographic representations. For that purpose, we generated sources s according
to (2) for each of the discussed four cases. Then, we mixed them with a randomly chosen
mixing matrix A, and estimated the model by maximization of J. For comparison, we also
applied ICA and TICA on the data. The dimension of the data and the number of samples
are d = 20 and T = 30’000, respectively. We performed simulations for 100 randomly
chosen mixing matrices, that is for 400 data sets in total.

3.1. Flow of the Optimization

For the estimation of W in CTA, we perform an optimization with three steps because
preliminary results showed that CTA tends to get stuck in local maxima when we optimize
J(W) by a basic gradient method. The three steps are as follows:

Step 1 We optimize only J1(W) by the conjugate gradient method (Rasmussen, 2006) to
get

w = arg max J1(W). (11)

Step 2 With W we compute s(1)(t) = WM x(t). Then, the order and signs of 551) are
optimized by

T d

A 1

e = argmax— Z Z less (1) — eiast) (1)
=1 1=

Ja

Here, k = (ki,...,kq) is an order vector with k; € {1,...,d} and k; # k; for

j#1i,and ¢ = (c1...cq) is a sign vector with ¢; € {—1,1}. k and & give W =
1 (1) T

e PR where w!" is the i— th row vector in W,
1 2

. R L (1)
[Grw: ", Cow s Caw ;
Step 3 As in step 1, we optimize J(W) by the conjugate gradient method (Rasmussen,

2006) using W(? as initial value and obtain the final result W),

The purpose of the first two steps is to find better initial values for W before optimizing
J(W) in (10). In step 2, we solve a combinatorial optimization problem, for which we use a
method based on dynamic programming (Bellman and Dreyfus, 1962). We omit the details
here.

For the comparison with ICA, we perform only step 1. For the comparison with TICA,
we perform all three steps but replace J5 in step 2 and J in step 3 by

Jica(W) =~ L S J01+ (w]a(0)? + (w],@(1)? +log | det W], (12)

where Ji;cq is one objective function for TICA proposed in (Hyvérinen et al., 2001, Equations
(3.10) and (3.12)). For numerical stability, 0.1 is added in the square root. Step 2 is a bit
simpler for TICA because we do not need to optimize with respect to the signs since Jijcq
is insensitive to them.
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Figure 2: Validation on artificial data and comparison with ICA and TICA. From left to
right, the data was created according to case 1 to 4 as in Section 2. (a) Examples
of the performance matrices P for one mixing matrix. (b) The distribution of
the topography index TT in (13) for 100 random estimation problems. (c) The
distribution of the Amari index. See text body for a discussion of the results. The
four differently colored diagonal paths in (a) are examples of summation paths
traversed in the computation of TT.
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3.2. Results

To measure the goodness of the results, we compute the performance matrix P = WA. If s
is correctly identified and the topography is correctly estimated, P is a diagonal matrix or,
because of the used ring-like boundary of the topography, a circularly shifted “diagonal”
matrix.

Figure 2(a) shows the performance matrices for one of the 100 mixing matrices. For
data with independent sources (case 1), no topography can be estimated because there is no
statistical dependency in s. For data with sources which have energy correlations only (case
2), both TICA and the proposed CTA give a P that is close to a shifted diagonal matrix.
This means that the topography and the sources are correctly estimated. ICA, which is
insensitive to energy correlations of the sources, is not able to find the topography. For
data with linearly correlated sources (case 3), only CTA is able to estimate the topography
correctly. The other methods do not preserve the topography in the estimated components.
Furthermore, it seems that CTA solves also the sign-indeterminacy of ICA. For data with
both linearly and energy correlated sources (case 4), both TICA and CTA perform well.

To quantify for all 100 mixing matrices how well the topography was estimated by the
different methods, we used Amari index (AI) (Amari et al., 1996) and defined topography
index (TI). For TI, like in the AI, we first normalized P in order to account for the scale
indeterminacy in the ICA model. We did this by taking the absolute values of the elements
of P, and dividing each column and row of the resulting matrix by its maximal absolute
value, giving us the two matrices |P|; and |P|,. Then, we simply computed the largest sum
along all possible diagonal paths through |P|; and |P|, giving us the numbers S; and Ss,
respectively. Figure 2(a) shows four examples of diagonal paths taken. Note that they run
both from left-to-right and from right-to-left. TI is finally given by

_51+52

TI
2d

(13)
where d is the dimension of the data. The best performance is obtained for TI=1.

The results from the 100 trials are summarized in Figure 2(b) in the form of boxplots.
We show, as a baseline, also the topography index for random permutation matrices (labeled
“RAND” in plot). We can see that the conclusions from the single example shown in Figure
2(a) generalize: For data with independent sources, no topography can be estimated, and
all methods perform like the baseline. Our new method CTA performs well on all data sets
which have dependencies. This is in contrast to TICA, which performs well only if energy
correlations are present.

Figure 2(c) shows the distribution of the AI which measures how well the sources in the
model (1) are identified but ignores the topographic arrangement (ordering) of the sources.
As a baseline, we also show the AI for random matrices (labeled “RAND” in the plot). For
data with sources bare of linear correlations (case 1 and 2), we see that ICA and TICA
lead to a slightly better separation of the sources. A likely reason is that by setting in (8)
Ai = —1, CTA tries to look for sources which have linear correlations, which introduces
some error if no such sources are present. On the other hand, if such sources are present,
the separation results are at least as good as for ICA or TICA.

In summary, our simulations show that the sensitivity of CTA to linear correlations
makes our method more widely applicable than TICA. If the data has no linearly corre-
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Figure 3: Estimated higher order basis from the outputs of complex cells for natural image
inputs.

lated sources, this generalization of TICA comes at a cost of giving slightly less accurate
separation results than the more specialized methods ICA or TICA.

4. Application to Real Data

In this section, CTA is applied to two kinds of real data: the outputs of simulated complex
cells in the primary visual cortex when stimulated with natural images, and text data.

4.1. Outputs of Simulated Complex Cells

CTA was applied to the outputs of simulated complex cells in the primary visual cortex
which are “stimulated” by natural images. Previously, ICA has been applied to such kind of
data (Hyvérinen et al., 2005). The purpose here is to investigate what kind of topography
could emerge between the learned higher-order features.

4.1.1. METHODS

The outputs of the complex cells & are computed as

2 2
x), = (Z Wz?(w,y)f(%y)) + <Z W;?(%?J)H%?J)) ,

z7y x7y
zy, = log(x), + 1.0),
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(b) ©
1 e

Figure 4: Three prominent features in Figure 3. (a) Long contours, (b) end-stopping and
(c) star-like features.

where I(x,y) is a 24 x 24 natural image patch,? and W2(z,y) and W¢(z,y) are odd- and
even-symmetric Gabor functions with the same parameters for spatial position, orientation
and spatial frequency. We used T' = 100’000 image patches. In this experiment, the complex
cells are arranged on a two dimensional 6 x 6 grid. For each position, there are cells with
four different orientations and one frequency band. The total number of complex cells is
6-6-4 = 144. As preprocessing, first, the DC component of x is removed and then, whitening
and dimensionality reduction are performed by PCA. We retained 100 dimensions.

In this experiment, we assume that the components s; are arranged on a two dimensional
topographic lattice and one component is dependent with nearby eight components (two
horizontal, two vertical and four diagonal components). The objective function and the
optimization method for this two dimensional lattice is a straightforward extension of the
objective for the one dimensional lattice treated in Section 2.3 and Section 3.1. Therefore,
we omit the details here.

4.1.2. RESULTS

The map of the estimated higher order basis vectors is presented in Figure 3. In Figure 4, we
highlight three prominent kinds of basis vectors: those forming long contours (Figure 4(a)),
those with end-stopping behavior (Figure 4(b)), and star-like features (Figure 4(c)). In the
map, the basis vectors forming long contours and the star-like features tend to be separated,
and have a meaningful topography between themselves.

Next, we checked that the learned features are not artifacts due to the fixed complex
cell model. For that purpose, we performed the same experiment again but with I(z,y)
being samples from the Gaussian distribution with mean 0 and covariance given by the
covariance matrix of the natural images. The map of higher order basis vectors for this
noise data is depicted in Figure 5. We see that star-like features are also present. However,
there are much fewer long contours and no features with end-stopping behavior. Therefore,
we suggest that long contours, end-stopping features, and their topography mainly reflect
the properties of natural images.

4.2. Text Data

Here, we apply CTA to the analysis of a large text corpus. ICA has been applied before
to text data: Kolenda and colleagues analyzed a set of documents and the terms they

2. We used the natural images of the imageica package. To compute x, we used codes available in the
contournet package. Both packages are available at http://www.cs.helsinki.fi/u/phoyer/software.html.
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Figure 5: Estimated higher order basis from noise inputs.

contain (Kolenda et al., 2000). They found that ICA results in more easily interpretable
topics which underlie the different documents than the more traditional latent semantic
analysis. Honkela and colleagues analyzed words and the contexts in which they appear.
Again, compared to latent semantic analysis, I[CA produced more meaningful results where
the latent sources reflected linguistic categories (Honkela et al., 2010). We apply here CTA
to this kind of context-word data. The motivation is that the different latent categories may
be often correlated so that the independence assumption in ICA is actually too strong. CTA,
on the other hand, should be able to identify relationships between the latent categories.

4.2.1. METHODS

We constructed the context-word data as in the literature (Honkela et al., 2010). The
T = 200’000 most frequent words in 51’126 larger English-language Wikipedia articles were
selected. Then, a list of words which occurred two words before or after the selected words
was compiled. From this list, the 1000 most frequent words formed the “contexts” words.
From the selected and the context words, the joint frequency matrix Y, of size 1000 x 200’000
was created. Finally, we obtained the contextxword data matrix X = (z(1), z(2),...,z(T))
by transforming the elements in Y as x;(j) = log(y;; + 1.0).

As preprocessing, we perform centering to make the mean of each row of X zero and its
variance one. Then, the data is whitened by PCA and the dimension reduced from 1000 to
60. We assume an one-dimensional topography and estimate W as described in Section 3.1.
The estimation of the model in (1) allows us to represent the context x word matrix X as
X = AS where S is a 60 x 200’000 categories x word matrix. Note that in the context of
the text data, we call a latent component a “category”.
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ohio illinois tennessee
20 20 20
0 0 0
-20 -20 -20
20 40 60 0 20 40 60 20 40 6
california texas michigan
20 20 20
0 0 0
-20 -20 -20
20 40 60 0 20 40 60 0 20 40 60

Figure 6: Latent representations of American states.

4.2.2. RESULTS

Before analyzing the emerging topography, we show by example that, like ICA, CTA is
able to extract meaningful categories. In the literature (Honkela et al., 2010), the learned
categories were analyzed by showing the latent representations Sy (k-th column of the
matrix S) for different words k. The latent representations indicate to which extent the
given word k “activates” the learned latent categories. Figure 6 shows that the latent
representations S of American states are very similar. Likewise, colors, music styles, and
nationalities for example were found to have very similar representations (results not shown).

CTA topographically arranges the latent categories so that related ones are next to each
other. In Table 1, we show selected categories which were in several simulations robustly
arranged next to each other. To visualize a latent category, we show the nine words which
give the top nine activations for the given category (row of the matrix S). The three
categories in the leftmost panel are about time and numbers. More specifically, category
S” (row 7 of S) is all about “units of time”, S® about “quantifiers” and S? about roman
numerals. The middle panel in the table shows that CTA placed American states and, in
general, cities next to each other. The rightmost panel shows that media words were also
topographically arranged.

5. Discussion and Conclusion

In this paper, we have proposed a method to estimate topographic representations. The
proposed method, Correlated Topographic Analysis (CTA), is an extension of ICA where
nearby latent components s; are linearly and higher order correlated, while distant compo-
nents are as statistically independent as possible. The related concept of structured sparsity
has also been used in unsupervised learning (Mairal et al., 2011), but not to learn linearly
correlated components like what we have done here.
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Table 1: Three examples of a robust topographic ordering between three categories. De-
noting the k-th row of the matrix S by S¥, the words with the top nine absolute
values of a S* are shown. In the last columns, telev. abbreviate “television”, and
broadc.! and broadc.? denote “broadcast” and “broadcasting”.

Ex.1: Time and numbers Ex.2: States and cities Ex.3: Media
S7 S8 S9 Sl2 SIS Sl4 S28 529 S30
weeks few 3 california ohio philadelphia comic album tv
months several 6 texas illinois dublin marvel band’s telev.
month various 32 angeles tennessee chicago fantasy pop broadec.!
hours numerous 4 florida creek boston comics albums bbc
week eight 16 illinois country georgia fiction solo abc
days mostly 13 ohio michigan los batman band cbs
year six 21 michigan  california  manchester | animated rock nbc
seven two 8 | washington texas texas manga songs aired
five four 23 | minnesota  colorado angeles X-1men jazz broadc.?

CTA itself was obtained by setting in the prior distribution for the sources, Equation
(8), a; = b; = 1 and \; = —1. Ultimately, we would like to estimate these parameters
instead of fixing them by hand. Estimating them is, however, difficult because we do not
know the partition function so that we had to leave this endeavor to future work.

We showed that CTA is more widely applicable than TICA: Unlike TICA, CTA can
estimate an ordering of components whose energy correlation is very weak (Figure 2). We
have applied CTA to two different data sets. For outputs of simulated complex cells, CTA
led to the emergence of a new representation where long contours and end-stopping features
are topographically arranged. Past work found long contour features but they were not, in
contrast to ours, topographically arranged (Hyvérinen et al., 2005; Hoyer and Hyvérinen,
2002). For text data, CTA identified, as ICA, latent linguistic categories. In addition,
however, it allowed us to find relationships between them which are related to semantic
similarities.

Acknowledgments

H. Sasaki was supported by Grant-in-Aid for JSPS Fellows. H. Shouno was partly supported
by Grand-in-Aid for Scientific Research (C) 21500214 and on Innovative Areas, 21103008,
MEXT, Japan. A. Hyvarinen and M. U. Gutmann were supported by the Academy of
Finland (CoE in Algorithmic Data Analysis, CoE in Inverse Problems Research, and Com-
putational Science Program). The authors wish to thank Timo Honkela and Jaakko J.
Vayrynen for providing us the text data, and to thank Shunji Satoh and Jun-ichiro Hi-
rayama for their helpful discussion.

References

S. Amari, A. Cichocki, and H.H. Yang. A new learning algorithm for blind signal separation.
In Advances in Neural Information Processing Systems 8, pages 757-763, 1996.

377



SASAKI GUTMANN SHOUNO HYVARINEN

F.R. Bach and M.I. Jordan. Beyond independent components: trees and clusters. Journal
of Machine Learning Research, 4:1205-1233, 2003.

R.E. Bellman and S.E. Dreyfus. Applied dynamic programming. Princeton University Press,
1962.

P. Comon. Independent component analysis, a new concept? Signal processing, 36(3):
287-314, 1994.

G. Gémez-Herrero, M. Atienza, K. Egiazarian, and J.L. Cantero. Measuring directional
coupling between EEG sources. Neuroimage, 43(3):497-508, 2008.

T. Honkela, A. Hyvérinen, and J.J. Vayrynen. WordICA-emergence of linguistic represen-
tations for words by independent component analysis. Natural Language Engineering, 16
(03):277-308, 2010.

P.O. Hoyer and A. Hyvéarinen. A multi-layer sparse coding network learns contour coding
from natural images. Vision Research, 42(12):1593-1605, 2002.

A. Hyvérinen and E. Oja. Independent component analysis: algorithms and applications.
Neural networks, 13(4-5):411-430, 2000. ISSN 0893-6080.

A. Hyvérinen, P.O. Hoyer, and M. Inki. Topographic independent component analysis.
Neural Computation, 13(7):1527-1558, 2001. ISSN 0899-7667.

A. Hyvarinen, M. Gutmann, and P.O. Hoyer. Statistical model of natural stimuli predicts
edge-like pooling of spatial frequency channels in V2. BMC Neuroscience, 6(1):12, 2005.

A. Hyvérinen, J. Hurri, and P.O. Hoyer. Natural Image Statistics: A probabilistic approach
to early computational vision, volume 39. Springer-Verlag New York Inc, 2009.

Y. Karklin and M.S. Lewicki. A hierarchical bayesian model for learning nonlinear statistical
regularities in nonstationary natural signals. Neural Computation, 17(2):397-423, 2005.

T. Kolenda, L.K. Hansen, and S. Sigurdsson. Independent components in text. In Advances
in Independent Component Analysis, pages 229-250, 2000.

J. Mairal, R. Jenatton, G. Obozinski, and F. Bach. Convex and network flow optimization
for structured sparsity. Journal of Machine Learning Research, 12:2681-2720, 2011.

S. Osindero, M. Welling, and G.E. Hinton. Topographic product models applied to natural
scene statistics. Neural Computation, 18(2):381-414, 2006.

C.E. Rasmussen. Conjugate gradient algorithm, version 2006-09-08. 2006.

R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and K. Knight. Sparsity and smoothness via
the fused lasso. Journal of the Royal Statistical Society: Series B (Statistical Methodol-
ogy), 67(1):91-108, 2005.

D. Zoran and Y. Weiss. The “tree-dependent components” of natural images are edge filters.
In Advances in Neural Information Processing Systems, volume 22, pages 508-514. MIT
Press, Cambridge, MA, 2010.

378



	Introduction
	Correlated Topographic Analysis
	Motivation for Estimating Topographic Representations
	The Generative Model for Sources
	Approximation of the Likelihood and the Objective Function

	Validation on Artificial Data and Optimization Procedure
	Flow of the Optimization
	Results

	Application to Real Data
	Outputs of Simulated Complex Cells
	Methods
	Results

	Text Data
	Methods
	Results


	Discussion and Conclusion

