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Abstract
Traditional pairwise sequence alignment is based on matching individual samples from two se-
quences, under time monotonicity constraints. However, in some instances matching two segments
of points may be preferred and can result in increased noise robustness. This paper presents an
approach to segmental sequence alignment based on adaptive pairwise segmentation. We intro-
duce a distance metric between segments based on average pairwise distances, which addresses
deficiencies of prior approaches. We then present a modified pair-HMM that incorporates the pro-
posed distance metric and use it to devise an efficient algorithm to jointly segment and align the
two sequences. Our results demonstrate that this new measure of sequence similarity can lead to
improved classification performance, while being resilient to noise, on a variety of problems, from
EEG to motion sequence classification.

1. Introduction

The task of asserting pairwise sequence similarities is central to many problems in machine learn-
ing. A family of alignment algorithms accomplishes this by measuring similarities between pairs
of samples across two sequences and matching them under monotonicity (i.e., temporal ordering)
constraints. Dynamic time warping (DTW) Berndt and Clifford (1994) is a common computational
technique to tackle this problem. DTW and its variations have shown great results in many applica-
tions Ding et al. (2008).

DTW alignment algorithms are based on pairing of individual data points. That is, a sample at
time ti in sequence X is typically matched with only one other sample at time tj in sequence Y . In
many practical applications it may be more desirable (or robust) to establish pairing between groups
of points: matching a temporal segment Xk = [xi, . . . , xi+m] to another segment of the contrasting
sequence, Yl = [yj , . . . , yj+n]. For instance, one might be interested in not only calculating the
distance but also retrieving locally similar segments of the contrasting sequences. In some instances
considering groups of points instead of single samples and comparing their statistics is more robust
to noise. Furthermore, in the case of non-causal time-series where local ordering of samples can
change, such as in EEG recordings de Munck et al. (2007) or signals with general random time
delays Blaum and Bruck (1994), one must employ a method that considers different permutations
of the samples within a short period of time. In those cases point-to-point matching may yield
suboptimal alignments.

In Shariat and Pavlovic (2011) the authors propose an approach, based on canonical correlation
analysis (CCA), to handle the segmental alignment. They formulate an objective (IsoCCA) con-
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strained properly to impose the time monotonicity. Although the results show strong resilience to
noise, the objective does not provide a proper metric between the segments. This can cause the
resulting segments to be unnecessarily short. Furthermore, the non-convexity of IsoCCA objective
makes it increasingly sensitive to initial segmentation and model parameter choices. In another
recent work, Ryoo (2011), the author proposes to find the best matching segments of the two se-
quences based on a probabilistic model. However, the algorithm does not handle gaps/insertions
and, hence, does not consider a complete alignment model. Moreover, the author suggests em-
pirically fixing all segment lengths, with the approach lacking clear means to handle data-driven
segments. In practice, however, variable and data-adapted segments result in more robust align-
ments.

In this paper we propose a segmental alignment framework based on a probabilistic model and
investigate its properties and robustness against noise in the context of sequence classification. The
new contributions of this work are:

• We suggest a distance metric based on average pair-wise distances suitable for measuring
similarity between two segments , aimed at segmental sequence alignment.

• Based on the proposed distance metric we develop our probabilistic alignment model by ex-
tending the pair-HMM formalism.

Through extensive experiments we show that the proposed method can lead to improved classifica-
tion results on benchmark sequence classification tasks, classification of non-causal EEG signals,
and recognition of activities from human motion data. This proposed approach is particularly re-
silient to the presence of noise where other similar approaches fail.

The paper is organized as follows: in Sec. 2 we discuss the metric property of IsoCCA and
construct our segmental metric. In the following two sections (3, 4) the proposed model is discussed
in detail and some of its properties are highlighted. In section 5 experimental results are presented.
Section 6 concludes the paper with the discussion of our findings and some suggestions for future
work.

2. Segment Matching Metric

In Shariat and Pavlovic (2011) the authors propose a segmental alignment method based on CCA,
i.e. IsoCCA. Despite promising results, the proposed framework does not provide a proper metric
between the segments. The reason for that lies in the fact that IsoCCA works by effectively finding
the closet points of the convex hulls of the two segments of points. This results in a non-metric
because the triangular inequality does not hold (cf. Fig. 1). Moreover in the case of overlapping
convex hulls, their distance is zero even though the size of the common area can be very small
resulting in unnecessarily small segments.

In some applications, as illustrated in Sec. 1, one is interested in matching unordered small seg-
ments of points. This naturally leads to matching two unordered sets of points where permutation is
not a matter of concern. In addition to insensitivity to permutation, we seek to find a distance metric
that suppresses the noise and is efficient to compute. Many distance metrics have been proposed
to measure the distance between sets, c.f., Woznica et al. (2006). Often the proposed distances
are based on non-linear functions (Hausdorff, for instance), which are computationally intensive.
Moreover, Hausdorff-type distances can be highly insensitive to the content of the contrasting sets,
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Figure 1: Taking closest distance of two convex hulls as a metric results in violating the triangular
property

focusing instead on the boundary cases. Also their distance surface is rather flat giving very similar
values for different input sets. Kernel distances Kondor (2003) are also not suitable when the set of
points is small and therefore, in practice the estimated distribution is inaccurate. In the following
we propose a distance based on average pair-wise distances.

Formally, for X and Y , two sets of points, we define

d(X ,Y) =
1

|X ||Y|
∑
xi∈X

∑
yj∈Y

‖xi − yj‖n (1)

where ‖.‖n is a convex norm between two points. It is trivial to show d(X ,Y) ≥ 0 and d(X ,Y) =
d(Y,X ). It is also straightforward to prove that (1) has the triangular property given the convexity
of the norms. Equation (1) needs to be slightly modified to have definiteness property (i.e d(x, y) =
0 ⇐⇒ x = y):

D(X ,Y) =
1

|X ∪ Y|

 1

|X |
∑
xi∈X

∑
yi∈(Y−X )

‖xi − yj‖n +
1

|Y|
∑

xi∈(X−Y)

∑
yi∈Y
‖xi − yj‖n

 . (2)

Equation (2) is symmetric, non-negative and definite due to empty sums in case of equality of X
andY . To prove that (2) has triangular property, one can partition (D(X ,Y) +D(Y,Z)−D(X ,Z)) ≥
0 into disjoint sets and observe that given triangular property of (1), the required inequality holds
for 2. Note that in case of X ∩ Y = ∅, (2) reduces to (1).We will show in the experimental results
that even though the ordering of samples is not preserved within a short segment when modelled
as a set, the proposed metric can be used for general purpose alignment. The metric also exhibits
invariance to arbitrary temporal permutations. This can be beneficial for non-causal sequences that
arise from random delays (e.g., EEG). However, it can also be desirable in video retrieval settings
when, for instance, the direction of an activity is not a concern. In Sec. 4 we demonstrate why this
metric is resilient to impulse noise when incorporated into an alignment algorithm and also how it
can be computed efficiently.
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Figure 2: Segmental Pair-HMM diagram

3. Segmental Pair-HMM (SPHMM)

The Pair HMM, introduced by Durbin et al. (1997), can be seen as a probabilistic model defined
on pairs of sequences (X,Y ) that aims to describe their joint likelihood, P (X,Y |alignment). As
shown in Figure 2, PHMM has three states: M for match, I for insertion and D for deletion. Given
two sequences of observations X and Y with n and m samples, the match state emits a pair of
samples (x, y) x ∈ X , y ∈ Y . Insertion and deletion states emit (x,−) and (−, y) respectively
where − stands for a gap. This model implements an affine gap penalty which is more general than
constant gap penalty usually used in DTW.

In the following we add the notion of segmentation to pair-HMM formalism. To define the seg-
mentation structure consider a sequence X , an ordered finite set of samples. We define s : s(X) =
(s1, s2, . . . sLX

) to be a mapping of the indexes of X to segment indexes. For example s(X) maps
the sequence (x1 . . . xn) into segments

(
(x1 . . . xi1), (xi1+1 . . . xi2) . . . (xiLx−1+1 . . . xiLx

)
)

where
iLX

= n. That is s1 : (1, 2, . . . i1)→ 1, sLX
: (iLX−1 + 1, iLX−1 + 2, . . . , iLX

)→ LX and in gen-
eral sk : (ik−1 + 1, ik−1 + 2, . . . , ik)→ k.Likewise, we define s(Y ) for Y . From this point forward
with s we represent the mapping of indexes of both sequences X and Y (i.e. s ≡ (s(X), s(Y ))).
Therefore based on s we have

X = (X1,X2, . . . ,XLX
) (3)

Y = (Y1,Y2, . . . ,YLY
) (4)

where Xk = {xi : i ∈ s−1
k (X)} where s−1

k (X) denotes the sample points in segment Xk and
likewise for Yk.

Given the segments defined by s, the segmental alignment can be defined as the sequence of
states (segment correspondences), qt where t = (tx, ty) is a tuple indexing the sequences’ segment.
For instance t = (i, j) points to segment Xi of X and similarly Xj segment of Y . Therefore, an
optimal alignment is Q∗ = q(1,1) . . . q(LX ,LY ), that maximizes the joint likelihood P (X,Y |Q,λ, s)
where λ are the model parameters. That is,

Q∗ = arg max
Q

P (X,Y |Q,λ, s) (5)
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where

P (X,Y |Q,λ, s) =

p((LX ,LY ))∏
t=(1,1)

∏
t′∈r(t)

bqt(Xt1 ,Yt2)aqtqt′

 bq(LX,LY )
(XLX

,YLY
) (6)

where p(.) gives the preceding tuple of segment indexes while r(.) is the successor operator. The
prior on Q in (6), can be uniform or can encode traditional band-priors such as the Sakoe-Chiba
band. Here bqt(.) is the emission probability of emitting a pair of segments (Xt1 , Yt2) in state qt and
aqtqt′ is the transition probability from state qt to the state emitting the next pair. Basically, given
segmentation s, we simply treat the alignment problem as that of aligning sequences of segments.
Then for instance the meaning of bqt changes from the likelihood of pairs of samples to the likeli-
hood of pairs of segments. Equations (5-6) show that the optimal alignment is the Viterbi path for
observing segmented and matched (X,Y ) given the hidden Markov model in Fig. 2.

To define the probability bqt(Xt1 ,Yt2) we need to consider three cases, depending on the type
of correspondence (M , I , or D). If the correspondence is of type M , then we can define

bqt(Xt1 , Yt2) = exp(−D(Xt1 ,Yt2)) ·Ψ(|Xt1 |, |Yt2 |) = θXt1 ,Yt2
. (7)

D(Xt1 ,Yt2) is the distance between two segments, defined by (2). Ψ specifies the distribution of
the corresponding segment lengths which can be learned from the data or assumed to have a certain
distribution. If the correspondence is of type I we then define

bqt(Xt1 ,−) = Pr(Xt1 , I) = exp(−σg|Xt1 |) = ζXt1 ,−, (8)

In the case of D we can similarly define

bqt(−,Yt2) = Pr(D,Yt2) = exp(−σg|Yt2 |) = ζ−,Yt2
(9)

where σg is scaling parameter. Given the observation likelihoods, it is possible to extend Durbin
et al. (1997) non-segmental alignment Viterbi algorithm to the segmental model. To find the optimal
segmentation s one can search over permissible segment lengths at each step of recursion in the
Viterbi algorithm. This is equivalent to optimizing

Q∗, s∗ = arg max
Q,s

P (X,Y |Q,λ, s), (10)

which is our ultimate objective. To make the procedure computationally tractable one may impose
a maximum constrain on the segment length.

3.1. Marginal matching likelihood

Let us define S to be the set of all possible segmentations of two sequences X and Y with m and n
samples, respectively. Also assume that Π is the set of all segmental alignments between X and Y .
Using the forward algorithm one can estimate the following

P (X,Y |λ) =
∑
s∈S

∑
Q∈Π

P (X,Y |Q,λ, s)P (s)P (Q) (11)

Computing the above is not tractable for every possible segmentation. We will assume P (Q) and
P (s) to be uniform. Therefore, we approximate the joint probability of X and Y at each step
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based on partial alignments and segmentations. The likelihood of matching two segments given all
previous segmentations can be formulated as

P
{
x1...i, y1...j |qt = M,λ,

(
S∗(x1...(i−k)), S

∗(y1...(j−l))
)}

= θx(i−k)...(i−1),y(j−l)...(j−1)

max
s′∈(S(x1...(i−k)),S(y1...(j−l)))

∑
Q′∈Π(i−k),(j−l)

P
{
x1..(i−k), y1..(j−l)|Q′, λ, s′

}
(12)

where

(S∗ (x1...i) , S
∗ ((y1...j)) = arg max

s′∈(S(x1...i),S(y1...j))

∑
Q′∈Πi,j

P (x1..i, y1..j |Q′, λ, s′). (13)

In (12) and (13), xi (yi) denotes a sample in the sequence. Also, k and l are permissible segment
lengths for X and Y . S(.) is the set of all segmentations while S∗(.) denotes the approximated
segmentation of the given input sequence. Πi,j is the set of all possible alignments of X and Y up
to xi and yj . The first term on the right hand side of (12) is the likelihood of matching two segments
the same as (7), while the second term finds the maximum marginalized likelihood over aligning
partial sequences given all possible segmentations up to xi−k, yj−l. The same formulation can be
defined for other states as well. The result of applying this recursive algorithm is the likelihood of
all permissible segmentations for every pair of samples of contrasting sequences.

4. Discussion

In this section we discuss how the distance metric defined by (2) suppresses noise and affects the
segment size as well as analyze the time complexity of the alignment algorithm.

4.1. Segment Size and Noise Suppression

Consider two discretely sampled continuous multivariate sequences, X and Y , that are to be sent
through a noisy channel. In the source, both sequences are segmented and each segment is approx-
imated by a line then the obtained lines are re-sampled and transmitted through the channel. To
observe the mechanism of noise suppression based on the proposed distance we consider aligning
of the two signals in the destination while an impulse is added to the one the sequences during
transmission due to some interference. Formally, let Xk and Yl be two of the line segments at the
same time index where xk,i = βti + ξ, ti = [1 . . . .|Xk|], yl,j = βtj , and tj = [1 . . . |Yl|]. Suppose
an impulse corrupts Xk at t = tc (1 ≤ tc ≤ min(|Xk|, |Yl|)) such that xk,tc = yl,tc + ξ + α (Fig.3)
Assuming Xk ∩ Yl = ∅ (which is very probable given that the two sequences are continuous) the
distance of two segments will be smaller than a point-to-point match only if the following inequality
holds

D(Xk,Yl) =
1

|Xk||Yl|

|Xk|∑
i=1

|Yl|∑
j=1

‖xk,i − yl,j‖

≤ |β|
|Xk||Yl|

|Xk|∑
i=1

|Yl|∑
j=1

‖yl,i − yl,j‖

+
(|Xk| − 1)

|Xk|
|ξ|+ 1

|Xk|
|ξ + α| < |ξ + α|. (14)
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Figure 3: Piecewise linear approximation of a sequence based on fixed segments. The right plot
shows the segments and the approximated lines (dashed lines). Two of the segments that
are to be matched are magnified.

Note that since Xk ∩ Yl = ∅, the original distance described by (2) is reduced to (1). We used the
convexity of the norm in the above. Therefore,

|Xk|∑
i=1

|Yl|∑
j=1

‖yl,i − yl,j‖ <
|Yl|(|Xk| − 1) [|α+ ξ| − |ξ|]

|β|
(15)

has to hold. One can observe that as long as α < −|ξ| − ξ or α > |ξ| − ξ, by increasing |Xk| (or
|Yl|) while the slope of the line (β) is kept constant, the left hand side of (15) grows quadratically
while the right hand side grows linearly which leads to bounded segment length. Furthermore,
if |β| → 0 then as long as |Xk| > 1, (15) is a tautology meaning that longer segment length is
always favourable. Consequently, As β increases a point-to-point match becomes more likely. The
result of such distance metric is that it flattens the signal around an impulse not only according to
its neighbourhood but also to the contrasting sequence. This leads to a dynamic noise removal.
Therefore, if the impulse is in fact a characteristic of the signal and not a noise, it will not be
removed (similar to DTW) but in case of noisy impulse, it will be averaged and flattened.

4.2. Complexity

The time complexity of (10) is dependent both on the lengths of segments in each sequence and
the length of the sequences themselves. Given that the number of states is fixed and small, one can
prove that the time complexity of the Viterbi (or forward) algorithm is O(l1l2mn) where l1 and l2
are the maximum segment lengths for each sequence and n and m are the lengths of the sequences.
To compute the distance between two segments, one can employ the summed area table technique
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Figure 4: Sample of a sequence from UCR dataset (Coffee) with different levels of noise.

Crow (1984) to improve the performance. That is, the pairwise distances of all pairs of samples are
pre-calculated and the summed area table is constructed. Then within the matching procedure only
a few additions are required to compute the distance. Usually, l1 and l2 are not too long relative
to the sequence lengths. Thus, the overall time complexity is typically a constant factor away from
that of the regular DTW.

5. Experimental Results

In this section we show the utility of SPHMM through extensive experiments. We first examine
our proposed approach the benchmark data. We use the first dataset (data1) from the UC Riverside
”time-series classification page” (http://www.cs.ucr.edu/˜eamonn/time_series_data/).
To show that our method is able to deal with non-causal time-series we also apply it to a publicly
available EEG data set. Finally, we show that SPHMM can improve the performance of activity
recognition classification on a subset of CMU MoCap data.

The parameters of SPHMM are determined empirically, as described below. Euclidean distance
is used as the measure of distance between two samples. We observed that L1 norm can slightly, but
not significantly, improve the results in case of excessive noise but we do not include those results.
Throughout this section l1 and l2 denote the maximum allowed lengths of the segments. We have
also assumed the scaling parameter of gap operations (equations (8) and (9)) to be σg = 1. In all
experiments the classifier is the 1-Nearest Neighbour (1-NN), with the similarity measure defined
by one of the three methods (two traditional, DTW or PHMM, and SPHMM) .

5.1. Benchmark Data

In order to compare our proposed approach to DTW and demonstrate the applicability of our method
to general sequences, we tested SPHMM on the first subset of time-series from the UC Riverside
time-series repository that contains 20 datasets. To be able to test the noise resilience of SPHMM,
we have added impulse noise to all sequences. Additive noise process is Gaussian N(0, ωσi) where
σi is the standard deviation of feature i and ω is the power degree of the noise. We have added the
noise to time points chosen uniformly at random such that the noise does not cover more than 20%
of the sequence duration (Fig. 4).

We conducted the experiment on original data and one noisy version of data with ω = 100%.
For every sequence, we have sampled from the noise process three times independently and added
the resulting samples to the corresponding time-series. Different similarity measures are then ap-
plied to each noisy version of the data and the resultant recognition accuracies are averaged over
different noisy versions of each dataset and reported. The results are shown in Tab.1, We compared
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Table 1: UCR time-series classification accuracy.
Original ω = 100%

DTW PHMM SPHMM DTW PHMM SPHMM
Lighting7 72.60 75.34 79.45 43.51 53.97 73.74
OSULeaf 58.26 65.70 66.12 47.11 55.15 68.18
OliveOil 86.67 86.67 86.67 28.89 28.89 32.22

SwedishLeaf 79.68 80.64 85.28 27.84 46.43 57.81
Trace 100.00 100.00 100.00 73.67 75.83 88.67

Two Patterns 100.00 100.00 100.00 88.22 89.86 99.96
fish 83.43 86.86 86.86 26.28 57.62 68.19

synthetic control 99.33 96.67 97.33 92.78 92.89 93.22
wafer 98.00 99.76 99.79 84.01 89.60 99.39
yoga 83.80 84.00 84.00 65.10 67.97 78.20

50words 75.16 80.00 80.44 57.21 74.12 77.87
Adiac 60.36 60.87 60.87 7.08 12.79 37.02
Beef 50.00 53.33 53.33 40.00 50.00 53.33
CBF 99.44 99.89 99.89 74.37 85.93 98.00

Coffee 82.14 78.57 82.14 57.14 63.22 76.78
ECG200 80.00 91.00 91.00 77.00 81.00 85.00
FaceAll 79.94 77.51 79.41 67.89 69.05 77.20

FaceFour 82.95 89.77 90.91 52.65 69.78 89.77
Gun Point 90.67 98.00 98.00 69.33 73.78 83.55
Lighting2 88.52 90.16 90.16 61.97 76.89 86.89
Average 82.55 84.74 85.58 57.1 65.74 76.25
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Table 2: Statistics of match operations for UCR time-series. µ indicates the mean, σ stands for
standard deviation of segments’ length and max shows the largest extracted segment.

Original ω = 100%
µ σ max µ σ max

Lighting7 1.02 0.21 5 1.09 0.42 5
OSULeaf 1.00 0.09 5 1.13 0.56 5
OliveOil 1.00 0.00 1 1.00 0.01 2

SwedishLeaf 1.01 0.15 5 1.05 0.27 5
Trace 1.00 0.06 4 1.05 0.27 5

Two Patterns 1.05 0.29 5 1.10 0.39 5
fish 1.00 0.00 1 1.03 0.18 5

synthetic control 1.07 0.31 5 1.12 0.38 5
wafer 1.01 0.11 5 1.05 0.28 5
yoga 1.00 0.02 5 1.03 0.18 5

50words 1.00 0.07 5 1.09 0.43 5
Adiac 1.00 0.01 3 1.03 0.21 5
Beef 1.00 0.00 1 1.01 0.23 5
CBF 1.03 0.21 5 1.13 0.44 5

Coffee 1.60 1.54 5 2.68 1.16 5
ECG200 1.02 0.18 5 1.06 0.30 5
FaceAll 1.04 0.26 5 1.09 0.36 5

FaceFour 1.06 0.38 5 1.10 0.44 5
Gun Point 1.00 0.01 2 1.05 0.26 5
Lighting2 1.02 0.19 5 1.09 0.43 5

the proposed approach to DTW and pair-HMM (where no segmentation is applied) with the warping
band. The warping band for all methods is set to ρ = 15% of the length of the sequence. The pa-
rameters for SPHMM and PHMM are set to δ = 0.4 or δ = 0.1, ε = .1, τ = 0.01 and l1 = l2 = 5.
For OliveOil, SwedishLeaf, Synthetic control, Beef, ECG200, FaceAll, FaceFour, Adiac and Wafer,
δ = 0.1 resulted in better performance while δ = 0.4 showed a better result on the remaining
datasets in the training phase. The parameters are not changed for noisy data experiments.

One can see in Tab.1 that PHMM is superior to DTW in 17 cases and SPHMM is superior or
on par with PHMM in all cases and superior to DTW in 18 cases in the original, noise-free set-
ting. However, as soon as the noise is introduced, SPHMM shows significantly better performance
compared to both DTW and PHMM even though PHMM still outperforms DTW.

Table 2 shows some statistics of alignments for the original and noisy sequences resulted from
the experiment. It shows the average (µ), standard deviation (σ) and the maximum (max) length of
segments for match operations for all alignments. It could be beneficial to increase the maximum
segment length as in many instances segments of length 5 have been extracted. However, the results
still show significant improvement while the computational time is tractable with a maximum seg-
ment length as small as 5. We do not show the statistics for gap operations but generally their mean
segment length reduces as the noise level elevates since they are replaced by match operations. One
can observe that the average length of match usually increases as the noise level elevates. Also note
that the average segment length is close to 1, i.e. the traditional PHMM sample-to-sample match-
ing. This is not unexpected as the chosen data does not result from the random delay processes.
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Table 3: Recognition rates for EEG dataset. The first row shows the maximum segment length. For
each maximum segment length the mean accuracy and standard deviation over different
folds are reported.

l = 1 l = 5 l = 10 l = 20

Acc St.dev Acc St.dev Acc St.dev Acc St.dev
SPHMM 74.7 2.61 75.1 2.97 78.47 2.35 82.64 1.35

DTW 74.4 1.78 N/A
CTW 75.52 1.01 N/A

Table 4: Accuracy results for different fixed segmentations
lfixed = 5 lfixed = 10 lfixed = 20 lfixed = 30

Acc St.dev Acc St.dev Acc St.dev Acc St.dev
70.62 2.14 72.79 2.16 73.89 2.62 72.64 2.17

On the other hand, and due to noise (inherent or artificial), it is advantageous to have intermittently
extended segments, as evident from the second column of Tab. 2.

It is interesting to note that SPHMM’s recognition rates are better than the best reported recog-
nition rates for DTW in UC Riverside ”time-series classification page” in 17 cases. In those experi-
ments DTW is finely tuned with additional optimal band selection.

5.2. EEG Signal Classification

We next applied our adaptive segmental alignment model to EEG signals to show its effectiveness
in case of non-causal and noisy time-series. We used the P300 dataset described in Hoffmann et al.
(2005). Each subject is exposed to 6 different images, one of which is the target image. Dataset
consists of 9 subjects. Four session are held for each subject. In each session six runs are conducted
such that the set of all 6 images is shown at least 20 times to each subject where one of the images
is the target in each run. We chose subject 1 and target 2 for our experiment. In each fold of
cross-validation we keep one session as training and the remaining three are used as the test set
such that every session is used as training once. 1-NN is used as the classifier. We applied the
default pre-processing on the data except that we increased the sub-sampling rate to 128 from 32
to acquire longer signals (129 samples). As recommended, we only kept 8 channels. We have
compared SPHMM against DTW and CTW Zhou and de la Torre (2009). The spatial embedding
included by CTW is a reasonable choice for aligning EEG signals. We have applied SPHMM with
different maximum lengths to demonstrate that the longer segments and permutation invariance of
the distance metric can result in improved recognition rates.

The results are shown in Tab. 3. As expected the accuracy does not show significant improve-
ment over DTW for maximum segment lengths of 5. However, for longer segments SPHMM be-
comes significantly more accurate. Optimal performance of DTW was achieved without a warping
band. To assess the effects of adaptive segmentation and alignment we also tested against sequences
pre-segmented into fixed length segments. The results are shown in Tab. 4. Adaptive segmentation
remains advantageous especially for longer segment lengths.
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Figure 5: Segment length distribution for all positions for two EEG sequences. A certain portion of
the graph is magnified. Smaller graph shows the likelihood of all possible segmentations
for a single position (24,38) in the alignment matrix

Segment Length Distribution: Based on (12) we estimated the likelihood of all possible seg-
mentations in aligning two EEG sequences for a maximum segment length of 30 and visualized it
in Fig 5. The right-most graph depicts a vector field where each vector points to the most likely
segment length (result of 12) at the corresponding position in the warping matrix and darker color
indicates higher likelihood. The optimal alignment path is shown in the graph. A small portion of
the graph is magnified in the middle graph, and then with the left-most graph depicting an example
of the likelihood of all possible segmentations for a single position (24,38) selected by the align-
ment algorithm as a match operation. The chosen segment length at that position is 16 and 20 which
has the highest likelihood and is the same segmentation selected by the alignment algorithm. This
indicates the approximated forward algorithm can potentially be used to learn an improved local
segmentation model.

Figure 6 shows the histogram of selected segment lengths for all pairs of sequences by aligning
all recordings of two full sessions for target 2. The maximum segment length is set to length of the
sequence to observe which segment lengths are selected without being limited to an upper bound.
Since likely segments were mostly below the length of 20 we only show that potion of the histogram.
Segment length of 1 and 1 is the most likely segment length. If this was not the case it would be
very unlikely that DTW could result in any successful alignment.

5.3. Motion Capture Data

To contrast our approach with IsoCCA we tested SPHMM on MoCap sequences in the same setting.
We used the same selection of sequences as Shariat and Pavlovic (2011). Namely, 62 sequences
containing more than 40000 frames of 8 different actions from CMU MoCap dataset (http://
mocap.cs.cmu.edu): walking, runing, boxing, jumping, marching, dancing, sitting down and
shaking hands. Each class contains 7, 10, 8, 6, 10, 10, 7 and 4 sequences, respectively. Classes
were selected with actions performed by different subjects. The dimensionality of data is reduced
from 62 to 10 using PCA while keeping 99.8% of the energy. We compared SPHMM to IsoCCA,
DTW and CTW Zhou and de la Torre (2009). 1-NN is used as the classifier to find the closest
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Figure 6: The distribution of segment lengths selected by alignment algorithm for all pairwise
matches with maximum length of 129. Note that no segments of length over 30 were
ever chosen.

Table 5: Accuracy of fixed segmentation
lfixed = 5 lfixed = 10 lfixed = 20 lfixed = 50

Accuracy 80.65 74.19 77.42 69.35

sequence to any given query in a leave-one-out setting. Parameters for SPHMM are empirically set
to δ = 0.001, ε = .1, τ = 0.01 and l1 = l2 = 10. In DTW Sakoe-Chiba constraint with ρ = 13% is
imposed to improve its performance in classification. For higher levels of noise we have permitted
more gap operations for DTW by increasing warping window to ρ = 18%. CTW is applied on the
original 62 dimensional data set as it showed a better performance on it. As mentioned in Shariat
and Pavlovic (2011), CTW is unable to achieve better results than DTW. The recognition accuracies
are shown in Tab. 6.

Our method shows significantly higher performance compared to the other methods. The seg-
mental approach was able to recognize proper segments of sequences and match them to their cor-
responding segments on the contrasting sequence. As an example, in Fig. 7, we have shown a
portion of the alignment of two boxing sequences. Segments are separated by red lines and matched
segments are indicated by arrows. Segments with no arrow pointing to them are either deleted or
inserted based on the sequence one may take as reference. One can observe that similar actions
are distinguished and matched. This can be explained by the fact that if the two partitions are sim-
ilar and do not change drastically, the segment length tends to be longer (ref. Sec. 4). Another
interesting observation is that the direction of action is ignored. Last match depicted in the figure,
shows the correspondence of two punching actions one in forward and the other one in backward
direction. In an action recognition task one is typically interested in retrieving actions regardless of
their direction. However, the change of direction can sometimes introduce practical difficulties.

Average match segment length for MoCap was 3.70 with standard deviation of 4.05 showing that
many (relatively) long segments are selected. Again to assert the efficacy of adaptive segment length
determination we compared our main results against fixed segmentation (Tab. 5). The results are
significantly inferior to adaptive SPHMM. Based on table 5 we assume that adaptive segmentation
with maximum segment length of 20 may result in an even a better performance.
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Figure 7: A portion of alignment of two boxing sequences. Segments are separated by red lines.
The matched segments are indicated by arrows. Those segments with no arrow pointing
to them are either deleted or inserted.

Table 6: Accuracy of SPHMM versus other methods
SPHMM IsoCCA DTW CTW

Accuracy 90.32 87.10 82.26 50.64

To assess the noise resilience of the SPHMM compared to other methods we added impulse
noise in the same way described in section 5.1 except that the spread of the noise is restricted to
5% of the sequence. The noise is added only to the query sequences and the experiment setting is
as above. To investigate whether a noise removal pre-processing can improve the performance of
DTW beyond SPHMM, we apply a median filter on the data and show its performance with DTW-
NR along with the accuracies of DTW, IsoCCA and SPHMM in Fig. 8. The noise level in Fig. 8
starts form ω = .2 to make the noise removal performed on the query for DTW more meaningful.
Obviously, noise removal on clean data will result in loss of information and leads to degraded
performance for DTW. One can observe the stability of the classification accuracy of SPHMM in
presence of different levels of noise. The noise removal can elevate the performance of DTW at
high noise levels but it reduces the accuracy in lower levels of noise.

6. Conclusion

In this paper we presented a probabilistic model for segmental sequences alignment. We showed
that a modified pair-HMM, in conjunction with a proper segment metric, can lead to effective joint
segmentation and segmental alignment. Our experimental results showed high accuracy particularly
when confronted with high levels of noise where DTW does not perform well even after noise re-
moval pre-processing. Additionally, the invariance to local permutation has enabled our algorithm
to perform well on non-causal signals. Compared to IsoCCA, our metric-based approach displays
improved classification performance while having a reasonable computational complexity in prac-
tice.
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Figure 8: Comparing recognition accuracy of SPHMM versus other methods in presence of noise.
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