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Abstract

We consider supervised dimension reduction (SDR) for problems with discrete variables.
Existing methods are computationally expensive, and often do not take the local structure
of data into consideration when searching for a low-dimensional space. In this paper,
we propose a novel framework for SDR which is (1) general and flexible so that it can
be easily adapted to various unsupervised topic models, (2) able to inherit scalability of
unsupervised topic models, and (3) can exploit well label information and local structure
of data when searching for a new space. Extensive experiments with adaptations to three
models demonstrate that our framework can yield scalable and qualitative methods for
SDR. One of those adaptations can perform better than the state-of-the-art method for
SDR while enjoying significantly faster speed.
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1. Introduction

In supervised dimension reduction (SDR), we are asked to find a low-dimensional space
which preserves the predictive information of the response variable. Projection on that
space should keep the discrimination property of data in the original space. While there
is a rich body of researches on SDR, our primary focus in this paper is on developing
methods for discrete data. At least three reasons motivate our study: (1) current state-
of-the-art methods for continuous data are really computationally expensive (Chen et al.,
2012; Parrish and Gupta, 2012; Sugiyama, 2007), and hence can only deal with data of small
size and low dimensions; (2) meanwhile, there are excellent developments which can work
well on discrete data of huge size (Mimno et al., 2012; Smola and Narayanamurthy, 2010)
and extremely high dimensions (Than and Ho, 2012a), but are unexploited for supervised
problems; (3) further, continuous data can be easily discretized to avoid sensitivity and to
effectively exploit certain algorithms for discrete data (Yang and Webb, 2009).

Topic modeling is a potential approach to dimension reduction. Recent advances in this
new area can deal well with huge data of very high dimensions (Mimno et al., 2012; Than and
Ho, 2012a; Smola and Narayanamurthy, 2010). However, due to their unsupervised nature,
they do not exploit supervised information. Furthermore, because the local structure of
data in the original space is not considered appropriately, the new space is not guaranteed
to preserve the discrimination property and proximity between instances. These limitations
make unsupervised topic models unappealing to supervised dimension reduction.
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Investigation of local structure in topic modeling have been initiated by some previous
researches (Wu et al., 2012; Huh and Fienberg, 2012; Cai et al., 2009). These are basically
extensions of probabilistic latent semantic analysis (PLSA) by Hofmann (2001), which take
local structure of data into account. Local structures are derived from nearest neighbors,
and are often encoded in a graph. Those structures are then incorporated into the likelihood
function when learning PLSA. Such an incorporation of local structures often results in very
high complexity for learning. For instances, the complexity of each iteration of the learning
algorithms by Wu et al. (2012) and Huh and Fienberg (2012) is quadratic in the size M of
the training data; and that by Cai et al. (2009) is triple in M because of requiring a matrix
inversion. Hence these developments, even though often being shown to work well, are very
limited when the data size is large.

Some topic models (Blei and McAuliffe, 2007; Lacoste-Julien et al., 2008; Zhu et al.,
2012) for supervised problems can do simultaneously two nice jobs. One job is derivation
of a meaningful space which is often known as “topical space”. The other is that super-
vised information is explicitly utilized to find the topical space. Nonetheless, there are two
common limitations of existing supervised topic models. First, the local structure of data
is not taken into account. Such an ignorance can hurt the discrimination property in the
new space. Second, current learning methods for those supervised models are often very
expensive, which is problematic with large data of high dimensions.

In this paper, we approach to SDR in a novel way. Instead of developing new supervised
models, we propose a framework which can inherit the scalability of recent advances for
unsupervised topic models, and can exploit label information and local structure of the
training data. The main idea behind the framework is that we first learn a unsupervised
model to find an initial topical space; we next project documents on that space exploiting
label information and local structure, and then reconstruct the final space. To this end, we
employ the FW framework for doing projection/inference which is proposed by Than and
Ho (2012b). Note that the FW framework is very scalable and flexible, and enables us to
easily incorporate side information into inference.

Our framework for SDR is general and flexible so that it can be easily adapted to
various unsupervised topic models. To provide some evidences, we adapt our framework
to three models: probabilistic latent semantic analysis (PLSA) by Hofmann (2001), latent
Dirichlet allocation (LDA) by Blei et al. (2003), and fully sparse topic models (FSTM)
by Than and Ho (2012a). The resulting methods for SDR are respectively denoted as
PLSAc, LDAc, and FSTMc. Extensive experiments show that PLSAc, LDAc, and FSTMc

can perform substantially better than their unsupervised counterparts.1 PLSAc and LDAc

often perform comparably with the state-of-the-art supervised model, MedLDA by Zhu
et al. (2012). FSTMc can do consistently better than MedLDA, and reach comparable
performance with SVM which works on the original space. Moreover, PLSAc and FSTMc

consumed significantly less time than MedLDA to learn good low-dimensional spaces. These
results suggest that our framework provides a competitive approach to supervised dimension
reduction.

1. Note that due to being dimension reduction methods, PLSA, LDA, FSTM, PLSAc, LDAc, and FSTMc

themselves cannot directly do classification. Hence we use SVM for doing classification tasks on the low-
dimensional spaces. MedLDA itself can do classification. Performance for comparison is the accuracy of
classification.
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Organization: in the next section, we describe briefly some notations, results, and re-
lated unsupervised topic models. We present the proposed framework for SDR in Section 3.
We also discuss in Section 4 the reasons why label information and local structure of data
can be exploited well to result in good methods for SDR. Empirical evaluation is presented
in Section 5. Finally, we discuss some open problems and conclusions in the last section.

2. Background

Consider a corpus D = {d1, ...,dM} consisting of M documents which are composed from
a vocabulary of V terms. Each document d is represented as a vector of term frequen-
cies, i.e. d = (d1, ..., dV ) ∈ RV , where dj is the number of occurrences of term j in d.
Let {y1, ..., yM} be the class labels assigned to those documents, respectively. The task of
supervised dimension reduction (SDR) is to find a new space of K dimensions which pre-
serves the predictiveness of the response/label variable Y . Loosely speaking, predictiveness
preservation requires that projection of data points onto the new space should preserve sep-
aration (discrimination) between classes in the original space, and that proximity between
data points is maintained. Once the new space is determined, we can work with projections
in that low-dimensional space instead of the high-dimensional one.

2.1. Unsupervised topic models

Probabilistic topic models often assume that a corpus is composed of K topics, and each
document is a mixture of those topics. Example models includes PLSA (Hofmann, 2001),
LDA (Blei et al., 2003), and FSTM (Than and Ho, 2012a). Under a model, each document
has another latent representation, known as topic proportion, in the K-dimensional space.
Hence topic models play a role as dimension reduction ifK < V . Learning a low-dimensional
space is equivalent to learning the topics of a model. Once such a space is learned, new
documents can be projected onto that space via inference. Next, we describe briefly how
to learn and to do inference for three models.

2.1.1. PLSA

Let θdk = P (zk|d) be the probability that topic k appears in document d, and βkj =
P (wj |zk) be the probability that term j contributes to topic k. These definitions basi-

cally imply that
∑K

k=1 θdk = 1 for each d, and
∑V

j=1 βkj = 1 for each topic k. The PLSA
model assumes that document d is a mixture of K topics, and P (zk|d) is the propor-
tion that topic k contributes to d. Hence the probability of term j appearing in d is
P (wj |d) =

∑K
k=1 P (wj |zk)P (zk|d) =

∑K
k=1 θdkβkj . Learning PLSA is to learn the topics

β = (β1, ...,βK). Inference of document d is to find θd = (θd1, ..., θdK).
For learning, we use the EM algorithm to maximize the likelihood of training data:

E-step: P (zk|d, wj) =
P (wj |zk)P (zk|d)∑K
l=1 P (wj |zl)P (zl|d)

, (1)

M-step: θdk = P (zk|d) ∝∑V
v=1 dvP (zk|d, wv), (2)

βkj = P (wj |zk) ∝
∑
d∈D djP (zk|d, wj). (3)

Inference in PLSA is not explicitly derived. Hofmann (2001) proposed an adaptation
from learning: keeping topics fixed, iteratively do the steps (1) and (2) until convergence.
This algorithm is called folding-in.
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2.1.2. LDA

Blei et al. (2003) proposed LDA as a Bayesian version of PLSA. In LDA, the topic pro-
portions are assumed to follow a Dirichlet distribution. The same assumption is endowed
over topics β. Learning and inference in LDA are much more involved than those of PLSA.
Each document d is independently inferred/projected by the variational method with the
following updates:

φdjk ∝ βkwj exp Ψ(γdk), (4)

γdk = α+
∑

dj>0

φdjk, (5)

where φdjk is the probability that topic i generates the jth word wj of d; γd is the variational
parameters; Ψ is the digamma function; α is the parameter of the Dirichlet prior over θd.

Learning LDA is done by iterating the following two steps until convergence. The E-step
does inference for each document. The M-step maximizes the likelihood of data w.r.t β by
the following update:

βkj ∝
∑

d∈D
djφdjk. (6)

2.1.3. FSTM

FSTM is a simplified variant of PLSA and LDA. It is the result of removing the endowment
of Dirichlet distributions in LDA, and is a variant of PLSA when removing the observed
variable associated with each document. Even though there is no explicit prior over topic
proportions, Than and Ho (2012a) show that in fact an implicit prior exists. This interesting
property is due to the sparse inference algorithm in FSTM. Learning of topics is simply a
multiplication of the new and old representations of the training data.

βkj ∝
∑

d∈D
djθdk. (7)

2.2. The FW framework for inference

Inference is an integral part of probabilistic topic models. The main task of inference for a
given document is to infer the topic proportion that maximizes a certain objective function.
The most common objectives are likelihood and posterior probability. Most algorithms for
inference are model-specific and are nontrivial to be adapted to other models. A recent study
by Than and Ho (2012b) reveals that there exists a highly scalable algorithm for sparse
inference that can be easily adapted to various models. That algorithm is very flexible
so that an adaptation is simply a choice of an appropriate objective function. Details
are presented in Algorithm 1, in which ∆ = {x ∈ RK : ||x||1 = 1,x ≥ 0} denotes the
unit simplex in the K-dimensional space. The following theorem indicates some important
properties.

Theorem 1 (Clarkson, 2010) Let f be a continuously differentiable, concave function over
∆, and denote Cf be the largest constant so that f(αx′+(1−α)x) ≥ f(x)+α(x′−x)t∇f(x)−
α2Cf , ∀x,x′ ∈ ∆, α ∈ [0, 1]. After ` iterations, the Frank-Wolfe algorithm finds a point θ`
on an (`+ 1)−dimensional face of ∆ such that maxθ∈∆ f(θ)− f(θ`) ≤ 4Cf/(`+ 3).
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Algorithm 1 FW framework

Input: document d and topics
β1, ...,βK .
Output: latent representation θ.
Step 1: select an appropriate
objective function f(θ) which is
continuously differentiable, concave
over ∆.
Step 2: maximize f(θ) over ∆ by
the Frank-Wolfe algorithm.

Algorithm 2 Frank-Wolfe algorithm

Input: objective function f(θ).
Output: θ that maximizes f(θ) over ∆.
Pick as θ0 the vertex of ∆ with largest f
value.
for ` = 0, ...,∞ do
i′ := arg maxi∇f(θ`)i;
α′ := arg maxα∈[0,1] f(αei′ + (1− α)θ`);
θ`+1 := α′ei′ + (1− α′)θ`.

end for

3. A two-steps framework for supervised dimension reduction

We now describe our framework for SDR. Existing methods for this problem often try to
find directly a low-dimensional space that preserves separation of the data classes in the
original space. For simplicity, we call that new space to be discriminative space. Different
approaches have been employed such as maximizing the conditional likelihood (Lacoste-
Julien et al., 2008), minimizing the empirical loss by max-margin principle (Zhu et al.,
2012), or maximizing the joint likelihood of documents and labels (Blei and McAuliffe,
2007). Those are one-step algorithms to find the discriminative space, and bear resemblance
to existing methods for continuous data (Parrish and Gupta, 2012; Sugiyama, 2007). Three
noticeable drawbacks are that learning is very slow, that scalability of unsupervised models
is not appropriately exploited, and more seriously, the inherent local structure of data is
not taken into consideration.

To overcome those limitations of supervised topic models, we propose a novel framework
which consists of two steps. Loosely speaking, the first step tries to find an initial topical
space, while the second step tries to utilize label information and local structure of the
training data to find the discriminative space. The first step can be done by employing a
unsupervised topic model (Than and Ho, 2012a; Mimno et al., 2012), and hence inherits
scalability of unsupervised models. Label information and local structure in the form of
neighborhood will be used to guide projection of documents onto the initial space, so that
inner-class local structure is preserved and inter-class margin is widen. As a consequence,
the discrimination property is not only preserved, but likely made better in the final space.

Figure 1 depicts graphically this framework, and a comparison with other one-step
methods. Note that we do not have to design entirely a learning algorithm as for existing
approaches, but instead do one further inference step for the training documents. Details of
our framework are presented in Algorithm 3. Each step from (2.1) to (2.4) will be detailed
in the next subsections.
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Figure 1: Sketch of approaches for SDR. Existing methods for SDR directly find the dis-
criminative space, which is supervised learning (c). Our framework consists of
two separate steps: (a) first find an initial space in a unsupervised manner; then
(b) utilize label information and local structure of data to derive the final space.

Algorithm 3 Two-steps framework for supervised dimension reduction

Step 1: learn a unsupervised model to get K topics β1, ...,βK .
A = span{β1, ...,βK} is the initial space.

Step 2: (finding discriminative space)
(2.1) for each class c, select a set Sc of topics which are potentially discriminative for c.
(2.2) for each document d, select a set Nd of its nearest neighbors which are in the same
class as d.
(2.3) infer new representation θ∗d for each document d in class c by the FW framework
with the objective function

f(θ) = λ.L(d̂) + (1− λ). 1
|Nd|

∑
d′∈Nd L(d̂′) +R.

∑
j∈Sc sin(θj),

where L(d̂) is the log likelihood of document d̂ = d/||d||1; λ ∈ [0, 1] and R are nonnegative
constants.
(2.4) compute new topics β∗1, ...,β

∗
K from all d and θ∗d.

B = span{β∗1, ...,β∗K} is the discriminative space.

3.1. Selection of discriminative topics

It is natural to assume that the documents in a class are talking about some specific topics
which are little mentioned in other classes. Those topics are discriminative in the sense that
they help us distinguish classes. Unsupervised models do not consider discrimination when
learning topics, hence offer no explicit mechanism to see discriminative topics.

We use the following idea to find potentially discriminative topics: a topic that is dis-
criminative for class c if its contribution to c is significantly greater than to other classes.
The contribution of topic k to class c is approximated by

Tck ∝
∑

d∈Dc

θdk,

where Dc is the set of training documents in class c, θd is the topic proportion of document
d which had been inferred previously from a unsupervised model. We assume that topic k
is discriminative for class c if

Tck
min{T1k, ..., TCk}

≥ ε, (8)

400



Supervised dimension reduction with topic models

where C is the total number of classes, ε is a constant which is not smaller than 1.
ε can be interpreted as the boundary to differentiate which classes a topic is discrimina-

tive for. For intuition, considering the problem with 2 classes, condition (8) says that topic
k is discriminative for class 1 if its contribution to k is at least ε times the contribution
to class 2. If ε is too large, there is a possibility that a certain class might not have any
discriminative topic. On the other hand, a too small value of ε may yield non-discriminative
topics. Therefore, a suitable choice of ε is necessary. In our experiments we find that ε = 1.5
is appropriate and reasonable. We further constraint Tck ≥ median{T1k, ..., TCk} to avoid
the topic that contributes equally to most classes.

3.2. Selection of nearest neighbors

The use of nearest neighbors in Machine Learning have been investigated by various re-
searches (Wu et al., 2012; Huh and Fienberg, 2012; Cai et al., 2009). Existing investiga-
tions often measure proximity of data points by cosine or Euclidean distances. In contrast,
we use the Kullback-Leibler divergence (KL). The reason comes from the fact that projec-
tion/inference of a document onto the topical space inherently uses KL divergence.2 Hence
the use of KL divergence to find nearest neighbors is more reasonable than that of cosine or
Euclidean distances in topic modeling. Note that we find neighbors for a given document d
within the class containing d, i.e., neighbors are local and within-class. We use KL(d||d′)
to measure proximity from d′ to d.

3.3. Inference for each document

Let Sc be the set of potentially discriminative topics of class c, and Nd be the set of nearest
neighbors of a given document d which belongs to c. We next do inference for d again to
find the new representation θ∗d. At this stage, inference is not done by existing method of
the unsupervised model in consideration. Instead, the FW framework is employed, with
the following objective function to be maximized:

f(θ) = λL(d̂) + (1− λ)
1

|Nd|
∑

d′∈Nd

L(d̂′) +R
∑

j∈Sc

sin(θj), (9)

where L(d̂) =
∑V

j=1 d̂j log
∑K

k=1 θkβkj is the log likelihood of document d̂ = d/||d||1; λ ∈
[0, 1] and R are nonnegative constants.

It is worthwhile making some observations about implication of this choice of objective:

- First, note that function sin(x) monotonically increases as x increases from 0 to 1.
Therefore, the last term of (9) implies that we are promoting contributions of the
topics in Sc to document d. In other words, since d belongs to class c and Sc contains
the topics which are potentially discriminative for c, the projection of d onto the
topical space should remain large contributions of the topics of Sc. Increasing the
constant R implies heavier promotion of contributions of the topics in Sc.

2. For instance, consider inference of document d by maximum likelihood. Inference is the problem
θ∗ = arg maxθ L(d̂) = arg maxθ

∑V
j=1 d̂j log

∑K
k=1 θkβkj , where d̂j = dj/||d||1. Denoting x = βθ,

the inference problem is reduced to x∗ = arg maxx
∑V
j=1 d̂j log xj = arg minxKL(d̂||x). This implies

inference of a document inherently uses KL divergence.
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- Second, the term 1
|Nd|

∑
d′∈Nd L(d̂′) implies that the local neighborhood plays a role

when projecting d. The smaller the constant λ, the more heavily the neighborhood
plays. Hence, this additional term ensures that the local structure of data in the
original space should not be violated in the new space.

- In practice, we do not have to store all neighbors of a document in order to do inference.
Indeed, storing the mean v = 1

|Nd|
∑
d′∈Nd d̂

′ is sufficient, since 1
|Nd|

∑
d′∈Nd L(d̂′) =

1
|Nd|

∑
d′∈Nd

∑V
j=1 d̂

′
j log

∑K
k=1 θkβkj =

∑V
j=1

(
1
|Nd|

∑
d′∈Nd d̂

′
j

)
log
∑K

k=1 θkβkj .

- It is easy to verify that f(θ) is continuously differentiable and concave over the unit
simplex ∆ if β > 0. As a result, the FW framework can be seamlessly employed for
inference. Theorem 1 guarantees that inference of each document is very fast and the
inference error is provably good. The following corollary states formally that property.

Corollary 2 Consider a document d, and K topics β > 0. Let Cf be defined as in Theo-

rem 1 for the function f(θ) = λL(d̂) + (1 − λ) 1
|Nd|

∑
d′∈Nd L(d̂′) + R

∑
j∈Sc sin(θj), where

λ ∈ [0, 1] and R are nonnegative constants. Then inference by FW converges to the optimal
solution with a linear rate. In addition, after L iterations, the inference error is at most
4Cf/(L+ 3), and the topic proportion θ has at most L+ 1 non-zero components.

3.4. Computing new topics

One of the most involved parts in our framework is to find the final space from the old
and new representations of documents. PLSA and LDA do not provide a direct way to
compute topics from d and θ∗d, while FSTM provides a natural one. We use (7) to find the
discriminative space for FSTM,

FSTM: β∗kj ∝
∑

d∈D
djθ
∗
dk; (10)

and use the following adaptations to compute topics for PLSA and LDA:

PLSA: P̃ (zk|d, wj) ∝ θ∗dkβkj , (11)

β∗kj ∝
∑

d∈D
djP̃ (zk|d, wj); (12)

LDA: φ∗djk ∝ βkwj exp Ψ(θ∗dk), (13)

β∗kj ∝
∑

d∈D
djφ
∗
djk. (14)

Note that we use the topics of the unsupervised models which had been learned previ-
ously in order to find the final topics. As a consequence, this usage provides a chance for
unsupervised topics to affect discrimination of the final space. In contrast, using (10) to
compute topics for FSTM does not encounter this drawback, and hence can inherit discrimi-
nation of θ∗. For LDA, the new representation θ∗d is temporarily considered to be variational
parameter in place of γd in (4), and is smoothed by a very small constant to make sure the
existence of Ψ(θ∗dk). Other adaptations are possible to find β∗, nonetheless, we observe that
our proposed adaptation is very reasonable. The reason is that computation of β∗ uses as
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(a) (b) (c) (d)

Figure 2: Laplacian embedding in 2D space. (a) data in the original space, (b) unsupervised
projection, (c) projection when neighborhood is taken into account, (d) projection
when topics are promoted. These projections onto the 60-dimensional space were
done by FSTM and experimented on 20Newsgroups. The two black squares are
documents in the same class.

little information from unsupervised models as possible, whereas inheriting label informa-
tion and local structure encoded in θ∗, to reconstruct the final space B = span{β∗1, ...,β∗K}.
This reason is further supported by extensive experiments as discussed later.

4. Why the framework is good?

We next theoretically elucidate the main reasons for why our proposed framework is rea-
sonable and can result in a good method for SDR. In our observations, the most important
reason comes from the choice of the objective (9) for inference. Inference with that objective
plays two crucial roles to preserve the discrimination property of data in the topical space.

The first role is to preserve inner-class local structure of data. This is a result of the
use of the additional term 1

|Nd|
∑
d′∈Nd L(d̂′). Remember that projection of document d

onto the unit simplex ∆ is in fact a search for the point θd ∈ ∆ that is closest to d in
a certain sense.3 Hence if d′ is close to d, it is natural to expect that d′ is close to θd.
To respect this nature and to keep the discrimination property, projecting a document
should take its local neighborhood into account. As one can realize, the part λL(d̂) +
(1 − λ) 1

|Nd|
∑
d′∈Nd L(d̂′) in the objective (9) serves well our needs. This part interplays

goodness-of-fit and neighborhood preservation. Increasing λ means goodness-of-fit L(d̂)
can be improved, but local structure around d is prone to be broken in the low-dimensional
space. Decreasing λ implies better preservation of local structure. Figure 2 demonstrates
sharply these two extremes, λ = 1 for (b), and λ = 0.1 for (c). Projection by unsupervised
models (λ = 1) often results in pretty overlapping classes in the topical space, whereas
exploitation of local structure significantly helps us separate classes.

The second role is to widen the inter-class margin, owing to the term R
∑

j∈Sc sin(θj).
As noted before, function sin(x) is monotonically increasing for x ∈ [0, 1]. It implies that the
term R

∑
j∈Sc sin(θj) promotes contributions of the topics in Sc when projecting document

d. In other words, the projection of d is encouraged to be close to the topics which are
potentially discriminative for class c. Hence projection of class c is preferred to distributing
around the discriminative topics of c. Increasing the constant R implies forcing projections

3. More precisely, the vector
∑
k θdkβk is closest to d in terms of KL divergence.

403



Than Ho Nguyen Pham

Table 1: Statistics of data for experiments
Data Training size Testing size Dimensions Classes

20Newsgroups 15935 3993 62061 20
Emailspam 3461 866 38729 2

to distribute more densely around the discriminative topics, and therefore making classes
farther from each other. Figure 2(d) illustrates the benefit of this second role.

5. Evaluation

This section is dedicated to investigation of effectiveness and efficiency of our framework in
practice. We investigate three methods, PLSAc, LDAc, and FSTMc, which are the results
of adapting our framework to unsupervised models, PLSA (Hofmann, 2001), LDA (Blei
et al., 2003), and FSTM (Than and Ho, 2012a), respectively. To see advantages of our
framework, we take MedLDA (Zhu et al., 2012) as the state-of-the-art method for SDR into
comparison.4 Two benchmark data sets were used in our investigations: 20Newsgroups
consisting of 19396 postings in 20 categories; Emailspam consisting of 4327 emails.5 After
preprocessing and removing stopwords and rare terms, the final corpora are detailed in
Table 1.

In our experiments, we used the same criteria for topic models: relative improvement
of the log likelihood (or objective function) is less than 10−4 for learning, and 10−6 for
inference; at most 1000 iterations are allowed to do inference. The same criterion was used
to do inference by FW in Step 2 of Algorithm 3. MedLDA is a supervised topic model and
is trained by minimizing a hinge loss. We used the best setting as studied by Zhu et al.
(2012) for some other parameters: cost parameter ` = 32, and 10-fold cross-validation for
finding the best choice of the regularization constant C in MedLDA. These settings are to
avoid a biased comparison.

It is worth noting that our framework plays the main role in searching for the discrimi-
native space B. Hence, other works aftermath such as projection/inference new documents
are done by unsupervised models. For instances, FSTMc works as follows: we first train
FSTM in a unsupervised manner to get an initial space A; we next do Step 2 of Algorithm 3
to find the discriminative space B; projection of documents onto B then is done by the
inference method of FSTM.

5.1. Class separation, quality, and time

Separation of classes in low-dimensional spaces is our first concern. A good method for
SDR should preserve inter-class separation of data in the original space. Figure 3 depicts
an illustration of how good different methods are. In this experiment, 60 topics were used to

4. MedLDA was retrieved from http://www.ml-thu.net/∼jun/code/MedLDAc/medlda.zip
LDA was taken from http://www.cs.princeton.edu/∼blei/lda-c/
FSTM was taken from http://www.jaist.ac.jp/∼s1060203/codes/fstm/
PLSA was written by ourselves with the best effort.

5. 20Newsgroups was taken from http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/. Emailspam
was taken from http://csmining.org/index.php/spam-email-datasets-.html
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(a) (b) (c)

Figure 3: Projection of three classes of 20newsgroups onto the topical space by (a) FSTM,
(b) FSTMc, and (c) MedLDA. FSTM did not provide a good projection in
the sense of class separation, since label information was ignored. FSTMc and
MedLDA actually found good discriminative topical spaces, and provided a good
separation of classes.

train FSTM and MedLDA.6 One can observe that projection by FSTM can maintain sepa-
ration between classes to some extent. Nonetheless, because of ignoring label information,
a large number of documents have been projected onto incorrect classes. On the contrary,
FSTMc and MedLDA exploited seriously label information for projection, and hence the
classes in the topical space separate very cleanly. The good preservation of class separa-
tion by MedLDA is mainly due to the training algorithm by max margin principle. Each
iteration of the algorithm tries to widen the expected margin between classes. Hence such
an algorithm implicitly inherits the discrimination property in the topical space. FSTMc

can separate the classes well owing to the fact that projecting documents has taken local
neighborhood into account seriously, which very likely keeps inter-class separation of the
original data. Furthermore, it also tries to widen the margin between classes as discussed
in Section 4.

Classification quality: we next use classification as a means to quantify the goodness
of the considered methods for SDR. The main role of methods for SDR is to find a low-
dimensional space so that projection of data onto that space preserves or even makes better
the discrimination property of data in the original space. In other words, predictiveness
of the response variable is preserved or improved. Classification is a good way to see this
preservation or improvement.

For each method, we projected the training and testing data (d) onto the topical space,
and then used the associated projections (θ) as inputs for multi-class SVM (Keerthi et al.,
2008) to do classification.7 MedLDA does not need to be followed by SVM since it can do
classification itself. We also included SVM which worked on the original space to see clearly
the advantages of our framework. Keeping the same setting as described before and varying
the number of topics, the results are presented in Figure 4.

6. For our framework, we set Nd = 20, λ = 0.1, R = 1000. This setting basically says that local neighbor-
hood plays a heavy role when projecting documents, and that classes are very encouraged to be far from
each other in the topical space.

7. This classification method is included in Liblinear package which is available at
http://www.csie.ntu.edu.tw/∼cjlin/liblinear/
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Figure 4: Accuracy of 8 methods as the numberK of topics increases. Relative improvement
is improvement of a method (A) over the-state-of-the-art MedLDA, and is defined

as accuracy(A)−accuracy(MedLDA)
accuracy(MedLDA) . SVM worked on the original space.

Observing the figure, one easily realizes that the supervised methods consistently per-
formed substantially better than the unsupervised ones. This suggests that FSTMc, LDAc,
PLSAc, and MedLDA exploited well label information when searching for a topical space.
Sometimes, they even performed better than SVM which worked on the original high-
dimensional space. FSTMc, LDAc, and PLSAc performed better than MedLDA when the
number of topics is relatively large (≥ 60). FSTMc consistently achieved the best perfor-
mance amongst topic-model-based methods, and sometimes reached 10% improvement over
the-state-of-the-art MedLDA. In our observations, this improvement is mainly due to the
fact that FSTMc had taken seriously local structure of data into account whereas MedLDA
did not. Ignoring local structure in searching for a topical space could harm or break the
discrimination property of data. This could happen with MedLDA even though learning
by max margin principle is well-known to keep good classification quality. Besides, FSTMc

even significantly outperformed SVM on 20Newsgroups, while performed comparably on
Emailspam. These results support further our analysis in Section 4.

Why FSTMc often performs best amongst three adaptations including FSTMc, LDAc,
and PLSAc? This question is natural, since our adaptations for three topic models use
the same framework and settings. In our observations, the key reason comes from the
way of deriving the final space in Step 2 of our framework. As noted before, deriving
topical spaces by (12) and (14) directly requires unsupervised topics of PLSA and LDA,
respectively. Such adaptations implicitly allow some chances for unsupervised topics to
have direct influence on the final topics. Hence the discrimination property may be affected
heavily in the new space. On the contrary, using (10) to recompute topics for FSTM does
not allow a direct involvement of unsupervised topics. Therefore, the new topics can inherit
almost the discrimination property encoded in θ∗. This helps the topical space found by
FSTMc is more likely discriminative than those by PLSA and by LDA. Another reason is
that the inference method of FSTM is provably good (Than and Ho, 2012a), and is often
more accurate than that of LDA and PLSA (Than and Ho, 2012b).

Learning time: the final measure for comparison is how quickly the methods do? We
mostly concern methods for SDR including FSTMc, LDAc, PLSAc, and MedLDA. Note
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Figure 5: Necessary time to learn a discriminative space, as the number K of topics in-
creases. SVM is included for reference, where we recorded the time for learning
a classifier from the given training data.

that the time for learning a discriminative space by FSTMc is the time to do 2 steps of
Algorithm 3 which includes time to learn a unsupervised model, FSTM. The same holds for
PLSAc and LDAc. Figure 5 summarizes the overall time for each method. Observing the
figure, we find that MedLDA and LDAc consumed intensive time, while FSTMc and PLSAc

did substantially more speedily. One of the main reasons for slow learning of MedLDA and
LDAc is that inference by variational methods of MedLDA and LDA is often very slow.
Inference in those models requires various evaluation of Digamma and gamma functions
which are expensive. Further, MedLDA requires a further step of learning a classifier at
each EM iteration, which is empirically slow in our observations. All of these contributed
to the slow learning of MedLDA and LDAc.

In contrast, FSTM has a linear time inference algorithm and requires simply a multi-
plication of two sparse matrices for learning topics, while PLSA has a very simple learning
formulation. Hence learning in FSTM and PLSA is unsurprisingly very fast (Than and Ho,
2012a). The most time consuming part of FSTMc and PLSAc is to search nearest neigh-
bors for each document. A modest implementation would requires O(V.M2) arithmetic
operations, where M is the data size. Such a computational complexity will be problem-
atic when the data size is large. Nonetheless, as empirically shown in Figure 5, the overall
time of FSTMc and PLSAc was significantly less than that of MedLDA and LDAc. Even
for 20Newsgroups of average size, learning time of FSTMc and PLSAc is very competitive
compared with MedLDA.

Summarizing, the above investigations demonstrate that the proposed framework can re-
sult in very competitive methods for SDR. Three methods, FSTMc, LDAc, and PLSAc, have
been observed to significantly outperform their corresponding unsupervised models. LDAc

and PLSAc reached comparable performance with the state-of-the-art method, MedLDA,
when the number of topics is not small. Amongst three adaptations, FSTMc behaved
superior in both classification performance and learning speed. Classification in the low-
dimensional space found by FSTMc is often comparable or better than that in the original
high-dimensional space.
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Figure 6: Impact of the parameters on the success of our framework. (left) Change the
number of neighbors, while fixing λ = 0.1, R = 0. (middle) Change λ the extent
of seriousness of taking local structure, while fixing R = 0 and using 10 neighbors
for each document. (right) Change R the extent of promoting topics, while fixing
λ = 1. Note that the interference of local neighborhood played a very important
role, since it consistently resulted in significant improvements.

5.2. Sensitivity

There are three parameters that influence the success of our framework, including the
number of nearest neighbors, λ, and R. This subsection investigates the impact of each.
20Newsgroups was selected for experiments, since it has average size which is expected to
exhibit clearly and accurately what we want to see.

We varied the value of a parameter while fixed the others, and then measured the
accuracy of classification. Figure 6 presents the results of these experiments. It is easy to
realize that when taking local neighbors into account, the classification performance was
very high and significant improvements can be achieved. We observed that very often, 25%
improvement were reached when local structure was used, even with different settings of
λ. These observations suggest that the use of local structure plays a very crucial role for
the success of our framework. It is worth remarking that one should not use too many
neighbors for each document, since performance may be worse. The reason is that using
too many neighbors likely break local structure around documents. We have experienced
with this phenomenon when setting 100 neighbors in Step 2 of Algorithm 3, and got worse
results.

Changing the value of R implies changing promotion of topics. In other words, we are
expecting projections of documents in the new space to distribute more densely around
discriminative topics, and hence making classes farther from each other. As shown in
Figure 6, an increase in R often leads to better results. However, too large R can deteriorate
the performance of the SDR method. The reason may be that such large R can make the
term R

∑
j∈Sc sin(θj) to overwhelm the objective (9), and thus worsen the goodness-of-fit

of inference by FW. Setting R ∈ [10, 1000] is reasonable in our observation.

6. Conclusion and discussion

We have proposed a framework for doing dimension reduction of supervised discrete data.
The framework was demonstrated to exploit well label information and local structure of the
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training data to find a discriminative low-dimensional space. Generality and flexibility of
our framework was evidenced by adaptation to three unsupervised topic models, resulted in
PLSAc, LDAc, and FSTMc. These methods for supervised dimension reduction (SDR) can
perform qualitatively comparably with the state-of-the-art method, MedLDA. In particular,
FSTMc performed significantly best and can often achieve more than 5% improvement over
MedLDA. Working on the low-dimensional space found by FSTMc is often comparable or
better than working on the original space of data. Meanwhile, FSTMc consumes substan-
tially less time than MedLDA does. These results show that our framework can inherit
scalability of unsupervised models to yield qualitatively competitive methods for SDR.

There is a number of possible extensions to our framework. First, one can easily modify
the framework to deal with multilabel data. Second, the framework can be modified to deal
with semi-supervised data. A key to these extensions is an appropriate utilization of labels
to search for nearest neighbors, which is necessary for our framework. Other extensions can
encode more prior knowledge into the objective function for inference. In our framework,
label information and local neighborhood are encoded into the objective function and have
been observed to work well. Hence, we believe that other prior knowledge can be used to
derive good methods.

Of the most expensive steps in our framework is the search for nearest neighbors. By
a modest implementation, it requires O(k.V.M) to search k nearest neighbors for a docu-
ment. Overall, finding all k nearest neighbors for all documents requires O(k.V.M2). This
computational complexity will be problematic when the number of training documents is
large. Hence, a significant extension would be to reduce running time for this search. It is
possible to reduce the complexity to O(k.V.M. logM) as suggested by Arya et al. (1998).
Furthermore, because our framework use local neighborhood to guide projection of docu-
ments onto the low-dimensional space, we believe that approximation to local structure can
still provide good result. However, this assumption should be studied further. A positive
point of using approximation of local neighborhood is that computational complexity of a
search for neighbors can be done in linear time O(k.V.M) (Clarkson, 1983).
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