JMLR: Workshop and Conference Proceedings 25:443-458, 2012 Asian Conference on Machine Learning

Two-way Parallel Class Expression Learning

An C. Tran A.C.TRAN@QMASSEY.AC.NZ
Jens Dietrich J.B.DIETRICHQMASSEY.AC.NZ
Hans W. Guesgen H.W.GUESGENQ@QMASSEY.AC.NZ
Stephen Marsland S.R.MARSLAND@MASSEY.AC.NZ

School of Engineering and Advanced Technology
Massey University
Palmerston North 4442, New Zealand

Editor: Steven C.H. Hoi and Wray Buntine

Abstract

In machine learning, we often encounter datasets that can be described using simple rules
and regular exception patterns describing situations where those rules do not apply. In this
paper, we propose a two-way parallel class expression learning algorithm that is suitable
for this kind of problem. This is a top-down refinement-based class expression learning al-
gorithm for Description Logic (DL). It is distinguished from similar DL learning algorithms
in the way it uses the concepts generated by the refinement operator. In our approach,
we unify the computation of concepts describing positive and negative examples, but we
maintain them separately, and combine them at the end. By doing so, we can avoid the
use of negation in the refinement without any loss of generality. Evaluation shows that
our approach can reduce the search space significantly, and therefore the learning time is
reduced. Our implementation is based on the DL-Learner framework and we inherit the
Parallel Class Expression Learning (ParCEL) algorithm design for parallelisation.
Keywords: description logic, class expression learning, parallel learning, exception

1. Introduction

Description logic (Baader, 2003) is a popular knowledge representation language. A family
of description-logic-based languages, the Ontology Web Language (OWL), has been pro-
posed by W3C as the standard knowledge representation languages for the Semantic Web
(McGuinness et al., 2004).

The original problem that motivates our research in DL learning is the detection of ab-
normal behaviours in smart homes, where the elderly are monitored by automated systems
that can send alerts to a carer if an abnormal behaviour is detected (Tran et al., 2010).
In our research, we are interested in using description logic learning to learn the normal
activity patterns and then to detect abnormal behaviours as variations to normality.

In this scenario, it is often the case that a normal behaviour can consist of a general rule
and then a set of exceptions. For example, an elderly person may usually go to the library
at 9am on Mondays. However, this pattern might be broken by particular circumstances
such as rain, or public holidays. Thus, rather than ‘The person goes to the library on
Mondays at 9am’, the rule becomes ‘The person goes to the library on Mondays at 9am
so long as it is not raining and it is not a public holiday’. A similar well-known example

© 2012 A.C. Tran, J. Dietrich, H'W. Guesgen & S. Marsland.

TRAN DIETRICH GUESGEN MARSLAND

(a) The target con- (b) ParCEL learnt (¢) CELOE learnt
cept can be concepts: more concept: a single
constituted from complex de- complex descrip-
simple descrip- scriptions tion C = (D; N
tions Dy, Dy, Nq P, = DiM—-N7 and —\Nl)l_l(Dzl—]—\NQ)
and Ny: (Dp N Py, = Dy M =Ny de- is required
—N1)U (DM —Ng) scribe the dataset

concisely

Figure 1: Exceptions in learning pattern

is the relation between birds and fly: all birds can fly except penguins. We will use the
term exception in this sense: a set of examples not covered by simple concepts that describe
the vast majority of examples correctly. Negative examples in smart home scenario are the
behaviours that are not expected to happen, such as cooking at midnight. There may be
several ways to generate the negative examples: explicitly defined, using negation as failure,
or using classification feedback.

Most current DL learning algorithms (e.g., Lisi and Malerba, 2003; Fanizzi et al., 2008;
Lehmann and Hitzler, 2010; Tran et al., 2012) focus only on the definitions of positive
examples. Learning starts from a very general concept, usually the TOP concept in DL.
Then, it uses subclasses (specialisation), conjunction (intersection) and the combination of
conjunction and negation (subtraction) to remove the negative examples from the poten-
tial concepts. Negative examples are used as constraints to qualify whether a concept is
acceptable.

This approach suits many learning problems and has been used successfully in experi-
ments (Lehmann and Hitzler, 2010; Tran et al., 2012). However, this strategy does not deal
very well with learning problems that have exceptions in the normal patterns. For example,
given a learning problem with a set of positive (+) and negative (—) examples, the concepts
Dy, Dy, N1, Ny and their coverage (Figure 1(a)), CELOE tries to find the single concept
C = (D1 =Np) U (D2 M —Nz). On the other hand, ParCEL (Tran et al., 2012) will gen-
erate the following simpler concepts: Py = Dy M —Ny and P, = Do M —Ns. Those concepts
are visualised in Figures 1(c¢) and 1(b), respectively. If all of the concepts Dj, Dy, N1 and
N5 have the same length of 3, the length of the longest concepts generated by CELOE and
ParCEL are 16 (4 concepts of length 3 plus 4 operators) and 8 (2 concepts of length 3 plus 2
operators). If a concept is of length 16 then it must occur at depth at least 16 in the search
tree. Thus, CELOE will only be able to identify this concept after searching the previous
15 levels of the search tree. However, our algorithm can combine (potentially very short)
concepts and so define relatively complex concepts based on much smaller depth traversals.

444

TwO-wAY PARALLEL CLASS EXPRESSION LEARNING

This is particularly useful where removing negative examples leads to shorter definitions of
positive examples.

In this paper, we describe a Two-way Parallel Class Expression Learning (or PARallel
Class Ezpression Learning with Ezception — ParCEL-Ex) algorithm that employs the def-
initions of both positive and negative examples to find the target concept. The negative
example definitions are used to remove the negative examples from the concepts in the
search tree to create simple definitions for positive examples.

Consequently, concepts in the search tree are used more effectively. It helps to reduce the
search space of the learning problem and thus the learning time is reduced. This approach
is best suited to learning problems with exceptions as described previously, especially when
the exceptions have complex characteristics.

2. Related Work

Learning in description logic is basically a search problem in which the search tree is often
dynamically generated by a refinement operator. Generally, there are two basic approaches
for DL learning: top-down and bottom-up. In the top-down approach, the learning algo-
rithm starts from the most general concept of the concept hierarchy and uses a downward
refinement operator to specialise the concepts until the target concept is found (Lehmann,
2010; Rouveirol and Ventos, 2000). The search tree expansion is directed by a search heuris-
tic that mainly replies upon the accuracy (a combination of correctness and completeness)
of the concepts.

The bottom-up approach instead uses an upward refinement operator. This approach
is used widely in inductive logic programming for first order logic (Muggleton and Buntine,
1992; Ade et al., 1995), but it is rarely used for description logic because while the downward
refinement operator can use the concept hierarchy as an effective method for the speciali-
sation, it cannot be used in the upward refinement. An exception is the upward refinement
operator proposed by Baader et al., 1999. The refinement is to compute the least subsumer
of a given number of concepts, i.e. the generalisation of the given concepts. In this ap-
proach, concepts are represented in the form of description trees. The generalisation of the
given concepts is essentially the product of description trees under particular rules called
homomorphisms. An early ILP system that used the bottom-up approach is LCSLearn
(Cohen and Hirsh, 1994) which is a very simplistic approach that creates large concept
definitions that are not truly intentional in the sense that definitions are only enumerations
of the sets of individuals they define.

Our research is similar to other approaches in description logic learning that combine
both bottom-up and top-down strategies such as YinYang (Iannone et al., 2007) and DL-
FOIL (Fanizzi et al., 2008). Often, the top-down step uses the specialisation to find the
solutions for a subset of the given examples (sub-solutions) and the bottom-up step uses
the generalisation to aggregate the sub-solutions to form an overall solution.

However, our approach is different from the others in the following ways: Firstly, we
use a parallel computation model. Secondly, we use both concepts that define positive and
negative examples. Although negative examples are also used in Iannone et al. (2007), we
use them in very different ways. In Iannone et al. (2007), negative examples are used as
counterfactuals to form constraints on the generalisation. Their definitions are generated

445

TRAN DIETRICH GUESGEN MARSLAND

on-demand and the generation of these definitions is separated from the generation of the
positive example definitions. In our approach, the definitions of positive and negative
examples are computed in the same refinement, but they are maintained independently
and only combined when the combination condition is satisfied. Finally, we propose an
extra combination step to make use of the negative example definitions and a reduction
step to compute an optimal set of sub-solutions to be used to construct the overall solution.
The above differences bring some benefits: i) the search space is reduced significantly due
to the removal of negation and disjunction from the refinement, ii) as the result, in most
of the datasets used in our evaluation, the learning time is improved, iii) our approach is
well-suited to learning problems that have exceptions (as discussed in the introduction),
particularly when the definition of exceptions is long or complicated.

3. Algorithm

Before giving a formal description of our algorithm, we introduce briefly some basic concepts.
A more thorough description can be found in Baader (2003). Given a concept C and a set
of positive (£7) and negative (£~) examples, we define:

R(C): the set of instances covered by C.

cp(C,ET): the subset of positive examples covered by C, cp(C,E1) = R(C)NET

en(C,E7): the subset of negative examples covered by C, en(C,E7) = R(C)NE~
Also, we will use the terms concept, class expression and description interchangeably.

Definition 1 (Knowledge base) A knowledge base K in description logic is a structure
K = {N¢, Ng, A} that consists of a set of concepts N¢, a set of roles (properties) Nr and
a set of assertions A including concept assertions (individuals) and role assertions.

Definition 2 (Coverage) Given a knowledge base K, a concept C is said to cover an
example e if from K we can entail that e is an instance of C.

Definition 3 (Concept learning problem) Given a structure (K,E1,E7) that consists
of a knowledge base K, a set of positive examples ET and a set of negative examples £,
the concept learning problem is to find a set of concept C that cover all positive examples
and no negative examples.

Definition 4 (Correct, complete and irrelevant concept) A concept C is called cor-
rect if it covers none of the negative examples, complete if it covers all positive examples,
and irrelevant if it covers neither positive examples nor negative examples.

Definition 5 (Definition, partial definition, and counter-partial definition) A con-
cept is referred to as a partial definition if it is correct and not irrelevant, a counter-partial
definition if it covers no positive examples and is not irrelevant, and a definition if it is
correct and complete.

Figure 1 demonstrates some of the above concepts: Pj, P, are partial definitions (correct
and not irrelevant), N1, Ny are counter-partial definitions (not irrelevant and cover some
negative examples), and C' is a (complete) definition (correct and complete).

446

TwO-wAY PARALLEL CLASS EXPRESSION LEARNING

There are also some metrics to measure the amounts of correctness, completeness and
accuracy of a concept C"

Definition 6 (Correctness, completeness, and accuracy)

correctness(C) = €71~ |C7i(G, &)l
[
(e
completeness(C) =]
+ - _ _
aceuracy(c) — |Cp(C)g)| ‘:‘gﬂgu L_“Cn(C?g)’)

Basically, description logic learning is a search for a complete and correct concept: A
concept that covers all positive examples and none of the negative examples. The search tree
is constructed dynamically using a refinement operator. Here, we use a downward refinement
operator: Given a concept C, the refinement operator p returns a set of concepts that are
more specific than C. This is formally denoted as VD € p(C),D C C. The refinement
operator in our algorithm does not use negation and disjunction due to the features discussed
in Section 2. It can now be defined as follows:

Definition 7 (Downward refinement operator pr) Given a concept C and a set of
atomic concepts N¢:

e ifC € Np:
pr(C)={C" e No | C'EC and 3C" | C'CC"CCYU{CNC | C' € pn(C)}

o if C is a conjunctive description C' = C1 M ...MCy:
pr(C) ={C" | C" € pn(Cy),1 < i < n}

o if C=Vr.D: pn(C)={vr.D' | D' € pn(D)}
e if C=3r.D: pn(C)={3r.D' | D' € pn(D)}

The refinement operator uses the subclass hierarchy and conjunction to perform the
specialisation. Some other DL semantics can be used to optimise the refinement such as
disjoint, range, etc. We define a refinement operator for classes and object properties only.
The refinement for the data properties is not defined in Definition 7 because it depends
upon the particular datatypes of the properties (e.g. integer, double) and the semantics
of the datatype (e.g. date, time). In practice, implementations of refinement for datatype
properties are often tailored to particular datatypes or properties.

3.1. Two-way class expression learning algorithm

Our learning algorithm combines top-down and bottom-up learning approaches. The top-
down step is used to solve the sub-problems of the given learning problem and the bottom-
up one is used to combine the sub-solutions into an overall solution. The top-down step is
performed by the downward refinement operator, while the bottom-up step currently uses

447

16
17
18
19
20
21
22
23
24
25
26
27

TRAN DIETRICH GUESGEN MARSLAND

a set coverage algorithm to choose the best partial definitions and disjunction to form the
overall solution.

Algorithm 1 describes our learning algorithm. It chooses the best concepts (highest
score) from the search tree and uses the SPECIALISE algorithm (see Algorithm 2) for refine-
ment and evaluation until the completeness of the partial definitions is sufficient. Concepts
are scored using an expansion heuristic that is mainly based on the correctness of the con-
cepts. In addition, a penalty is applied for complexity of the concepts (short expressions
are preferred), and bonuses for accuracy and accuracy gained.

Algorithm 1: Two-way parallel class expression learning algorithm (PARCEL-EX)

Input: background knowledge K, a set of positive £1 and negative £~ examples, and a
noise value ¢ € [0, 1] (0 means no noise)
Output: a target concept C such that |ep(C,ET)| > (|ET| x) and en(C,E7) =0

begin
initialise the search tree ST = {T} /* T: TOP concept in DL */
cum_pdefs = () (empty set) /* cumulative partial definitions */
cum_cpdefs = () /* cumulative counter-partial definitions */
cum-cp = 0 /* cumulative covered positive examples */
cum_cn = () /* cumulative covered negative examples */
while |cum_cp| < (|ET| x €) do
get the best concept C' and remove it from ST /* see text */
(pdefs, cpdefs, descriptions) = SPECIALISE(C,E1,E7) /* cf.algorithm 2 */
cum_pdefs = cum_pdefs U pdefs
cum_cpdefs = cum_cpdefs U cpdefs
cum_cp = cum_cpU{e | e € cp(P,ET), P € pdefs}
cum_cn = cum-cnU{e | e € en(P,E7), P € cpdefs}
foreach D € descriptions do
if (en(D,E7) \ cum_cn) = () then
/* combine D with counter-partial definitions if possible */
candidates = COMBINE(D, cum_cpdefs, ™) /* cf.algorithm 3 */
new_pdef = D N ~(| o coandidates(C)) /* create new partial def. */
cum_pdefs = cum_pdefs U new_pdef
cum_cp = cum_cp U cp(D,ET)
end
else
| ST =STu{D}
end
end
end
return REDUCE (cum_pdefs) /* for description, see text */
end

The set of new descriptions, partial definitions and counter-partial definitions returned
from the specialisation algorithm are used to update the corresponding data structures and
the set of covered positive examples and covered negative examples in the learning algorithm.
In addition, the new descriptions are combined with the counter-partial definitions to create

448

(=N B U VN

TwO-wAY PARALLEL CLASS EXPRESSION LEARNING

new partial definitions if possible. Note that the concepts that have been refined can be
scheduled for further refinements.

The refinement operator in Definition 7 is infinite, but in practice each refinement step
is finite, since it is only allowed to generate descriptions with a given length. For example,
a concept of length N will first be refined to concepts of length (N + 1), and later, when it
is revisited, to concepts of length (N + 2), etc. For the sake of simplicity, we use pn in the
algorithms to refer to one refinement step rather than the entire refinement. This technique
is used in DL-Learner and discussed in detail in Lehmann et al., 2011.

When the algorithm reaches a sufficient degree of completeness, it stops and tries to re-
duce the partial definitions to remove the redundancies using the REDUCE function, which
is essentially a set coverage algorithm: given a set of partial definitions C and a set of
positive examples €7, it finds a subset C' C C such that £ C (Jpee (ep(D, ET)). The solu-
tion returned by the algorithm is a disjunction of the reduced partial definitions. However,
returning the result as a set of partial definitions instead may be useful in some contexts,
e.g. to make the result more readable. The reduction algorithm may be tailored to meet
particular requirements such as the shortest definition or the least number of partial defini-
tions. Note that the combination of descriptions and counter-partial definitions in the above
learning algorithm is one of the combination strategies implemented in our evaluation. This
strategy is called an on-the-fly combination strategy; it gave the best performance in our
evaluation. There is a brief discussion of the combination strategies in Section 3.3.

The specialisation and combination algorithms are described in Algorithms 2 and 3.

Algorithm 2: Specialisation algorithm (SPECIALISE)

Input: a concept C, a set of positive £ and negative £~ examples

Output: a triple of a set of partial definitions pdefs C pr(C); a set of counter-partial
definitions cpdefs C pn(C); and a set of descriptions C pn(C') such that
VD € descriptions : D is not irrelevant and D ¢ (pdefsU cpdefs), in which pn is
the refinement operator defined in Definition 7.

begin
pdefs = {D € pn(C) | ep(D,ET)#D N en(D,E7) =0}
cpdefs = {D € pr(C) | ecp(D,ET) =0 A cn(D,E7) # 0}
descriptions = {D € pn(C) | ep(D,ET) # 0 N en(D,E7) # 0}
return (pdefs, cpdefs, descriptions)

end

The specialisation performs the refinement and evaluation of the concepts given by the
learning algorithm. Firstly, it refines the given concept (pn(C)) and evaluates the result
(ep(C,ET) and en(C,E7)). Trrelevant concepts are removed from the result as no partial
definition or counter-partial definition can be computed though the irrelevant concept spec-
ification. Then, the specialisation finds new partial definitions, counter-partial definitions
and descriptions from the refinements. Practically, redundancies are often checked before
evaluating descriptions to avoid redundant evaluations and duplicated descriptions in the
search tree, as a description can be generated from different branches.

The combination algorithm is used to combine the descriptions and counter-partial def-
initions to find new partial definitions. This is basically a set coverage algorithm. Counter-
partial definitions that cover at least one negative example covered by the given concept

449

TRAN DIETRICH GUESGEN MARSLAND

are added gradually into the set of candidates until all negative examples covered by the
given concept are also covered by the candidates. Note that when a candidate is chosen,
the set of remaining counter-partial definitions is often re-ordered. For simplicity, this is
not shown in the algorithm.

Algorithm 3: Combination algorithm (COMBINE)

Input: a concept C, a set of counter-partial definitions cpdefs and negative examples £~
Output: a set candidates C cpdefs such that cn(C,E7) € |Upepandidates((P E7))

begin
candidates = () /* candidate counter-partial definitions */
enc=cn(C,E7) /* negative examples covered by C */
sort cpdefs by descending coverage of negative examples
while cpdefs # 0 and ecn_c # () do
get and remove the top counter-partial definition D from cpdefs
if (en(D,E7) Nenc) # 0 then
candidates = candidates U D
enc=cn_c\ en(D,E7))
end
end
if en_c # () then
‘ return () /* return empty set */
else
‘ return candidates
end

3.2. Algorithm implementation architecture

To inherit the advantages of the parallelisation approach in class expression learning, we
employ the ParCEL learning algorithm design (Tran et al., 2012) which uses the map-
reduce architecture (Ghemawat and Dean, 2004) to implement the idea of parallel divide
and conquer. Here, our algorithm architecture is divided into two parts, as shown in Figure
2. The computationally heavy part, including refinement and evaluation of concepts, is
done by the multiple workers. Moreover, the combination of descriptions and counter-
partial definitions is also performed on the worker side to avoid overload on the learning
algorithm.

The main learning algorithm is implemented on the reducer side. In our design, the
reducer performs not only the reduction, as its name suggests, but also most of the tasks
in Algorithm 1. Therefore, the terms reducer and learner are used interchangeably.

3.3. Counter-partial definition combination

Counter-partial definitions are combined with descriptions to create new partial definitions.
In our implementation, we tried three combination strategies and the evaluation of these
strategies is discussed in Section 4.2.

450

TwO-wAY PARALLEL CLASS EXPRESSION LEARNING

learner worker pool

[
worker

initialisethe [__| ____THING ___
search tree '
J' v
[eetthebest | | poll) | searchtree ... refine the description
description (descriptions) E v
Jr H evaluate the
submitthe | _| descripton i N refinements
description ' l
] E remove irrelevant
check for e - - counter- i descriptions
termination i partial (€77 v
i definitions E combine descriptions
! ' and counter-partial
i 1 definitions
| | L
[partial __L_l__]update the search tree,
reduce P I definitions [¢ 777~ -1--1 (counter-) partial
partial definitions definition set

!

Figure 2: Algorithm implementation architecture

Lazy combination: In this strategy, the learner maintains the set of partial definitions and
counter-partial definitions separately. When all positive or negative examples are covered,
the combination is performed on the descriptions in the search tree and the set of counter-
partial definitions. Consequentially, this is done by the learner.

Since the combination is performed after the learning stops, this strategy may provide
a better combination, i.e. it may make better choices for counter-partial definitions. This
advantage may result in shorter length or higher coverage partial definitions. However,
for the learning problems in which both positive and negative examples need negation to
be completely defined, the algorithm may not be able to find the definition because the
refinement operator designed for this algorithm does not use negation. If this is the case
and the timeout is set, the combination will be made when the timeout is reached to find
the definition. Otherwise, it will not terminate until the system runs out of memory.
On-the-fly combination: This strategy is used in Algorithm 1. In this strategy, when a
new description is generated from the refinement, it is combined with the existing counter-
partial definitions if possible. Practically, the combination is performed on the worker
side as new descriptions are always generated by workers. This strategy can avoid the
termination problem discussed in the lazy combination strategy because negation is used
in the combination which is performed for every new description. Our evaluation suggests
that this strategy, overall, gives the best performance and the smallest search tree.
Delayed combination: This is an intermediate solution between the above strategies that
checks for the possibility of combinations when a new description is generated. However,
even if the combination is possible, only the set of cumulative covered positive examples is

451

TRAN DIETRICH GUESGEN MARSLAND

updated (by removing from this set the elements that are covered by the new description),
while the new description is put into a potential partial definitions set. The combination is
executed when the termination condition is reached, i.e. either all positive examples or all
negative examples are covered, or the timeout is approached.

This strategy may help to prevent the problem of the lazy combination strategy. In
addition, it may return better combinations in comparison with the on-the-fly strategy
because it inherits the advantage of the lazy combination strategy. However, the search tree
is likely to be bigger and the learning time is longer than the on-the-fly strategy.

4. Empirical Evaluation

This section presents the empirical evaluation result of our algorithm. Our algorithm is
implemented in Java and based on the DL-Leaner framework. The algorithm package is
available at https://parcelex.google.com and it is also integrated into the DL-Learner
repository at http://dl-learner.svn.sourceforge.net.

4.1. Methodology

In this evaluation, we are interested in measuring the learning time, correctness, complete-
ness, predictive accuracy, F-measure (Rijsbergen, 1979), definition length, number of partial
definition, average partial definition length (counted by the number of axioms in the def-
inition) and the number of descriptions generated (search tree size). These dimensions
can help to: i) quantify the scalability of the algorithm, ii) validate our approach, and iii)
quantify the accuracy and readability of the learning result.

We benchmark our learner against the CELOE and ParCEL algorithms since studies
in Hellmann (2008) and Tran et al. (2012) showed that these algorithms outperform many
other description logic learning algorithms.

We use 10-fold cross wvalidation on a number of datasets that had been used by other
authors in similar experiments (Zelezny et al., 2002; Hellmann, 2008; Tran et al., 2012).
In addition, we use another real scenario dataset called MU-Bus that was generated from
the bus operation timetable of a bus service. The data were sampled every 5 minutes and
each observation has the form of observation_id(day, month, year, hour, minute,
bus/no_bus). The bus operation time depends upon the following conditions: semester
(semester 1, 2 or summer semester), break (summer break, mid-year break 1, mid-year
break 2, Christmas break), holiday (may be divided into two groups in which the holidays
in the same group have the similar affect on the bus schedule), weekday/weekend. These
parameters can be derived from the observation’s date and time. We divided the dataset
into subsets based on the sampling time (e.g. [07:10, 09:10], [07:10, 12:00], etc.) and time
range (e.g. a week in each month plus special days or the whole year, etc.). This dataset
can be found in our repository.

For the experiments, we used a Linux server with 8 Intel Xeon E5440 @2.83GHz CPU-
cores, 32GB memory and the Redhat 4.1.2 (Linux version 2.6.18) operating system with a
JRE 1.6.0 (64-bit) Java Virtual Machine (JVM). The heap size of the JVM in our experi-
ments is 8GB.

452

https://parcelex.google.com
http://dl-learner.svn.sourceforge.net

Two-wAY PARALLEL CLASS EXPRESSION LEARNING

4.2. Combination strategy comparison

Before comparing with other learning algorithms, we compare the combination strategies
to choose the best strategy for further comparisons. Table 1 shows results using the three
combination strategies (lazy, delayed and on-the-fly strategies) that are named ParCEL-
Ex1, ParCEL-Ex12 and ParCEL-Ex2 respectively.

Table 1: Combination strategies evaluation result — MU-Bus
Dataset (averages + standard deviations)

| Dimension | ParCEL-Ex1 | ParCEL-Ex12 | ParCEL-Ex2 |
18 weeks', [07:10, 09:10]°: 383 positive examples (p), 2292 negative examples (n)
Learning time (s) 47.59 + 17.66 23.02 + 28.33 7.52 + 2.37
Accuracy (%) 100.00 +0 99.81 + 0.36 99.74 + 0.36
F-measure (%) 100.00 +0 99.36 + 1.23 99.10 + 1.21
Definition length 297.30 + 22.67 383.00 + 170.47 393.30 + 73.51
No of descriptions 39,096.80 + 12.210.86 | 14,463.90 + 20,232.28 | 2,130.10 + 1,179.48
No of pdef.3 1.00 + 0.00 4.20 + 1.69 6.30 + 1.25
Avg. pdef. length 297.30 + 22.67 145.32 + 155.66 63.40 + 10.54
13 weeks, [07:10, 12:00]: 670p, 5643n
Learning time (s) | int. @600s 90.97 + 73.43 56.25 + 23.34
Accuracy (%) 99.89 + 0.15 99.84 + 0.20 99.83 + 0.20
F-measure (%) 99.48 + 0.70 99.26 + 0.92 99.18 + 0.96
Definition length 1,419.20 + 328.20 1,372.30 + 539.13 | 1,179.50 + 209.80
No of descriptions | 187,279.60 -+ 2,584.50 | 23,843.40 + 21,430.22 | 8,575.10 =+ 4,184.27
No of pdef. 8.00 +0 8.60 + 0.10 10.20 + 2.10
Avg. pdef. length 177.40 + 41.03 161.52 + 67.40 120.70 + 36.62

The result shows that these strategies have similar accuracy, but the learning time and
the search space size (number of descriptions) is very different. As discussed in Section
3.3, the lazy combination strategy does not terminate in some cases. Result of the dataset
13 weeks, [07:10, 12:00] shows that the learner was interrupted (by timeout) at 600 sec-
onds, that means no complete definition was found after 600 seconds of learning. However,
applying the combination algorithm on descriptions in the search tree and counter-partial
definitions after the algorithm was interrupted, we obtained a definition with 100% accu-
racy on the training dataset. This means the solution implicitly existed, but the learner
was not able to compute it. To make sure that we did not terminate the learner too early,
we repeated the experiment and allowed it to run for 1,800 seconds. However, the learner
was still not able to find the solution on the training dataset. This demonstrates the dis-
advantage of this strategy. We also ran experiments on some other MU-Bus datasets and
the results are similar. For space reason, we do not show all experiment results here.

1. Around one week is chosen in each month. If there exists special events in the month such as holidays,
break, etc., the selection will be expanded to include the events. This leads to about 13 weeks worth of
data.

2. Time for sampling.

3. Partial definition

453

TRAN DIETRICH GUESGEN MARSLAND

The on-the-fly combination strategy gives very promising results. It dominates other
strategies on most of the dimensions, especially the learning time and the number of de-
scriptions (search space). There is only one exception on the definition length in the dataset
13 weeks, [07:10, 09:10) in which this strategy produces a longer definition than others.
The number of partial definitions can help to explain the difference: there exists common
parts (counter-partial definitions) amongst the partial definitions.

Finally, the delayed combination strategy is better than the lazy evaluation strategy but
worse than the on-the-fly strategy on the learning time and the number of descriptions.
In this strategy, we expected to get the advantages of both the on-the-fly and delayed
combination strategies to get shorter definitions than ParCEL-Ex2 and smaller search spaces
than ParCEL-Ex1. However, the experimental results show that this idea does not help
much: the definitions are not always shorter than ParCEL-Ex2 while the search spaces
are always bigger. Therefore, we chose on-the-fly combination as the major combination
strategy for our learning algorithm to compare with other learners in our evaluation.

4.3. Evaluation result

Tables 2 and 3 show a summary of the evaluation results on popular datasets. In general,
the learning time of our algorithm is better than CELOE and ParCEL. In particular, the
learning time is significantly different in the UCA1 and MU-Bus datasets. Looking at the
definition length, we can see that the longer the target definition is, the better ParCEL-Ex
is. In particularly, for learning problems with exceptions that require complex definitions,
e.g. the MU-Bus datasets, the learning time of our approach is much shorter than the
others.

In our evaluation, we also want to focus on the size of the search trees generated by
the algorithms to verify our objective of reducing the search space. The result matches
with our expectation: the search trees generated by our algorithm have the smallest size
in comparison with the search trees of other algorithms except for the Moral dataset. The
possible reasons for that are: i) this learning problem has a very simple definition (length is
3), therefore it requires a small number of refinements, ii) in our algorithm, since there are
several workers that explore different branches of the search tree at the same time, when
a worker found a solution, the other workers may still be working and they need to finish
their work. Since ParCEL-Ex2 mostly has smaller search trees, it always has better learning
times than CELOE and ParCEL except in the case of Moral dataset discussed above.

For the definition length, ParCEL-Ex2 often produces the longest definitions. However,
if we look at the definition, in some cases they can be shortened using optimisation. For
example, the definitions returned by CELOE and ParCEL-Ex2 for the dataset Forte Uncle
are:

e CELOE: (male AND (EXISTS married.EXISTS sibling.Thing OR
EXISTS sibling.EXISTS parent.male)

¢ ParCEL-Ex2:

— partial def. 1: (sibling.EXISTS married.EXISTS Thing AND (NOT female))
— partial def. 2: (married.EXISTS sibling.EXISTS Thing AND (NOT female))

454

TwO-wAY PARALLEL CLASS EXPRESSION LEARNING

In the above examples, the length of the definition suggested by CELOE is 13 and
ParCEL-Ex2 is 17 (length of two partial definitions plus 1 for disjunction). However, we
can reduce it by at least 2 by reducing the common part among partial definitions, i.e. (NOT
female) or even more if we replace NOT female by male using the disjoint property. Cur-
rently, this idea has not been implemented in our algorithm. However, receiving the result
in the form of a set of partial definitions may help to provide a more readable representation.

In the most important scenarios that we want to focus on, the UCA1 and MU-Bus
datasets, our algorithm outperformed the others. The definition for UCA1 illustrates the
benefit of counter-partial definitions:

e CELOE: activityHasDuration (hasDurationValue > 4.5 AND
hasDurationValue < 21.5)

e ParCEL :

1. EXISTS activityHasDuration.(hasDurationValue > 4.5 AND
hasDurationValue < 15.5)

2. EXISTS activityHasDuration. (hasDurationValue > 15.5 AND
hasDurationValue < 19.5) AND EXISTS activityHasStarttime.Spring

3. EXISTS activityHasDuration. (hasDurationValue > 15.5 AND < 19.5)
AND EXISTS activityHasStarttime.Summer

4. EXISTS activityHasStarttime.Autumn AND ALL activityHasDuration.
(hasDurationValue >= 4.5 AND hasDurationValue <= 19.5

e ParCEL-Ex2: (activityHasDuration SOME (hasDurationValue > 4.5 AND
hasDurationValue < 19.5) AND (NOT (activityHasDuration SOME
hasDurationValue > 15.5 AND activityHasStarttime SOME Winter)))

The definition of ParCEL-Ex2 is a combination of one description and a counter-partial
definition (negated description). Note that the CELOE definition is shorter, but it does not
fully describe the scenario.

The dataset MU-Bus is a harder learning problem in which the target definition is very
complicated, since the bus operation time depends upon many conditions. For this dataset,
ParCEL-Ex2 outperforms both ParCEL and CELOE in all dimensions. Our algorithm can
always find the complete definition on training set and the accuracy on the test set is always
over 99.7%, while CELOE could not find the correct definition on the training set and the
accuracy on the test set is very low, from 13.17% to 48.88%. ParCEL is in the middle: the
accuracy on the training set is between 94.16% and 100% and on the test set from 94.12%
t0 99.63% .

However, predictive accuracy is not an appropriate measurement for the accuracy in this
experiment, as the number of negative examples is much bigger than the number of positive
examples, around 8 to 10 times. Consequently, the algorithms that prefer correctness to
completeness such as ParCEL and our algorithm are overly optimistic. Therefore, the F-
measure is preferred in this circumstance to have a fair comparisons between algorithms.
The result shows that our algorithm outperformed ParCEL and CELOE.

Although the definitions for MU-Bus datasets are rather long, their readability is still
acceptable as they are broken into partial definitions. Moreover, the definition length may

455

TRAN DIETRICH GUESGEN MARSLAND

be reduced significantly by using an optimisation, as discussed above. For example, one of
the partial definitions for the dataset MU-Bus, [07:10-12:00] has a length of 120 axioms,

but it can be reduced to 67 axioms by eliminating the common axioms.

Table 2: Experiment results summary (averages + standard dev.)

| Dimension | ParCEL-Ex2 | ParCEL CELOE
Forte Uncle: 23p, 163n
Learning time (s) 0.06 + 0.06 0.23 +0.17 6.69 + 3.50
Accuracy (%) 100.00 + 0 100.00 + 0 98.00 + 4.22
F-measure (%) 100.00 +0 100.00 +0 96.67 + 10.54
Definition length 16.70 + 0.68 15.5 + 0.71 12.00 + 1.05
No of descriptions 174.10 + 108.23 859.50 + 251.02 64,707.90 + 33.641.92
Moral: 102p, 100n

Learning time (s) 0.08 + 0.08 0.02 + 0.04 0.15 + 0.07
Accuracy (%) 100.00 +0 100.00 +0 100.00 +0
F-measure (%) 100.00 +0 100.00 +0 100.00 + 0
Definition length 5.60 + 6.65 3.00 +0 3.00 + 0
No of descriptions 223.40 -+ 364.23 33.30 + 10.95 540.50 + 16.85

Aunt: 41p, 41n
Learning time (s) 0.30 + 0.15 0.45 + 0.22 29.15 + 28.10
Accuracy (%) 100.00 +0 100.00 +0 98.75 + 3.95
F-measure (%) 100.00 +0 100.00 +0 98.89 + 3.51
Definition length 22.10 + 5.30 17.60 + 0.84 18.60 + 1.27
No of descriptions 2,127.80 + 1,160.91 | 7,023.40 + 2,912.07 85,883.80 + 67,328.78

Uncle: 38p, 38n
Learning time (s) 0.28 + 0.08 0.39 + 0.22 48.16 + 53.03
Accuracy (%) 100.00 +0 98.33 + 5.27 100.00 +0
F-measure (%) 100.00 +0 98.57 + 4.52 100.00 +0
Definition length 19.10 + 1.52 17.30 + 0.68 18.00 +0
No of descriptions 2,400.00 -+ 551.22 | 6,332.50 + 3,247.89 541,081.80 + 559,103.75

UCA1: 73p, 77n
Learning time (s) 1.08 + 0.65 57.96 + 7.82 | int. @300
Accuracy (%) 100.00 +0 100.00 +0 91.24 + 6.41
F-measure (%) 100.00 £ 0| 100.00 +0 91.98 + 5.72
Definition length 27.30 + 15.03 51.40 + 1.27 9.00 +0
No of descriptions 14,053 + 9,409 | 991,828 + 132,524 | 1,465,263.20 + 11,515.54

Table 3: Experiment result summary — MU-Bus Dataset (averages
=+ standard dev.)
’ Dimension | ParCEL-Ex2 | ParCEL | CELOE
13 weeks, [07:10, 09:10]: 670p, 5643n
Learning time (s) 7.52 + 2.37 240.34 + 46.9 | int. @600s
Accuracy (%) 99.74 + 0.36 99.63 + 0.31 48.88 + 0.26
F-measure (%) 99.10 + 1.21 98.72 + 1.05 35.98 +0.19
Definition length 393.30 4+ 73.51 254.40 + 21.58 12.00 +0
No of descriptions 2,130.10 + 1,179.48 | 643,401.10 4+ 139,030.85 | 256,919.50 + 907.22
Continued on next page

456

TwO-wAY PARALLEL CLASS EXPRESSION LEARNING

Table 3 — continued

| Dimension | ParCEL-Ex2 | ParCEL | CELOE ‘

No of pdef. 6.30 + 1.25 15.00 + 1.56 | N/A

Avg. pdef. length 63.41 £+ 10.54 16.99 +0.42 | N/A

13 weeks, [07:10, 12:00]: 670p, 5643n

Learning time (s) 56.25 =+ 23.34 | int. @Q600s int. @600s
Accuracy (%) 99.83 + 0.20 97.91 + 0.50 14.35 + 1.10
F-measure (%) 99.18 + 1.96 66.48 + 6.78 19.86 £ 0.02
Definition length 1,179.50 + 209.80 398.30 + 54.89 2 +0
No of descriptions 8575.10 + 4184.27 | 879,866.30 -+ 34.000.30 79,959.50 + 118.47
No of pdef. 10.20 + 2.10 24.80 +3.52 | N/A

Avg. pdef. length 120.70 - 36.62 16.07 +0.19 | N/A

A paired t-test was used to test the statistical significance of the results between our
algorithm and CELOE and between our algorithm and ParCEL. Since all three algorithms
achieved 100% accuracy for most of the datasets in Table 2, we only used the t-test for the
learning time and number of descriptions. All results between our algorithm and CELOE,
and our algorithm and ParCEL were significant at the 5% significance level.

For the experimental results in Table 3, we tested the running time, accuracy, F-measure,
number of descriptions and definition length. The results show that the difference between
our algorithm and CELOE is statistically significant at the 1% significance level for all tested
dimensions. There were also significant differences between our algorithm and ParCEL
except for the accuracy, F-measure and the number of descriptions in the dataset MU-Bus
13 weeks, [07:10, 09:10].

5. Conclusion

We have proposed a new approach to class expression learning: we learn from both positive
and negative examples, motivated by learning scenarios that have exceptions in the patterns
of the positive examples. The exception is common in the practice and our empirical
experiments suggest that our approach works well.

Some current learning algorithms, e.g. CELOE and ParCEL, which are used in our
evaluations, can also solve this category of problem by specialising the concepts or using
negation and conjunction to remove negative examples from the potential concepts. How-
ever, for some datasets with regular exception patterns such as MU-Bus and UCA1, these
algorithms have difficulties in finding the right concept: The learning time is very long in
comparison with our algorithm, which may cause the system to run out of memory before
the definition is found.

Our algorithm works well not only on the expected scenarios, but also on other scenarios
that do not use negation, as shown in Table 2. The most impressive improvements are
the search tree size and learning time. Although our algorithm often generates longer
definitions, there is no over-fitting for the datasets used. This does not mean that our
algorithm can avoid over-fitting for all learning problems, but currently with the datasets
used, our algorithm shows promises.

The definitions generated by our algorithm are not optimised. The optimisation may
help to get the better definitions, i.e. shorter length and more readable. This, together
with investigations on more datasets will be the future works for our research.

457

TRAN DIETRICH GUESGEN MARSLAND

References

H. Ade, L. Raedt, and M. Bruynooghe. Declarative bias for specific-to-general ILP systems. Machine
Learning, 20(1):119-154, 1995.

F. Baader. The description logic handbook: theory, implementation, and applications. Cambridge
University Press, 2003.

F. Baader, R. Kiisters, and R. Molitor. Computing least common subsumers in description logics
with existential restrictions. In Proc. IJCAI volume 16, 1999.

W.W. Cohen and H. Hirsh. Learning the classic description logic: Theoretical and experimen-
tal results. In Proc. International Conference on Principles of Knowledge Representation and
Reasoning, pages 121-133, 1994.

N. Fanizzi, C. d’Amato, and F. Esposito. DL-FOIL concept learning in description logics. Inductive
Logic Programming, pages 107-121, 2008.

S. Ghemawat and J. Dean. MapReduce: Simplified data processing on large clusters. In Symposium
on Operating System Design and Implementation (OSDI04), San Francisco, CA, USA, 2004.

S. Hellmann. Comparison of concept learning algorithms. Master’s Thesis, Leipzig University, 2008.

L. Tannone, I. Palmisano, and N. Fanizzi. An algorithm based on counterfactuals for concept learning
in the semantic web. Applied Intelligence, 26(2):139-159, 2007.

J. Lehmann. Learning OWL Class Expressions. AKA Akademische Verlaggesellschaft, 2010.

J. Lehmann and P. Hitzler. Concept learning in description logics using refinement operators.
Machine Learning, 78(1):203-250, 2010.

J. Lehmann, S. Auer, S. Tramp, et al. Class expression learning for ontology engineering. Web
Semantics: Science, Services and Agents on the World Wide Web, 2011.

F. Lisi and D. Malerba. Ideal refinement of descriptions in AL-Log. Inductive Logic Programming,
pages 215232, 2003.

D.L. McGuinness, F. Van Harmelen, et al. OWL web ontology language overview. W3&C Recom-
mendation, 10:2004-03, 2004.

S. Muggleton and W. Buntine. Machine invention of first-order predicates by inverting resolution.
Inductive Logic Programming, pages 261-280, 1992.

C. J. Van Rijsbergen. Information Retrieval. Butterworth-Heinemann, Newton, MA, USA, 2nd
edition, 1979. ISBN 0408709294.

C. Rouveirol and V. Ventos. Towards learning in CARIN-ALN. Inductive Logic Programming, pages
191208, 2000.

A.C. Tran, S. Marsland, J. Dietrich, H. Guesgen, and P. Lyons. Use cases for abnormal behaviour
detection in smart homes. Aging Friendly Technology for Health and Independence, pages 144-151,
2010.

A.C. Tran, J. Dietrich, H. Guesgen, and S. Marsland. An approach to parallel class expression
learning. Rules on the Web: Research and Applications, pages 302—-316, 2012.

F. Zelezny, A. Srinivasan, and D. Page. Lattice-search runtime distributions may be heavy-tailed. In
Proceedings of the 12th International Conference on ILP, pages 333-345. Springer-Verlag, 2002.

458

	Introduction
	Related Work
	Algorithm
	Two-way class expression learning algorithm
	Algorithm implementation architecture
	Counter-partial definition combination

	Empirical Evaluation
	Methodology
	Combination strategy comparison
	Evaluation result

	Conclusion

