
JMLR: Workshop and Conference Proceedings 25:459–474, 2012 Asian Conference on Machine Learning

Multi-Stage Classifier Design

Kirill Trapeznikov ktrap@bu.edu

Venkatesh Saligrama srv@bu.edu
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Abstract

In many classification systems, sensing modalities have different acquisition costs. It is
often unnecessary to use every modality to classify a majority of examples. We study a
multi-stage system in a prediction time cost reduction setting, where the full data is avail-
able for training, but for a test example, measurements in a new modality can be acquired
at each stage for an additional cost. We seek decision rules to reduce the average mea-
surement acquisition cost. We formulate an empirical risk minimization problem (ERM)
for a multi-stage reject classifier, wherein the stage k classifier either classifies a sample
using only the measurements acquired so far or rejects it to the next stage where more
attributes can be acquired for a cost. To solve the ERM problem, we factorize the cost
function into classification and rejection decisions. We then transform reject decisions into
a binary classification problem. We construct stage-by-stage global surrogate risk, develop
an iterative algorithm in the boosting framework and present convergence results. We test
our work on synthetic, medical and explosives detection datasets. Our results demonstrate
that substantial cost reduction without a significant sacrifice in accuracy is achievable.

Keywords: multi-stage classification, sequential decision, boosting, cost sensitive learning

1. Introduction

In many applications including homeland security and medical diagnosis, decision systems
are composed of an ordered sequence of stages. Each stage is associated with a sensor or a
physical sensing modality. Typically, a less informative sensor is cheap (or fast) while a more
informative sensor is either expensive or requires more time to acquire a measurement. In
practice, a measurement budget (or throughput constraint) does not allow all the modalities
to be used simultaneously in making decisions. The goal in these scenarios is to attempt to
classify examples with low cost sensors and limit the number of examples for which more
expensive or time consuming informative sensor is required.

For example, in explosives detection, in the first stage, an infra-red (IR) imager is
used. The second stage is a more expensive and time consuming active millimeter wave
(AMMW) scanner. The final third stage is a time consuming human inspection. In medical
applications, first stages are typically non-invasive procedures (such as a physical exam)
followed by more expensive tests (blood test, CT scan etc) and the final stages are invasive
(surgical) procedures.

Many such examples share a common structure (see Fig. 1), and we list some of its
salient aspects below:
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Figure 1: Multi-Stage System consists of
K stages. Each stage is a
binary classifier with a reject
option. The system incurs a
penalty of δk at kth stage if it
rejects to seek more measure-
ments. The kth classifier only
sees the first k sensing modali-
ties in making a decision.
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(A) Sensors & Ordered Stages: Each stage is associated with a new sensor measurement or
a sensing modality. Multiple stages are an ordered sequence of sensors or sensor modalities
with later stages corresponding to expensive or time-consuming measurements. In many
situations, there is often some flexibility in choosing a sensing modality from a collection
of possible modalities. In these cases, the optimal choice of sensing actions also becomes
an issue. While our methodology can be modified to account for this more general setting,
we primarily consider a fixed order of stages and sensing modalities in this paper. This is
justified on account of the fact that many of the situations we have come across consist of
a handful of sensors or sensing modalities. Consequently, for these situations, the problem
of choosing sensor ordering is not justified since one could by brute force enumerate and
optimize over the different possibilities.
(B) Reject Classifiers: Our sequential decision rules either attempt to fully classify an
instance at each stage or ”reject” the instance on to the next stage for more measurements
in case of ambiguity. For example, in explosives detection, a decision rule in the first stage,
based on IR scan, would attempt to detect whether or not a person is a threat and identify
the explosive type/location in case of a threat. If the person is identified as a threat at the
first stage it is unnecessary (and indeed dangerous – the explosive could be detonated) to
seek more information. Similarly in medical diagnosis if a disease is diagnosed at an early
stage, it makes sense to begin early treatment rather than waiting for more conclusive tests.
(C) Information vs. Computation: Note that our set up can only use the partial measure-
ments acquired up to a stage in making a decision. In other methods such as detection
cascades the full measurement and therefore all the information is available to every stage.
Therefore, any region in the feature space can be carved out with more complex regions in
the measurement space, or equivalently complex features can be extracted but with higher
costs. In contrast, we have only partial measurements (or information) and so any feature
or classifier that we employ has to be agnostic to unavailable measurements at that stage.

The two stage toy example in Fig. 2 illustrates some of the advantages of our scheme
over the alternative scheme that first acquires measurements from all the sensing modalities,
which we refer to as the centralized classifier. A reject classifier utilizes the 2nd stage sensor
only for a fraction of the data but achieves the same performance as the centralized classifier.

Our approach is based on the so called Prediction Time Cost Reduction approach
(Kanani and Melville (2008)). Specifically, we assume a set of training examples in which
measurements from all the sensors or sensing modalities as well as the ground truth la-
bels are available. Our goal is to derive sequential reject classifiers that reduces cost of
measurement acquisition and error in the prediction (or testing) phase.
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Figure 2: (Advantage of a 2 stage classifier: 10 samples, bi-
nary (squares, circles). The red line is the opti-
mal decision when using only 1st stage modality.
The blue line is optimal if using both. (2nd stage)
The curve is classification error vs. samples re-
jected (cost) The red point corresponds to classi-
fying everything at stage 1. The blue corresponds
to rejecting everything and classifying using both
modalities.(Stage 2) The green is a partial reject
strategy. The samples outside the green region are
classified using only the first modality, and sam-
ples inside the region are rejected to stage 2 and
are classified using both modalities. Note that blue
and green have the same error, while the reject
strategy (green) has to use 2nd stage sensor only
for 1
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We show that this sequential reject classifier problem can be formulated as an instance
of a Markov Decision Problem (MDP) when the class-specific probability models for the
different sensor measurements are known. In this case the optimal sequential classifier can
be cast as a solution to a Dynamic Program (DP). The DP solution is a sequence of stage-
wise optimization problems, where each stage problem is a combination of the cost from
the current stage and the cost-to-go that is carried on from later stages.

Nevertheless, class probability models are typically unknown; our scenarios produce
high-dimensional sensor data (such as images). Consequently, unlike some of the conven-
tional approaches (Ji and Carin (2007)), where probability models are first estimated to solve
MDPs, we have to adopt a non-parametric discriminative learning approach. We formu-
late a novel multi-stage expected risk minimization (ERM) problem. This ERM formulation
closely emulates limiting stage-wise-optimization suggested by the Dynamic Programming
solution to the Markov Decision Problem (MDP). We solve this ERM problem at each
stage by first factorizing the cost function into classification and rejection decisions. Then
we transform reject decisions into a binary classification problem. Specifically, we show
that the optimal reject classifier at each stage is a combination of two binary classifiers,
one biased towards positive examples and the other biased towards negative examples. The
disagreement region of the two then defines the reject region.

We then approximate this empirical risk with a global surrogates. We present an iter-
ative solution and demonstrate local convergence properties. The solution is obtained in a
boosting framework. We tested our methods on synthetic, medical and explosives datasets.
Our results demonstrate an advantage of multistage classifier: cost reduction without a
significant sacrifice in accuracy.

1.1. Related Work

Active Feature Acquisition (AFA): The subject of this paper is not new and has been
studied in the Machine Learning community as early as MacKay (1992a). Our work is closely
related to the so called prediction time active feature acquisition (AFA) approach in the area
of cost-sensitive learning. The goal there is to make sequential decisions of whether or not
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to acquire a new feature to improve prediction accuracy. A natural approach is to formalize
a problem as an MDP. Ji and Carin (2007); Kapoor and Horvitz (2009) model the decision
process and infer feature dependencies while taking acquisition costs into account. Sheng
and Ling (2006); Bilgic and Getoor (2007); Zubek and Dietterich (2002) study strategies
for optimizing decision trees while minimizing acquisition costs. The construction is usually
based on some purity metric such as entropy. Kanani and Melville (2008) propose a method
that acquires an attribute if it increases an expected utility. However, all these methods
require estimating a probability likelihood that a certain feature value occurs given the
features collected so far. While surrogates based on classifiers or regressors can be employed
to estimate likelihoods, this approach requires discrete, binary or quantized attributes. In
contrast, our problem domain deals with high dimensional measurements (images consisting
of million of pixels), so we develop a discriminative learning approach and formulate a multi-
stage empirical risk optimization problem to reduce measurement costs and misclassification
errors. At each stage, we solve the reject classification problem by factorizing the cost
function into classification and rejection decisions. We then embed the rejection decision
into a binary classification problem.
Single Stage Reject Classifiers: Our paper is also closely related to the topic of reject
classifiers, which has also been investigated. However, in the literature reject classifiers
have been primarily considered in a single stage scenario. In the Bayesian framework, Chow
(1970) introduced Chow’s rule for classification. It states that given an observation x and a
reject cost δ and J classes, reject x if the maximum of the posteriors for each class is less than
the reject cost: maxk=1..J P(y = j|x) < δ. In the context of machine learning, the posterior
distributions are not known, and a decision rule is estimated directly. One popular approach
is to reject examples with a small margin. Specifically, in the context of support vector
machine classifiers, Yuan and Casasent (2003); Bartlett and Wegkamp (2008); Rodŕıguez-
Dı́az and Castañón (2009); Grandvalet et al. (2008), define a reject region to lie within a
small distance (margin) to the separating hyperplane and embed this in the hinge loss of the
SVM formulation. El-Yaniv and Wiener (2011) propose a reject criteria motivated by active
learning but its implementation turns out to be computationally impractical. In contrast, we
consider multiple stages of reject classifiers. We assume an error prone second stage which
occurs in such fields as threat detection and medical imaging. In this scenario, rejecting in
the margin is not always meaningful. Figure 3 illustrates that thresholding the margin to
reject can lead to significant degradation. This usually happens when stage measurements
are complimentary; then examples within a small margin of the 1st stage boundary may
not be meaningful to reject. Multiple stages of margin based reject classifiers have been
considered by Liu et al. (2008) using SVMs in image classification. The method does not
take into account the cost of later stages and is similar to the myopic method that we
compare in the Experiments section.
Detection Cascades: Our multi-stage sequential reject classifiers bears close resemblance
to detection cascades. There is much literature on cascade design (see Zhang and Zhang
(2010); Chen et al. (2012) and references therein) but most cascades roughly follow the set-
up introduced by Viola and Jones (2001) to reduce computation cost during classification.
At each stage in a cascade, there is a binary classifier with a very high detection rate and a
mediocre false alarm rate. Each stage makes a partial decision; it either detects an instance

462



Multi-Stage Classifier Design

as negative or passes it on to the next stage. Only the last stage in the cascade makes a
full decision, namely, whether the example belongs to a positive or negative class.

There are several fundamental differences between detection cascades and the multi-
stage reject classifiers (MSRC). A key difference is the system architecture. Detection
cascades are primarily concerned with binary classification problems. They make partial
decisions, delaying a positive decision until the final stage. In contrast, MSRCs can deal with
multi-class problems and can make classification decisions at any stage. Conceptually, this
distinction requires a fundamentally new approach; detection cascades work because their
focus is on unbalanced problems with few positives and a large number of negatives; and
so the goal at each stage is to admit large false positives with negligible missed detections.
Consequently, each stage can be associated with a binary classification problem that is
acutely sensitive to missed detections. In contrast, our scheme at each stage is a composite
scheme composed of a multi-class classifier as well as a rejection decision. The rejection
decision is itself a binary classification problem. In practice, MSRCs arise in important areas
such as medical diagnosis and explosives detection as we argued in Sec 1, item (B). As a
performance metric detection cascades tradeoff missed detections at the final stage with
average computation. MSRC’s tradeoff average misclassification errors against number
of examples that reached later stages (i.e. required more sensors or sensing modalities).
For these reasons it is difficult to directly compare algorithms developed for MSRCs to
those developed for detection cascades. Nevertheless, our goals and resulting algorithms
are similar to some of the issues that arise in cascade design (see Chen et al. (2012) and
references therein), namely, perform a joint optimization for all the stages in a cascade given
a cost structure for different features.
Other Cost Sensitive Methods: Network intrusion detection systems (IDS) is an area
where sequential decision systems have been explored. (see Fan et al. (2000); Lee et al.
(2002); Cordella and Sansone (2007)). In IDS, features have different computation costs.
For each cost level, a ruleset is learned. The goal is to use as many low cost rules as
possible. In a related set-up, Fan et al. (2002); Wang et al. (2003) consider a more general
ensemble of base classifiers and explore how to minimize the ensemble size without sacrificing
performance. In the test phase, for a sample, another classifier is added to the ensemble
if the confidence of the current classification low. Here, similar to detection cascades, the
goal is to reduce computation time. As we described in Sec 1, item (C), the important
distinction is that, in our setting, a decision is based only on the partial information acquired
up to a stage. In a computation driven method, a stage (or base classifier) decides using a
feature computed from the full measurement vector.

Figure 3: (a) Gaussian Mixture (binary). (b) Er-
ror rate vs reject rate on complimentary
measurements. 1st stage uses only dim
1. 2nd stage uses only dim. 2. My-
opic strategy (green) is thresholding the
margin of the classifier, our method is
global surrogate; Bayesian classifier (best
performance). Thresholding the mar-
gin performs significantly worse than our
method. (a)
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2. Problem Statement

Let (x, y) ∈ X × {+1,−1} be distributed according to D. A data point has K features:
x = {x(1), x(2), . . . , x(K)}. A kth feature is extracted from a measurement acquired at kth
stage. Define a truncated feature vector at kth stage: xk = {x(1) . . . x(k)}.

The system has K stages, the order of the stages is fixed, and kth stage acquires a kth
measurement. At each stage, k, there is a binary classifier with a reject option, fk. It can
either classify an example, fk(xk) = +1/ − 1 or delay the decision until the next stage,
fk(xk) = r and incur a penalty of δk. fk has to make a decision using only the first k
sensing modalities. The last stage K is terminal, a standard binary classifier. Define the
system risk to be,

R(f1, f2, . . . , fK , xk, y) =

K∑

k=1

Rk(x
k, y, fk, Sk) (1)

Here, Rk is the cost of classifying at kth stage, and Sk(x) ∈ {0, 1} is the state variable
indicating whether x has been rejected up to kth stage. 1

Rk(x
k, y, fk, Sk) =





Sk(xk)δk, f
k(xk) = r

Sk(xk)wp, f
k(xk) = −1, y = +1

Sk(xk)wn, f
k(xk) = +1, y = −1

(2)

If example is active and is misclassified, the penalty is either wn or wp depending on error
type. If it is rejected then the system incurs a penalty of δk and the state variable for that
example remains at 1 (active).

Sk+1(xk+1) =

{
0, Sk(xk) = 0 ∨ fk(xk) 6= r

1, otherwise
(3)

2.1. Bayesian Setting

If the distribution D is known then the problem is to minimize the expected risk,

min
f1,...,fK

ED

[
R(f1, . . . , fK , xk, y)

]
(4)

If we allow arbitrary decision functions then we can equivalently minimize conditional risk,

min
f1,...,fK

E
[
R(f1, . . . , fK , xk, y)|x

]
(5)

This problem—by appealing to dynamic programming—remarkably reduces to a single
stage optimization problem for a modified risk function. To see this, we denote,

δ̃(xk) = min
fk,...,fK

E

[
K∑

t=k+1

Rt(x
t, y, f t, St) | xk, Sk = 1

]
+ δk (6)

1. ”r” denotes one of 3 possible outcomes; fk can either classify xk as +1,−1 or reject ”r”
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and the modified risk function:

R̃k(x
k, y, fk, Sk, δ̃) =





Sk(xk)δ̃(xk), fk(xk) = r

Sk(xk)wp, f
k(xk) = −1, y = 1

Sk(xk)wn, f
k(xk) = 1, y = −1

(7)

We now claim the following: (for proof see the Trapeznikov et al. (2012))

Claim 1 The optimal solution fk minimizing E
[
R̃k(·) | xk

]
is equal to the optimal kth

stage classifier, fk obtained in Eq. 5. Furthermore, fk is obtained by suitably thresholding
the posterior.

fk(xk) =





+1, P(y = 1|xk) ≥ 1− δ̃(xk)
wn

−1, P(y = 1|xk) ≤ δ̃(xk)
wp

r, δ̃(xk)
wp
≤ P(y = 1|xk) ≤ 1− δ̃(xk)

wn

(8)

Finally, fk(·) also minimizes the unconditional risk function:

fk(·) = arg min Exk,y

[
R̃k(y, x

k, fk, Sk, δ̃)
]

(9)

Note that the modified risk functional, R̃k, is remarkably similar to Rk in Eq. 2 except for
the modified reject cost. The main implication is that if the cost-to-go function δ̃(xk) is
known then we can ignore all of the other stages and minimize a single stage risk.

Reject Classifier As Two Binary Decisions: Classifier in Claim 1 is cumbersome. It
is clear from the expression that we can express the decision region in terms of two binary
classifiers fn and fp. Observe that for a given reject cost δ̃(x), the reject region is an
intersection of two binary decision regions. To this end we further modify the risk function
in terms of agreement and disagreement regions of the two classifiers, fn, fp, namely,

Lk(x
k, y, fn, fp, S

k, δ̃) =





Sk(xk)δ̃(xk), fn 6= fp

Sk(xk)wp, fn = fp = −y = −1

Sk(xk)wn, fn = fp = −y = 1

(10)

Note that the above loss function is symmetric between fn and fp and so any optimal
solution can be interchanged. Nevertheless, we claim: (for proof see Trapeznikov et al.
(2012))

Claim 2 Suppose fn and fp are two binary classifiers that minimize E
[
Lk(x

k, y, fn, fp, S
k) | xk

]

over all binary classifiers fn and fp. Then following resulting reject classifier, fk:

fk(xk) =

{
fp(x

k), if fn(xk) = fp(x
k)

r, if fn(xk) 6= fp(x
k)

(11)

is the minimizer for E
[
R̃k | xk

]
in Claim 1 and the kth stage minimizer in Eq. 5. Also,

fk(·) minimizes the unconditional risk function:

fn(xk), fp(x
k) = arg min Exk,y

[
Lk(y, x

k, fn, fp, S
k, δ̃)

]
(12)
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We refer to Fig 4 for an illustration. We can express the new loss Lk compactly as follows:

Lk(x
k) = Sk(xk)

{
1[fp(xk) 6=y

∧
fn(xk)6=y] + δ̃(xk)1[fp(xk)6=fn(xk)]

}
(13)

Note that in arriving at this expression we have used 1[a6=c]1[a=b] = 1[a6=c]1[b6=c]. To simplify
the derivations, we assume equal false positive and false negative penalties. (wn = wp)
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Figure 4: Optimal Reject Region (denoted by R) can be ex-
pressed as the disagreement region of two binary clas-
sifiers (fn and fp).

2.2. Empirical Setting

We are now given training data: (x1, y1), (x2, y2), . . . , (xN , yN ). Let the empirical distribu-
tion of the samples be given by D̂N . Our task is to find multi-stage decision rules based on
training data. To this end we consider the empirical version of Eq. 4, namely,

min
f1,...,fK

ED̂N

[
R(f1, . . . , fK , xk, y)

]
(14)

Observe that, as in standard setting, we need to constrain the class of decision rules
{f1, . . . fK} ∈ {F1 × . . . × FK} here. This is because with no constraints the minimum
risk is equal to zero and can be achieved in the first stage itself. This issue poses a problem
because decisions on different examples cannot be arbitrary. So we cannot proceed from
Eq. 4 to the conditional minimization of Eq 5.

To address this issue we proceed as follows. We assume that an estimate of the cost-to-go
at the kth stage is available, i.e.,

δ̃ki = δ̃(xki ), ∀i = 1, 2, . . . , N (15)

Then, we can approximate fp and fn by a surrogate risk function that mimics Eq. 12,

fn(xk), fp(x
k) = arg min

1

N

N∑

i=1

[
Lk(yi, x

k
i , fn, fp, S

k
i , δ̃

k
i )
]

(16)

We can then compute the kth stage classifier exactly as in Eq. 11. This development
then settles most of the issues except for the lack of knowledge of δ̃ki . However, an es-
timate of δ̃ki can be obtained iteratively. Note by definition δki is actually a function of
fk+1
p , fk+1

n , . . . , fK . So we define the recursion:

δ̃k−1
i = δk−1 + Lk(yi, x

k
i , f

k, Ski , δ̃
k
i ) (17)

Note that by definition there is an update only when state is active, i.e, Ski = 1
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Given δki and all the stages but the kth, we can solve the subproblem 16 by iterating
between fp and fn. To solve for fp, we fix fn and minimize a weighted error

fp = arg min
f

N∑

i=1

wi1[f(xki )6=yi], wi = Sk−1
i

[
1[fn(xki )6=yi] + δ̃ki − 21[fn(xki )6=yi]δ̃

k
i

]
(18)

We can solve for fn in the same fashion by fixing fp. To derive this expression, we used
another identity, 1[a6=b] = 1[a6=c] + 1[b6=c] − 21[a6=c]1[b 6=c].

3. Algorithm

Minimizing the indicator loss is a hard problem. Instead, we take the usual ERM (empirical
risk minimization) approach and replace it with a surrogate. We introduce an algorithm in
the boosting framework based on the analysis from the previous section. Boosting is just
one of our many possible machine learning approaches that can be used to solve it. We use
boosting because it is easy to implement and is known to have good performance.

Boosting is a way to combines simple classifiers to form a strong classifier. We are given
a set of such weak classifiers H = {h1(x), h2(x) . . . hM (x)}, hj(x) ∈ {−1,+1}. The strong
classifier is the linear combination: sign(

∑
hjH qjhj(x)) This set of weak classifiers need not

be finite. Also, denote Hk ⊂ H as a subset of weak classifiers that operate only on the first
k measurements of x. hj(x) = hj(x

k) if hj ∈ Hk .

Global Surrogate: In our algorithm, we use the sigmoid loss function C(z) = 1
1+exp(z) to

approximate the indicator. Similar sigmoid based losses have been used in boosting before
(Masnadi-Shirazi and Vasconcelos (2009)). Each subproblem (18) reduces to boosting a
weighted loss2.

To solve for stage k, we keep the rest of the stages constant. To find fkp =
∑
qjhj(x),

we fix fkn and solve:

fkp = arg min
q1,q2,...

N∑

i=1

wiC


yi

∑

hj∈Hk

qjhj(xi)


 (19)

Note that the weights wi are also expressed in terms of the C(z) instead of 1[z]:

wi = Sk−1
i

[
C(yfkn(xi)) + δ̃ki − 2C(yfkn(xi))δ̃

k
i

]
(20)

To solve for fkn , we solve the same problem but keep fkp constant instead:

fkn = arg min
q1,q2,...

N∑

i=1

wiC


yi

∑

hj∈Hk

qjhj(xi)


 , wi = Sk−1

i

[
C(yfkp (xi)) + δ̃ki − 2C(yfkp (xi))δ̃

k
i

]
(21)

2. To reduce overtraining, we introduce a simple but effective regularization. For any loss C(z) and a param-
eter λ, we introduce a multiplicative term to the cost function:minq exp(λ|q|)

∑N
i=1 C(yi

∑
hj∈H qjhj(xi))

The term exp(λ|q|) limits how large a step size for a weak hypothesis can become. It also introduces a

simple stopping criteria: abort if
∑n

i=1 wiyiht+1(xi)∑n
i=1 C(yift(xi)

≤ λ. This corresponds to a situation when no descent

directions (read weak hypothesis ht+1) can be found to minimize the cost function
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Note that the terms δ̃ki and Sk−1
i do not depend on stage k and remain constant when

solving for fkp and fkn . For the ease of notation, we define a new term CR that indicates
if xi is rejected at a kth stage. The term is close to one if fp and fn disagree (reject) and
small if they agree.

CR(fkp , f
k
n , x

k
i , yi) = C(yif

k
p (xi)) + C(yif

k
n(xi))− 2C(yif

k
p (xi))C(yif

k
n(xi))

The expressions for state variables and cost-to-go are now simplified.

Ski = Sk−1
i CR(fkp , f

k
n , x

k
i , y)

The state variable remains greater than zero as long as xi is rejected at every stage. The
expression for cost-to-go at kth stage is:

δ̃ki = δk︸︷︷︸
meas. cost

+ C(yif
k+1
p (xk+1

i ))C(yif
k+1
n (xk+1

i ))
︸ ︷︷ ︸

err. penalty if not rejected at stage k + 1

+ δ̃k+1
i CR(fk+1

p , fk+1
n , xk+1

i , y)
︸ ︷︷ ︸

cost-to-to if rejected at stage k + 1

For the last stage (a standard binary classifier), we fix the first K − 1 stages and solve:

fK = arg min
q1,q2,...

N∑

i=1

SKi C


yi

∑

hj∈HK

qjhj(xi)


 (22)

We perform alternating minimization over one stage at a time. We start with the last stage
and make our way backwards to the first stage. Then do a forward pass from 1st stage to
last. This is repeated it until convergence 3 See Algorithm 1.

Our formulation allows us to form a surrogate for the entire risk in Equation 16, not
just for each subproblem. This enables us to prove the following theorem,

Theorem 1 Our global surrogate algorithm converges to a local minimum.

This is simply due to a fact that we are minimizing a global smooth cost function by
coordinate descent. However, since the global loss and the loss for each subproblem are
non-convex programs, there is no global optimality guarantee. Theorem 1 ensures that our
algorithm terminates. For proof see Trapeznikov et al. (2012).

Our system is composed of margin maximizing classifiers, therefore it is appropriate to
derive generalization error bounds based on margins. It turns out that we can employ max-
imum margin generalization techniques from Bartlett et al. (1998) to derive error bounds
for a two stage version of the system. We refer the reader to Trapeznikov et al. (2012) for
theorem statement, the proof and explanation.

4. Experiments

The goal is to demonstrate that a large fraction of data can be classified at an early stage
using a cheap modality. In our experiments, we use four real life datasets with measurements
arising from meaningful stages.

3. To initialize fk
n and fk

p , we simply hard code fk
p to classify any x as +1 and fk

n as -1 so that all x’s are
rejected to the last stage.
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Algorithm 1 Global Algorithm

INPUT: {xi, yi}Ni=1, {Hk}Kk=1 {Weak Learners for each stage}, {δk}K−1
k=1 {reject costs}, D { Loop Iterations}

INITIALIZE: fkn(x)← +1, fkp (x)← −1, for k = 1 . . .K − 1 {first K − 1 stages reject everything}
for d = 1, . . . , D do

for k = K, . . . , 1, 2, . . .K − 1 do
{Start from the last stage then iterate to the first stage and then back to last stage}
if k < K then

FInd fkp by solving boosting subproblem in 19

Find fkn by solving boosting subproblem to 21
else if k = K then
{Last Stage}
Find fK(x) by solving boosting subproblem in 22

end if
end for

end for

Fk(x)←
{
sign(fkp (x)), if fkp (x) = fkn(x)

reject, if fkp (x) 6= fkn(x)

OUTPUT: F 1, F 2, . . . , FK

4.1. Related Algorithms:

We compare our algorithm to two methods:

Myopic: An absolute margin of a classifier is a measure of how confident a classifier is on
an example. Examples with small margin have low confidence and should be rejected to the
next stage to acquire more features. This approach is based on reject classification (Bartlett
and Wegkamp (2008)). We know from Claim 1 that the optimal classifier is a threshold
of the posterior. For each stage, we obtain a binary boosted classifier, fk(·), trained on
all the data. We then threshold the margin of the classifier, |fk(x)|. It is known that
given an infinite amount of training data, boosting certain losses (sigmoid loss in our case)

approaches the log likelihood ratio, f(x) = 1
2 log P(y=1|x)

P(y=−1|x)(Masnadi-Shirazi and Vasconcelos

(2009)). So a reject region for a given threshold tk is defined: {x | |fk(x)| ≤ tk}. This is a
completely myopic approach as the rejection does not take into account performance of later
stages. This method is very similar to TEFE (Liu et al. (2008)) which also uses absolute
margin as a measure for rejection. The difference is that our myopic strategy is a boosting
classifier not an SVM as used in TEFE.

Expected Utility/Margin: An expected margin difference measures how a new at-
tribute, if acquired, would be useful for an example. If this expected utility for an example
is large then a new attribute should be acquired. This approach is based on the by Kanani
and Melville (2008). We train boosted binary classifiers on all the data for each stage:
fk(xk). Given the measurement at the current stage xk, we compute an expected utility
(change in normalized margin) of acquiring the next measurement xk+1:

U(xk) =
∑

xk+1∈Xk+1

∣∣∣fk(xk)− fk+1([xk, xk+1])
∣∣∣P(xk+1|xk)

An xk is rejected to the next stage if its utility U(xk) ≥ tk is greater than a threshold. Here,
Xk+1 denotes the possible values that xk+1 can take. Note this approach requires estimating
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P(xk+1|xk)4, therefore the (k + 1)th measurement has to be discrete or distribution needs
to be parametrized. Due to this limitation, we only compare this method on two datasets.

4.2. Simulations

Performance Metric: A natural performance metric is the trade off between system
error and measurement cost. Note, for utility and myopic methods, it is unclear how to set a
thresholds tk for each stage given a measurement cost δk. For this reason, we only compare
them in a two stages system. More than two stages is not-practical because we would need
to test every possible tk for every stage k. In a two stage setting, measurement cost is
proportional to the fraction of examples rejected to the second stage. For our algorithm,
we vary a reject cost δ to generate a system error vs reject rate plot. For margin and
utility, we sweep a threshold tk. System error is the sum of 1st stage and 2nd stage errors.
Reject rate is the fraction of examples rejected to the 2nd stage and require additional
measurements. Low reject rate (cost) corresponds to higher error rate as most of the data
will be classified at the first stage using less informative measurements. High reject rate
will have performance similar to a centralized classifier, as most examples will be classified
at the 2nd stage.

Set Up: In all our experiments, we use stumps 5 as weak learners. For each dataset
and experiment, we randomly split the data 50/50 for training and testing. The results
are evaluated on a separate test set, and the simulations are averaged over 50 monte-carlo
trials. The number of iterations for each boosting subproblem is set to T = 50. In our
global surrogate algorithm, the number of outer loop iterations is set to P = 10

Name Size 1st Stage 2nd Stage

Gassian Mixture 1000 1st dim 2nd dim
Mammogram Mass 830 3 CAD meas. Radioligist Rating
Pima Diabetes 810 6 simple tests: BMI, sex, .. 2 blood tests
Polyps 310 12 freq. bins 126 freq. bins
Threat 1300 Images in IR, PMMW Images in AMMW

Figure 5: Dataset Descriptions

Discrete Valued Data Experiments: To compare our method to the utility approach,
we consider discrete data. The first dataset is a quantized (with 20 levels) Gaussian mixture
synthetic data in two dimension. The 1st dimension is stage one; the 2nd dimension is stage
two. The second dataset is Mammogram Mass from UCI Machine Learning Repository. It
is used to predict the severity of a mammographic mass lesion (malicious or benign). It
contains 3 attributes extracted from the CAD image and also an evaluation by a radiologist
on a confidence scale in addition to the true biopsy results. The first stage are features
extracted from the CAD image, and the second stage is the expert confidence rated on a
discrete scale 1 − 5. Automatic analysis of the CAD image is cheaper than employing an
opinion of a radiologist.

Simulations in Fig. 6 demonstrate that utility performs worse when compared to our
approach. This is possibly due to poor probability estimates in limited data setting.

4. While there are many different ways to estimate a probability likelihood we used a Gaussian mixture
due to its computational efficiency

5. stump classifier is threshold on dth dimension: hd,g,{+1/−1}(x) = {+1/− 1}sign(x(d)− g)
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Figure 6: Comparison of Global to
Utility on (a) quantized
two gaussian clusters and
(b) mammogram dataset.
Reject Rate vs System
Error. Reject Rate is the
fraction of examples with
measurements from both
stages. Our approach
outperforms Utility pos-
sibly because we do not
need to estimate proba-
bility likelihoods
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Continuous Valued Data Experiments We compare our global method to the myopic
method on three datasets. The Pima Indians Diabetes Dataset (UCI MLR) consists of 8
measurements. 6 of the measurements are inexpensive to acquire and consist of simple tests
such as body mass index, age, pedigree. These we designate as the first stage. The other
two measurements constitute the second stage and require more expensive procedures.

The polyp dataset consists of hyper-spectral measurements of colon polyps collected
during colonoscopies (Rodŕıguez-Dı́az and Castañón (2009)). The attribute is a measured
intensity at 126 equally spaced frequencies. Finer resolution requires higher photon count
which is proportional to acquisition time. For a first stage, we use a coarse measurement
downsampled to only 12 frequency bins. The second stage is the full resolution frequency
response. Using the course measurements is cheaper than acquiring the full resolution.

The threat dataset contains images taken of people wearing various explosives devices.
The imaging is done in three modalities: infrared (IR), passive millimeter wave (PMMW),
and active millimeter (AMMW). All the images are registered. We extract many patches
from the images and use them as our training data. A patch carries a binary label, it
either contains a threat or is clean. IR and PMMW are the fastest modalities but also less
informative. AMMW requires raster scanning a person and is slow but also the most useful.

In Fig. 7, global performs better than margin in most cases. On threat data, margin
appears to be doing just marginally worse than global, however, we get only a few points
on the curve with reject rates less than 50%. Due to the heuristic nature of margin, we
cannot construct a multistage classifier with an arbitrary reject rate.

The goal is to reach the performance of a centralized classifier (100% reject rate) while
utilizing the 2nd stage sensor only for a small fraction of examples. Overall, the results
demonstrate the benefit of multi-stage classification: rejection rate can be set to less
than 50% with only small sacrifices in performance. For the mammogram data, this implies
that for half of the patients a diagnoses can be made solely by an automatic analysis of a
CAD image without an expensive opinion of a radiologist. For the Pima data, similar error
can be achieved without an expensive medical procedures. For the polyps dataset, a fast
low resolution measurement is enough to classify a large fraction of patience. In the threat
dataset, IR and PMMW are sufficient to decide whether or not a threat is present for the
majority of instances without requiring a person to go through a slower AMMW scanner.
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Figure 7: Three datasets are evaluated: pima, polyps and threat. Reject Rate vs Error Rate for a varying
reject cost δ. Reject Rate is the fraction of examples with measurements from both stages.
Global and Myopic are compared. Global (our approach) has a better performance over all
while Myopic does better in some situations.

1st Stage Centralized Global Utility Myopic
Rej. Rate: 0% 100% 30% 50% 30% 50% 30% 50%

GaussMix 15.9 9.4 10.3 9.5 11.4 10.1
Mammogram 20.1 16.5 17.2 17.1 18.6 17.5
Pima 31.3 25.7 27.5 25.9 27.8 26.5
Polyps 33 24 26.6 25.7 29.1 27.9
Threat 23 18.5 19 18.6 19.3 18.8

Figure 8: Comparison of algorithms. Selected error for fixed reject rates of 30 and 50 % (quantative view
of the curves)

Three Stages: Lastly, we demonstrate a three stage system, we apply our algorithm
to three stages of threat dataset. Note for margin it is unclear how to generalize it to a
multistage scenario and there is no way to define reject costs for different stages. We set the
first stage to be IR, second PMMW and AMMW as third. There is no cost for acquiring
IR. We vary the costs for the PMMW (2nd) stage, δ1, and AMMW (3rd), δ2, to generate
an error map (color in Fig. 9). A point on the map corresponds to a performance of a
particular multistage classification strategy. The vertical axis is the fraction of examples for

Figure 9: Three Stage System. The color maps er-
ror. A point on the map corresponds to
a performance of a particular multistage
classification strategy. The vertical axis
is the fraction of examples for which only
IR and PMMW measurements are used
in making a decision. The horizontal axis
is the fraction of examples for which all
three modalities are used. An example
red point in the figure, {.4, .15, .195}, cor-
respond to a system where 40% of exam-
ples use IR and PMMW, 15% use only
IR and the rest of data (45%) use all the
modalities. And this strategy achieves a
system error rate of 19.5%.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

 

Fraction w/ IR, PMMW and AMMW measured
 

Fr
ac

tio
n 

w
/ o

nl
y 

IR
 a

nd
 P

M
M

W
 m

ea
su

re
d

0.19

0.195

0.2

0.205

0.21

0.215

0.22

0.225

0.23

0.235

0.24

472



Multi-Stage Classifier Design

which only IR and PMMW measurements are used in making a decision. The horizontal
axis is the fraction of examples for which all three modalities are used. For example, a red
point in the figure, {.4, .15, .195}, correspond to a system where 40% of examples use IR
and PMMW, 15% use only IR and the rest of data (45%) use all the modalities. And this
strategy achieves a system error rate of 19.5%. Note that the support lies below the diagonal.
This is because the sum or reject rates has to be less than one. Results demonstrate some
interesting observations. While best performance (about 19%) is achieved when all the
modalities are used for every example, we can move along the vertical lines and allow a
fraction to be classified by IR and PMMW, avoiding AMMW all together. This strategy
achieves performance comparable to a centralized system, (IR+PMMW+AMMW).

5. Conclusion

In this paper, we propose a general framework for a sequential decision system in a non-
parametric setting. Starting from basic principles, we derive the bayesian optimal solution.
Then, to simplify the problem, we parameterize a classifier at each stage in terms of two
binary decisions. We formulate an ERM problem and optimize it by alternatively mini-
mizing one stage at a time. Remarkably, all subproblems turn out to be weighed binary
error minimizations. We introduce a practical boosting algorithm that minimizes a global
surrogate of the empirical risk and test it on several datasets. Results show the advantage
of our formulation to more heuristic approaches. Overall, our experiments demonstrate how
multi-stage classifiers can achieve good performance by acquiring full measurements only
for a fraction of samples.
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