JMLR: Workshop and Conference Proceedings 25:523-538, 2012 Asian Conference on Machine Learning

Practical Large Scale Classification with Additive Kernels

Hao Yang LANCELOT365@QGMAIL.COM

Jianxin Wu wUJX2001@GMAIL.COM
Nanyang Technological University, Singapore

Editor: Steven C.H. Hoi and Wray Buntine

Abstract

For classification problems with millions of training examples or dimensions, accuracy,
training and testing speed and memory usage are the main concerns. Recent advances
have allowed linear SVM to tackle problems with moderate time and space cost, but for
many tasks in computer vision, additive kernels would have higher accuracies. In this pa-
per, we propose the PmSVM-LUT algorithm that employs Look-Up Tables to boost the
training and testing speed and save memory usage of additive kernel SVM classification, in
order to meet the needs of large scale problems. The PmSVM-LUT algorithm is based on
PmSVM (Wu, 2012), which employed polynomial approximation for the gradient function
to speedup the dual coordinate descent method. We also analyze the polynomial approx-
imation numerically to demonstrate its validity. Empirically, our algorithm is faster than
PmSVM and feature mapping in many datasets with higher classification accuracies and
can save up to 60% memory usage as well.

Keywords: Large scale classification, Polynomial approximation, Look-Up Table

1. Introduction

With the availability of abundant datum, images and videos on the Internet, datasets’ size
has grown at a rapid rate. As a matter of course, classification of large scale datasets
with the support vector machine (SVM) raise more and more attention in the machine
learning and computer vision community. Since many vision datasets are generated by the
Bag-of-Words method, each training instance may have high dimension and dense features,
making the classification even more tricky. Recent advances have allowed us to practically
solve large scale linear kernel SVM problem, using tools such as LIBLINEAR (Fan et al.,
2008) and Pegasos (Shalev-Shwartz et al., 2007). However, for visual classification tasks,
non-linear kernels, especially additive kernels, have significantly higher accuracy than their
linear rivalries.

A kernel is additive if the vector form can be written as the sum of the scalar kernel
function of each dimension, i.e., if

K(x,y) = Zﬂ(% Yi)- (1)

i=1

© 2012 H. Yang & J. Wu.

YANG WU

Commonly used additive kernels are the linear kernel itself, the histogram intersection kernel

d
rui(z,y) = Y min(w;, ;) (2)
i=1
and the x? kernel

d
22y,
K2 (:13, y) ; T + Ui . (3)
When learning an additive kernel, general purpose solvers like Sequential Minimal Opti-
mization(SMO) (Platt, 1999) can be thousands times slower than fast linear solvers. Recent
novel algorithms in Wu (2010); Perronnin et al. (2010); Vedaldi and Zisserman (2012) have
bridged the gap. Additive kernel SVM now are only a few time slower than state-of-the-art
linear SVM solvers; or even faster than linear SVM in some large vision problems. An
particular example is the PmSVM algorithm in (Wu, 2012) to efficiently solve the power
mean kernel and other additive kernels learning problem.
The power mean kernel is defined as

d d .’L’f + yf 1/p
M) = Y Mylen) = 3 () @)
i=1 =1
It is the general form of many widely used additive kernels, such as the HIK (with p = —o0)
and the x? kernel (with p = —1). PmSVM combined the dual coordinate descent method
with polynomial approximation for the gradient function of each dimension, resulting in an
efficient algorithm that can be up to 10 times faster than the LIBLINEAR solver. However,
some practical problems such as the polynomial approximation and the memory usage
problem, need to be settled, in order for PmSVM to be applied to real large scale problems.
In this paper, we proposed PmSVM-LUT, a modified version of the PmSVM algorithm
with Look-Up Table and an analysis on the polynomial approximation. Our main contri-
butions are:

e We proposed PmSVM-LUT, the PmSVM algorithm with Look-Up Table to save mem-
ory usage and to further speed up the algorithm. Our algorithm can be up to 5 times
faster than the original one using 50% less memory. We show the superiority of the
new algorithm by comparing it to state-of-the-art methods on both large scale machine
learning datasets and computer vision datasets.

e We demonstrate the approximability of the gradient function by polynomials. We
show that by appropriately choosing interpolation nodes, the approximation poly-
nomial function will converge to the gradient function as the polynomial’s degree
increases. We numerically analyze the approximation error to illustrate this conver-
gence property.

The paper is organized as follows. We briefly review the related work on linear and non-
linear large scale SVM classification in Section 2. In Section 3, we introduce the PmSVM
algorithm. In Section 4, we demonstrate the approximability of the gradient function and
illustrate the way to choose appropriate interpolation nodes. We give a detailed description
of PmSVM-LUT in Section 5 and compare it to PmSVM, feature mapping and LIBLINEAR
experimentally in Section 6. The paper is concluded in Section 7.

524

PracTicAL CONSIDERATIONS

2. Related Work

Before presenting our contributions, we briefly review related work on large scale SVM
classification.

Early methods include sequential minimal optimization (Platt, 1999) and SV Mign,
(Joachims, 1999). Both methods decompose a large problem into small sub-problems to
reduce the memory usage. However, for large datasets nowadays with millions of training
examples, these methods may take years to complete a training task.

There are many new algorithms proposed to speedup the training. For linear SVM
problem, typical examples of efficient methods include the dual coordinate descent method
in LIBLINEAR (Fan et al., 2008), which focuses on solving the dual problem; and the
stochastic gradient descent method in Pegasos (Shalev-Shwartz et al., 2007), which focused
on the primal problem. The dual coordinate descent method (see Algorithm 1) maintains
w = Z?:l yja;x; so that the calculation of the gradient 7; f (o) = yiw? x;—14 Dy can be
done in O(d) time. Typical stochastic gradient descent (like Pegasos) or average stochastic
gradient descent algorithm randomly chooses one training instance at a time and update
the primal variable w according to the sub-gradient direction. The main advantage of SGD
is that the training time is independent of the number of training instances. However, for
SGD algorithms, it is not easy to explicitly specify a stopping criteria.

For the non-linear SVM, recent advances includes the Nystrom approximation method
(Zhang et al., 2008) and the Fourier approximation method (Rahimi and Recht, 2008).
Pegasos has also been extended for non-linear kernels. In particular, for additive kernels,
the explicit feature mapping method (Vedaldi and Zisserman, 2012), which uses a mapping
function <Z>() such that k(x;,y;) ~ é(xZ)TQAS(yZ) to map one dimension of an example into
higher dimensions, achieves good experimental results. Experiments show that QE :R+— R3
achieves good approximation of the additive kernel function. In this case, a d-dimension
non-linear problem becomes a 3d-dimension linear problem and fast linear trainer such as
LIBLINEAR can be applied to solve it.

3. The Power Mean SVM

Since PmSVM-LUT improves upon PmSVM, we first briefly introduce this algorithm, which
is published in Wu (2012).

Given a set of training samples {(z;,v:)}/_;,z; € R? the dual SVM problem (/o-
regularized ¢1-loss) without a bias term is defined as

Hgn f(Z QO Y YR w’La w] Z &%)
ij (5)
s.t. 0 S (673 S C,VZ

Here x is the kernel function and if its associated feature mapping is defined as ¢, the
classification boundary is then w = >"7" | oy ¢ (x;).

As suggested by Yuan et al. (2012), (5) can be solved by the dual coordinate descent
framework (see Algorithm 1) with only a few modifications on the algorithm in Hsieh et al.
(2008).

525

YANG WU

Algorithm 1 The Coordinate Descent Method

1: Given a and the corresponding w = >_7" | o,y ¢ (x;)

20 Qii + [|¢ (), , 1 S i< n.

3: while « is not optimal do

4 fori=1,...,ndo

5: Compute G = y;w! ¢(x;) — 1
6: Q; < o4
7
8

a; < min(max(o; — G/Q;i,0),C)
: w <+ w+y; (o —a) p(x;)
9: end for
10: end while

However, unlike the linear SVM problem, which can maintain w efficiently to make the
calculation of the gradient function G fast, one can hardly compute w for a non-linear kernel
explicitly. We need to address this problem to make it possible to apply this framework to
non-linear kernel SVM.

Wu (2012) discovered that we can achieve fast training speed for the power mean kernel
and other additive kernels by efficiently evaluating w” ¢(=;) in the gradient function G =
yiwl ¢(x;) — 1. Wu (2012) defines

(@) = w'd(x) =Y awMy(z, 21), (6)
t=1

and the j-th component of g with a scalar input x is then

gj(z) = Z oy Mp(z, 1,5), (7)
t=1

in which x;; is the j-th component of x;, and g(x) = Z?:l gj(z;). Wu (2012) showed
that since g;(z) is a smooth function, it can be approximated by a low degree polynomial
(degree two used). Thus, we can calculate gj(x) in constant time and update the gradient
function in O(d) steps. The PmSVM algorithm is shown in Algorithm 2.

In Algorithm 2, ¢ = {0.01,0.06,0.75} are a set of pre-defined approximation nodes, and
X is the Vandermonde matrix used for polynomial interpolation:

1 In(co+0.05) (In(co+ 0.05))2
X = {1 In(er +0.05) (In(e; +0.05))] . (8)
1 In(cy +0.05) (In(cy +0.05))2

a; is the parameters for estimating g;. PmSVM assumes that feature values are in the
range [0, 1]. a; is approximated as a; = X "'g;(c), and is updated by Aa; = X 'Ag;(c) =
Ac;y; X My (e, w5) (see Wu (2012) for details.)

Although this algorithm is significantly faster than other state-of-the-art methods, there
are also some drawbacks in this method. First of all, though the empirical results were
good, Wu (2012) did not systematically analyze the error and convergence of polynomial

526

PracTicAL CONSIDERATIONS

Algorithm 2 The Power Mean SVM Algorithm (Wu, 2012)
1o+ 0,1<i<n.
ajr+ 0,1<75<d,0<k <2
Qii — ||£BZ”£1 R 1< <n.
while « is not optimal do
fori=1,...ndo
Compute G = yig(x;) — 1 using g(a;) = Y0_1 g ajr(In(zij + 0.05))F
Q; < Oy
a; + min(max(o; — G/Q;:,0),C)
a; < a;j + (o; — di)in_lMp(c, l’i,j),Vj
end for
end while
: Output: The set of values a;.
: Classification: For a test example q € Rﬂlr, the classification result is:

_ = =

2
sen(g(q)) =sgn | YD a;x(in(g; +0.05))" | . (9)

j=1 k=0

approximation for the gradient function g;(x). Secondly, efficient implementation of the
algorithm needs to pre-compute and store In(z; ; + 0.05) and M)y (cg, z; ;) for each training
sample z; ;, leading to about 30 percent more memory usage than LIBLINEAR and feature
mapping. In this case Wu (2012) uses FLOAT type and the other two use DOUBLE. If all
methods are using the DOUBLE, PmSVM may need 80 percent more memory. Last but
not least, the logarithm manipulation in (9) and matrix multiplication in line 8 are time
consuming and need to be further accelerated.

4. Polynomial Approximation of the Gradient

We propose to addresses these three drawbacks. We show the validity of polynomial ap-
proximation and the convergence by analyzing its approximation error numerically in this
section. In Section 5, we propose PmSVM-LUT to solve the memory usage problem and
further speedup the PmSVM algorithm.

4.1. Approximability of the gradient

Recall that g;(z) is defined in (7), which is R — R, and we assume that any feature value
x € [0,1]. If the kernel function k(x,z; ;) is a continuous function (in the power mean case,
it certainly is), by the Weierstrass approximation theorem (Burden and Douglas, 2004;
Dzyadyk and Shevchuk, 2008), which states that

Theorem 1 If f is a continuous real-valued function on [a,b] and given any € > 0, there
exists a polynomial p on [a,b] such that supgeiqy |f(2) — p(z)] <€,

527

YANG WU

we can approximate any continuous function on the closed interval by some polynomials to
any degree of accuracy. Therefore, we can approximate g;(z) by a polynomial, although we
do not know how to choose such polynomials or the rate of convergence for now.

Note that although the proposed algorithm is based on the power mean kernel, we can
actually approximate any additive kernel as long as their scalar components are continuous
and finite, such as the Jensen-Shannon’s kernel x5 = § log, %ry + % log, myﬂ

If we define P, as the set that contains all polynomials with degree < m, and

Py = inf sup |f(z) —p(z)|, (10)
pEPm J;e[al)}

we conclude from the Weierstrass approximation theorem that pj, will converge to f uni-
formly as m increases. We call such a p;, the best approximation polynomial of f.

The Chebyshev alternation theorem (Dzyadyk and Shevchuk, 2008) states an important
property of the best approximation polynomial:

Theorem 2 Assume that a continuous real function f is defined on [a,b]. In order that
a polynomial py, of degree < m to be a polynomial of the best approximation of f, it is
necessary and sufficient that there exists at least one system of m~+2 points of x;, a < x1 <
2 < ... < Tma2 < b, such that the difference of f(x) — p;,(z) =: ()

e consecutively takes alternating signs at the points x;.
e attains its maximum absolute value on [a,b] at the points x;.
Combine both theorems, we can get

Theorem 3 For any continuous function f on a closed interval [a,b], there exists a se-
quence of interpolation nodes {mi,no,...} with n; containing i + 1 interpolation values,
such that the sequence of polynomials p; interpolating n; will converge uniformly to f.

Proof By the Weierstrass approximation theorem, the sequence of the best polynomial
will converge to f uniformly. By the Chebyshev alternation theorem, such best polynomial
of degree m must oscillate between the function m + 2 times, i.e., the best polynomial must
have m+1 intersection points with the function. If we take these points as interpolation
nodes, by the uniqueness of the polynomial, the interpolated polynomial is then the best
polynomial, which will converge to f uniformly. |

This theorem tells us that if we choose a set of optimal nodes, the polynomials that
interpolate these nodes will give us guaranteed approximation result of g;(z). However,
searching for such optimal set of nodes is still one of the most intriguing topics in mathe-
matics. Instead, we use a set of good nodes instead of the optimal ones.

4.2. Choosing Interpolation Nodes

PmSVM chose {0.01,0.06,0.75} as the nodes for degree 2 polynomial interpolation. For the
three datasets in Wu (2012), most feature values are in the range [0.01,0.10], and only a
few feature values are above 0.8. However, this choice may not be good enough for other

528

PracTicAL CONSIDERATIONS

datasets that do not have such a property. Therefore, we want to find out a set of universally
good nodes for every dataset, which is defined at any degree m and can be used for higher
order interpolation too.

For a function f € C™![a,b], the error e(x) = |f(z) — pm(z)| satisfies (Burden and
Douglas, 2004):
m—+1

(x —x;)
i=1

Forr(€)

(m+1)! ’ (11)

e(zr) =

for chosen interpolation nodes x1,x3, ..., Z;m+1 and some & in [a, b]. Thus, it is logical for us

to minimize
m+1

H(."L‘—l’l) .

i=1
The Chebyshev nodes are the roots of the Chebyshev polynomial of the first kind T}, 41,
which are defined as

max (12)

2i—1 .
X; = COS <2(777,—|—1)7T> ,Zzl,...,m—i—l, (13)
for a closed interval [—1,1]. We use m + 1 here because for a degree m polynomial, we need
m + 1 nodes to interpolate. T,+1 has the following property (Schwarz, 1989),

Theorem 4 Among all polynomials pm1(z) of degree m > 0, whose coefficient of z™+1 is

equal to one, the polynomial Ty,+1(x)/2™ has the smallest mazimum norm of the interval
[—1,1], that is, we have

- 2im (14)

Tm—l—l(x)

min = max |[pm41(z)] = max om

pm+1(l‘) xE[—Ll} :L‘G[—l,l]

Since HZ’;{l(ac — ;) is a polynomial whose coefficient of 2™*! is equal to one, by Theorem

4, its maximum norm on [—1, 1] is a minimum if and only if the m + 1 nodes coincide with
the m + 1 zeros of T;,,11. In this case, the polynomial p¥, (z) whose interpolation nodes are
Chebyshev nodes of the (m + 1)-th Chebyshev polynomial provides the smallest possible
bound for the interpolation error

1

— - - (m+1)
176) = Ph@)] < gy e, [£ €] (15)

This property holds for arbitrary closed interval [a,b], since we only need to do an affine
transform for the Chebyshev nodes to get

1 1 21 —1
T = 5 =(b— ——7 |, i=1,.., 1. 1
T 2(a+b)+2(b a)cos<2(m+1)7r> i m + (16)

Moreover, the Lebesgue constant A,, grows only logarithmically if Chebyshev nodes are
used, while it grows exponentially if equidistant nodes are used (Smith, 2006). That is,

2 2
- log(m+1)+a < Ap(T) < ;log(m +1)+1, (17)

529

YANG WU

for Chebyshev nodes, here a ~ 0.9625. It means that using Chebyshev nodes, the approxi-
mation polynomial is at most %log(m + 1) + 2 worse than the best possible approximation.
Overall, the Chebyshev nodes are good choices for polynomial approximation.

In Figure 1, we show the approximation error on some real world datasets with Cheby-
shev nodes and compare it with error using the ad hoc nodes {0.01,0.06,0.75}. Here we set
p = —1 in the power mean kernel.

0 oX 10~
Actual Actual
_0005% @ | ----- Appr Chebyshev o5\ @ |--=--- Appr Chebyshev
Appr Ad hoc Appr Ad hoc

—0.01f
Z 0015}
(o))

—0.02}

-0.0251

-0.03 : * : * -3

Figure 1: Comparing the approximation quality using Chebyshev nodes and ad hoc nodes
{0.01,0.06,0.75} on MNIST (a) and CALTECH 101 (b).

Table 1: Comparing Interpolation Error of CALTECH 101 dataset.

J | Max Error (C) | Max Error (A) | Mean Error (C) | Mean Error (A)
30 | 5.60-4 (0.77%) | 8.2e-4 (0.87%) | 3.1e-4 (0.33%) | 4.5e-4 (0.45%)
50 | 1.5e-3 (8.30%) | 2.1e-3 (5.31%) | 4.3e-4 (L25%) | 1.1e-3 (2.73%)

100 | 3.2e-5 (1.51%) | 5.66-5 (1.25%) | L.2e-4 (0.30%) | 2.7e-3 (0.58%)
Table 2: Comparing Interpolation Error of MNIST dataset.

j | Max Error (C) | Max Error (A) | Mean Error (C) | Mean Error (A)
30 | 2.205 (1.78%) | 2.9¢5 (2.17%) | 8.8¢-6 (0.88%) | 8.3¢-6 (0.81%)
50 | 9.3¢-6 (2.03%) | 1.5e-5 (2.55%) | 4.70-6 (1.33%) | 5.9¢-6 (1.43%)

100 | 7.8¢-4 (1.56%) | 1.1e-3 (1.88%) | 3.d4e-4 (0.85%) | 3.6e-4 (0.90%)

As shown in Figure 1, approximation curves with Chebyshev nodes are obviously closer
to the actual curve across the whole range while interpolation with previous ad hoc nodes put
more emphasis on the range [0.01,0.10]. Experimental results also show that Chebyshev
nodes interpolation has generally smaller maximum error (which is predictable since the
Chebyshev nodes provide the minimum bound for the maximum error) and average error
than using the ad hoc nodes, as shown in Tables 1 and 2. The numbers in these tables
are the actual error, followed by the relative error. (C) and (A) here mean Chebyshev

530

PracTicAL CONSIDERATIONS

and ad hoc nodes, respectively; and j refers to the dimension of the training example as
in g;(x). Classification accuracy also supports that, approximation with Chebyshev nodes
give slightly better result in most cases, as shown in Table 3.

Table 3: Comparing SVM Classification Accuracy.

COVTYPE URL KDDA KDDB RCV

Chebyshev 72.09% | 98.77% 89.61% | 90.01% | 97.92%
Ad hoc 71.14% | 98.74% | 89.62% | 90.00% | 97.85%

4.3. Choosing Polynomial Degree

Wu (2012) chooses degree 2 polynomials to approximate g;, and experiments show that this
approximation is good enough for some power mean kernels such as x? or HIK. However,
we do not know how would the polynomial approximation behave as degree increases. We
need to analyze if the polynomial converges to the function gj;; if it converges, can we get
higher classification accuracy? Analyzing these issues analytically is very difficult, we will
numerically analyze the behavior of the polynomial approximation as degree increases.We
choose the Chebyshev nodes as interpolation nodes. As shown in Figure 2, as the degree

25

—=— Max Error

—— Mean Error

—=&— Max Error

—=&— Mean Error

Relative Error (%)
Relative Error (%)

l\ \’\\—0

* .
2 25 3 35 4 45 5 2 25 3 3.5 4 4.5 5
Degree Degree

(a) (b)

Figure 2: Relative approximation error in percentage with degree 2-5 polynomials on MNIST
(a) and CALTECH 101 (b).

increases, the maximum error and mean error become smaller. At degree 5, the maximum
relative errors tested on 7 datasets are all below 0.5% and the mean relative errors are all
below 0.1%. We conclude that, empirically, the approximation polynomial converges to the
original function quickly.

Since the worst case error for degree 2 interpolation is already fairly small, further
increasing the degree to minimize the error will not affect the accuracy much in many cases,
However, the training time will increase as degree goes higher, as shown in Figure 3.

But in some cases, the average accuracy will improve visibly, as shown in Figure 4.
In these cases, we may want to use higher order interpolation. Moreover, if the gradient
function g; is not monotone, we also need higher order interpolation. Therefore, we need
to improve the algorithm to cope with higher degree polynomial approximation.

531

YANG WU

99 T T T T T 10000
98.81 —=a— Average Accuracy| - 9500
@
- g
& 98.61 T o 9000+
3 -4.\./" £
8 =
3 2
Sosar 1 £ es00f
=
98.2 B 8000
98 7500
2 25 3 35 4 45 5 25 3 35 4 45 5
Degree Degree

(a) (0)

Figure 3: Average SVM classification accuracy (a) and training time (b) for URL as approx-
imation degree increases.

47 T T T T T 95.5 T T T
—&— Average Accuracy —&— Average Accuracy
46.5 95-
& sl Lo4s
> >
o o
I g
3 3
8455 8 94r
< <
451 93.5
445 93
2 25 3 35 4 45 5 2 25 3 35 4 45 5
Degree Degree

(a) (b)

Figure 4: Average SVM Classification accuracy for COVTYPE (a) and WEBSPAM (b) as ap-
proximation degree increases.

5. Efficient Additive Kernel Learning

To implement Algorithm 2 efficiently, Wu (2012) pre-computes In(z; j40.05) and M (¢, zi ;)
for k = 1,2 with the assumption that M,(co,x; ;) =~ co. Without this pre-computation,
the algorithm will be about 5-6 times slower. However, the pre-computation causes some
problems. The biggest issue is that it uses 12 bytes more memory per training instance
with FLOAT type employed, that is 150% more than not using pre-computation and 25%
more than LIBLINEAR, which employs DOUBLE type. If one wants to approximate g;(x)
with a larger degree, the memory usage with also grow linearly. The other issue is that
My(co, i ;) = co holds if cg = 0.01, but if one want to use different sets of nodes, this
approximation could be inaccurate.

5.1. Coordinate Descent Method with Look-up Table

We use look-up tables to solve these problems and to further accelerate the algorithm. Since
In(z; ;40.05) is a scalar function with one variable z; ; and in practice we bound z; ; € [0, 1],

532

PracTicAL CONSIDERATIONS

therefore, we can define a look-up table T'; such that each entry 77 ;, 1 <14 < b, satisfies:

)

T = ln(% +0.05), (18)

where b is the number of entries in the table. We can then map x;; to the index of T
by a trivial hash function h(x) = [bz], where [-] is the floor function; and T} j (s, ;) is an
approximation of In(z; ; + 0.05).

Similarly, notice that X ~1 M, (c, z; ;) in Algorithm 2 line 8 is a m + 1 dimensional vector
for degree m polynomial approximation. Since X *lMp(c,mm) only depends on a scalar
variable z; ;, which is bounded in [0, 1], we can also use a look-up table Ty with T5; defined
as:

Xoo My(co,) + oo + Xgn Mp(Cim, &)
Ty = : (19)
X0 My(co £) + oo + Xk Myy(cm,)
to replace it. With the assistance of this look-up table, it is unnecessary to pre-compute
and store Mp(cy, ;). We will also use the same trivial hash function h(z) to map z;; to
the index in T's.
The worst case search time for hash function lookup is O(1). If we choose b = 1000,

and worst case errors that are defined as F; = max ‘Tl,h(zl-,j) —In(x;; +0.05)| and Ey =

max HTQJL(%].) — X 'My(e, ;) ,

are both less than 0.001 (0.03%), which is negligible. If

1
we implement these tables with FLOAT type, they use 4b(m + 2) bytes memory. The time

and storage cost for calculating and storing these look-up tables are are O(mb), and can
be neglected for large scale learning problems and the error caused by them are also very
small. More importantly, calculating and storing the look-up tables are independent of the
size of the dataset while the cost of computing and storing In(x; ; + 0.05) and My (cg, z; ;)
will grow with the dataset size linearly. Therefore, with the look-up tables, we only need
8 bytes memory per instance using FLOAT type, which is only 40% of Wu’s method and
50% of LIBLINEAR in a 64bit OS. Additionally, we also save the time of calculating the
logarithm in g(;) and simplify the matrix operations in calculating X’lMp(c, xi;), leading
to faster training.

Moreover, we can use T'; to accelerate the testing, too. Simply replacing In(g; +0.05) in
(9) of the original algorithm with 7} h(g;) Will save the time of calculating logarithm, leading
to faster testing speed.

In summary, we propose PmSVM-LUT in Algorithm 3, which effectively solves the mem-
ory usage problem of Algorithm 2 with Look-Up Tables and further accelerates the training
and testing speed. These features are extremely important for large scale classification.

5.2. Choosing bin number

We need to choose a bin number b. Choosing the bin number is important because it not
only affects the training time, but also related to training accuracy. Apparently, a small b
will lead to large error and low training accuracy. We tested with b = 10, 100, 1000, 10000 on
several datasets. Experiments show that although b = 10, 100 still give meaningful results,
the classification accuracies are lower than b = 1000, 10000 for about 0.2—0.5%, and since the

533

YANG WU

Algorithm 3 The Power Mean SVM with Look-up Table
1o+ 0,1<i1<n.
ajr < 0,1<7<d,0<k<m.
Calculate T1 and T with given bin number b and interpolation degree m.
Qii < |lzillp, 1 < i <n.
while « is not optimal do
fori=1,...,n do
Compute G = g(;) using g(z;) = >9_1 370 aj (Th por)"
Q; — oy
a; < min(max(o; — G/Qi;,0),C)
a; «— a; + (a; — az)leg (i) VI
end for
end while
: Output: The set of values a;.
. Classification: For a test example q € Ri, the classification result is:

— =

d m
sgn(g(q)) = Z Z a; k(Th nq . (20)

7=1k=0

approximation error of Look-Up Tables with b = 1000 is neglectable (less than 0.03%) and
choosing b = 10000 or even larger bin number will not improve the accuracy, we just stick
to b = 1000 in our experiment section. As we have mentioned before, the calculation time of
the two LUTs with b = 1000 is neglectable (several milliseconds) compared to training time
of large scale datasets, there is no need to implement more complex non-uniform LUTs.

6. Experimental Results

We compare PmSVM-LUT with state-of-the-art methods on large scale machine learning
problems, including both binary and multi-class datasets. In particular, we compare the
training time, testing time, memory usage and accuracy. These methods are compared on
a computer with Intel Core i7 3930K CPU and 32GB memory. Only one CPU core is used
in all experiments.

PmSVM-LUT. We set p = —1 for x? kernel (PmSVM-LUT-x?) and p = —8 for
HIK (PmSVM-LUT-HI). For both cases, C' is set to be 0.01, following Wu (2012). The
interpolation nodes are Chebyshev nodes and degree is set to be 2

PmSVM. We also set p = —1 for x? kernel (PmSVM-x?) and p = —8 for HI
kernel(PmSVM-HI). For both cases, C' is set to be 0.01.

LIBLINEAR. The linear solver by Fan et al. (2008), with default parameter C' = 1.

Feature Mapping with LUT. We use the feature mapping with look-up table ap-
proach for both x? (fm-x?) and HIK (fm-HI) (Vedaldi and Zisserman, 2012). Every z; ;
is mapped to 3 dimensions during the training process. Note that we also use look-up ta-
ble to accelerate the mapping. LIBLINEAR is used to classify the mapped features, with
C =0.01.

534

PracTicAL CONSIDERATIONS

We choose to test our algorithm on the following large scale datasets, including 5 bi-
nary problems from the machine learning community and 3 multi-class datasets from the
computer vision area:

kdda, kkdb, url, rcvl, webspam!: KDDA has 8.4M training instances and 20M
features. KDDB contains 19M training examples and 30M features. URL contains 2.4M
training examples and 3.2M features. RCV1 is a text categorization dataset. Since the
testing set is much larger than training set, we use the testing set as training and vice
versa. It then has 677K training examples. WEBSPAM has 350K training examples and 16M
features. Since this dataset does not have a testing set, we report 5 fold cross validation
result. The training time is just the average of the 5 runs.

ILSVRC 1000?: This dataset has 1000 categories and over 1,200,000 images. Each
image is encoded as a 21K dimensional vector.

Indoor 67: This dataset has 67 categories of indoor images. We follow Wu (2012) to
generate a 62000 dimensional vector to represent each image using the CENTRIST (Wu
and Rehg, 2011) descriptor and 2000 codewords. We also follow Quattoni and Torralba
(2009) to split train/test examples, thus 5360 training examples and 1340 test examples are
used.

Caltech 101: This datasets contains 101 categories of object images. We follow Wu
(2012) to generate a 62000 dimensional vector to represent each image using SIFT descriptor
and 2000 codewords. 15 training examples and 20 test examples are used for each category.

6.1. Comparing on large scale binary class datasets

Tables 4-7 show the results on 5 large scale binary datasets, including training time and
testing time, classification accuracy (overall accuracy) and memory usage.

Table 4: Training time (seconds) on five binary datasets.
] Method KDDA KDDB URL RCV1 WEBSPAM

PmSVM-LUT-x? 55.0 123.0 7.5 2.2 0.9
PmSVM-y? 66.6 148.8 11.0 3.5 1.8

fm-x? 59.9 1345 10.0 3.3 1.6
PmSVM-LUT-HI 55.2 131.0 7.5 2.1 0.9
PmSVM-HI ~ 110.7 2323 31.2 123 7.2

fm-HI 66.4 1484 11.1 3.2 1.6

] LIBLINEAR 1481.5 3537.8 127.2 7.1 5.8

In terms of training time, we can conclude that PmSVM-LUT is the fastest solver here.
For x? kernel, the PmSVM-LUT method generally uses 80% to 50% of the training time of
the original PmSVM method; for HIK, the PmSVM-LUT method uses only 50% to 12.5% of
the training time. For memory usage, as we have analyzed previously, our method only uses
about 45% memory of the original PmSVM, and 50% of feature mapping or LIBLINEAR.
PmSVM-LUT also takes about 20% of the testing time with slight higher accuracy for most

1. The datasets are downloaded from http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
2. The dataset is downloaded from http://www.image-net.org/challenges/LSVRC/2010/

535

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
http://www.image-net.org/challenges/LSVRC/2010/

YANG WU

Table 5: Classification accuracy on five binary datasets.
] Method KDDA KDDB URL RCV1 WEBSPAM |
PmSVM-LUT-x? 89.61% 90.01% 98.77% 97.85% 94.28%
PmSVM-x? 89.62% 90.00% 98.73% 97.82% 94.79%
fm-xy? 89.60% 89.97% 98.62% 97.60% 93.73%

PmSVM-LUT-HI 89.61% 90.01% 98.77% 97.85% 93.63%
PmSVM-HI 89.62% 90.00% 98.74% 97.85% 94.65%
fm-HI 89.56% 89.97% 98.55% 97.57% 93.54%

] LIBLINEAR 88.56% 88.94% 98.45% 97.17% 92.69%

Table 6: Memory Usage (MB) on five binary datasets.
] Method KDDA KDDB URL RCV1 WEBSPAM \

PmSVM-LUT 3267 6077 1199 530 280
PmSVM 6880 13005 2812 1007 504

fm 5853 10950 2304 828 501

[LIBLINEAR 5542 10050 2253 825 498 |

Table 7: Testing Time (ms) on five binary datasets.

] Method KDDA KDDB URL RCV1 WEBSPAM \
PmSVM-LUT 75 88 596 7 N/A
PmSVM 341 397 2545 27 N/A

of the binary class datasets. Compared to feature mapping with look-up table, our method
is faster and has slightly higher accuracy.

Note that since LIBLINEAR reads one example and then test it, it is hard to separate
testing time and I/O time without modifying the code, thus we cannot compare with the
testing time of feature mapping and LIBLINEAR here.

PmSVM-LUT accelerate the training in two aspects comparing to PmSVM. First of all,
we save the time of pre-computing In(z; ;40.05) and M, (ck, ; ;) for k = 1,2. For large scale
binary class datasets, PmSVM will spend a lot of time on the pre-computation. Secondly,
in line 8 of algorithm 1, we save the time of the matrix multiplication that involves 12
summations and multiplications.

6.2. Comparing on large scale multi-class datasets

For multi-class large scale classification problems, PmSVM-LUT still shows the virtue of
memory saving with more than 50% less memory usage. In term of training time, our
algorithm is not necessarily faster than PmSVM but has comparable speed, and is about 2
times faster than feature mapping with LUT.

536

PracTicAL CONSIDERATIONS

(a) (b)
] Method ILSVRC CALTECH INDOOR\]ILSVRC CALTECH INDOOR‘

PmSVM-LUT-x? 24999 78 131 26.15% 72.05% 46.18%
PmSVM-y? 21791 71 128 26.11% 72.05% 46.10%
fm-y? 50687 151 208 25.67% 72.00% 45.95%
PmSVM-LUT-HI 24961 82 144 26.30% 72.20% 46.85%
PmSVM-HI 22449 83 148 26.23% 72.20% 46.78%
fm-HI 50790 151 222 25.41% 71.90% 46.10%

y LIBLINEAR 136874 53 442] | 2213% 68.06% 40.93% |

Table 8: Training time in seconds (a) and average accuracy (b) on vision datasets.

(a) (b)

] Method ILSVRC CALTECH INDOOR | [ILSVRC CALTECH INDOOR
PmSVM-LUT 12.20 0.58 0.65 254.8 10.0 2.5
PmSVM 30.00 1.21 1.39 256.9 10.8 2.7

fm 24.30 0.94 1.22

’ LIBLINEAR 24.00 0.75 1.10

Table 9: Memory usage in GB (a) and testing time in seconds (b) on vision datasets.

7. Conclusion

In this paper, we proposed the PmSVM-LUT algorithm, an algorithm based on PmSVM
(Wu, 2012). PmSVM-LUT accelerates the training and testing speed and save memory
usage by employing Look-Up Tables. We also show approximability of the gradient function
by polynomials and conclude that the Chebyshev nodes is a good choice to interpolate such
polynomials. By numerically analyzing the approximation errors, we demonstrate that for
most of the datasets, approximation with Chebyshev nodes has good convergence property
as degree increases. Experimental results show that our algorithm can be up to 5 times
faster than the original PmSVM in binary-class case and has similar speed in multi-class case
with only 50% memory usage. In the future, we may explore the possibility of employing
similar approximation on other non-linear kernels, especially the multiplicative kernels.

References

Ricard I. Burden and Faires J. Douglas. Numerical Analysisi. Brooks Cole, 2004.

Vladislav K. Dzyadyk and Igor A. Shevchuk. Theory of Uniform Approzimation of Func-
tions by Polynomials. Walter de Gruyter, 2008.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin. LIB-
LINEAR: A library for large linear classification. Journal of Machine Learning Research,
9:1871-1874, 2008.

537

YANG WU

Cho-Jui Hsieh, Kai-Wei Chang, Chih-Jen Lin, S. Sathiya Keerthi, and S. Sundararajan. A
dual coordinate descent method for large-scale linear SVM. In Proceedings of the 25th
International Conference on Machine Learning, pages 408-415, 2008.

Thorsten Joachims. Advances in kernel methods. chapter Making large-scale support vector
machine learning practical, pages 169-184. MIT Press, Cambridge, MA, USA, 1999.

Florent Perronnin, Jorge Sanchez, and Yan Liu. Large-scale image categorization with
explicit data embedding. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2297-2304, 2010.

John C. Platt. Advances in kernel methods. chapter Fast training of support vector machines
using sequential minimal optimization, pages 185—-208. MIT Press, Cambridge, MA, USA,
1999.

Ariadna Quattoni and Antonio Torralba. Recognizing indoor scenes. In Proceedings of
IEEE Conference on Computer Vision and Pattern Recognition, pages 413—420, 2009.

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In
Advances in Neural Information Processing Systems, pages 1177-1184, 2008.

Hans Rudolf Schwarz. Numerical Analysis: A Comprehensive Introduction. John Wiley &
Sons, 1989.

Shai Shalev-Shwartz, Yoram Singer, and Nathan Srebro. Pegasos: Primal estimated sub-
gradient solver for SVM. In Proceedings of the 24th International Conference on Machine
Learning, pages 807-817, 2007.

Simon J. Smith. Lebesgue constants in polynomial interpolation. Annales Mathematicae et
Informaticae, 33:109-123, 2006.

Andrea Vedaldi and Andrew Zisserman. Efficient additive kernels via explicit feature maps.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(3):480-492, 2012.

Jianxin Wu. A fast dual method for HIK SVM learning. In Proceedings of the 11th Furopean
Conference on Computer Vision, pages 552-565, 2010.

Jianxin Wu. Power mean SVM for large scale visual classification. In Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition, pages 2344-2351, 2012.

Jianxin Wu and James M. Rehg. CENTRIST: A visual descriptor for scene categorization.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 33:1489-1501, 2011.

Guo-Xun Yuan, Chia-Hua Ho, and Chih-Jen Lin. Recent advances of large-scale linear
classification. Proceedings of the IEEFE, 100(9):2584-2603, 2012.

Kai Zhang, Ivor W. Tsang, and James T. Kwok. Improved Nystrom low-rank approximation
and error analysis. In Proceedings of the 25th International Conference on Machine
Learning, pages 1232-1239, 2008.

538

	Introduction
	Related Work
	The Power Mean SVM
	Polynomial Approximation of the Gradient
	Approximability of the gradient
	Choosing Interpolation Nodes
	Choosing Polynomial Degree

	Efficient Additive Kernel Learning
	Coordinate Descent Method with Look-up Table
	Choosing bin number

	Experimental Results
	Comparing on large scale binary class datasets
	Comparing on large scale multi-class datasets

	Conclusion

