
JMLR: Workshop and Conference Proceedings 25:539–553, 2012 Asian Conference on Machine Learning

Online Rank Aggregation

Shota Yasutake yasutake.shouta@jp.panasonic.com
Panasonic System Networks Co., Ltd

Kohei Hatano hatano@inf.kyushu-u.ac.jp

Eiji Takimoto eiji@inf.kyushu-u.ac.jp

Masayuki Takeda takeda@inf.kyushu-u.ac.jp

Kyushu University

Editor: Steven C.H. Hoi and Wray Buntine

Abstract

We consider an online learning framework where the task is to predict a permutation which
represents a ranking of n fixed objects. At each trial, the learner incurs a loss defined as
Kendall tau distance between the predicted permutation and the true permutation given by
the adversary. This setting is quite natural in many situations such as information retrieval
and recommendation tasks. We prove a lower bound of the cumulative loss and hardness
results. Then, we propose an algorithm for this problem and prove its relative loss bound
which shows our algorithm is close to optimal.

Keywords: online learning, ranking, rank aggregation, permutation

1. Introduction

The rank aggregation problem have gained much attention due to developments of infor-
mation retrieval on the Internet, online shopping stores, recommendation systems and so
on. The problem is, given m permutations of n fixed elements, to find a permutation that
minimizes the sum of “distances” between itself and each given permutation. Here, each
permutation represents a ranking over n elements. So, in other words, the ranking aggre-
gation problem is to find an “average” ranking which reflects the characteristics of given
rankings. In particular, the optimal ranking is called Kemeny optimal (Kemeny, 1959;
Kemeny and Snell, 1962) when the distance is defined as Kendall tau distance (which we
will define later). From now on, we only consider Kendall tau distance as our distance
measure.

The ranking aggregation problem is a classical problem in social choice literature which
deals with voting and so on (Borda, 1781; Condorcet, 1785). These days, the rank aggre-
gation problem also arises in information retrieval tasks such as combining several search
results given by different search engines. The rank aggregation problem is being studied
extensively in theoretical computer science (Dwork et al., 2001; Fagin et al., 2003; Andoni
et al., 2008). It is known that the rank aggregation problem is NP-hard (Bartholdi et al.,
1989), even when m ≥ 4 (Dwork et al., 2001).

Some approximation algorithms are known as well. For example, Ailon et al. proposed a
11/7-approximation algorithm (Ailon et al., 2008). Further, Kenyon-Mathieu and Schudy
proposed a PTAS (polynomial time approximation scheme) which runs in doubly exponen-

c© 2012 S. Yasutake, K. Hatano, E. Takimoto & M. Takeda.

Yasutake Hatano Takimoto Takeda

tial in the precision parameter ε > 0 (Kenyon-Mathieu and Schudy, 2007). Ailon also gives
algorithms for aggregation of partial rankings (Ailon, 2008).

In this paper, we consider an online version of the ranking aggregation problem, which
we call “online rank aggregation”. This problem is about online prediction of permutations.
Let Sn be the set of all permutations of n fixed elements. Then the online rank aggregation
problem consists of the following protocol for each trial t:

1. The learner predicts a permutation σ̂t ∈ Sn.

2. The adversary gives the learner the true permutation σt ∈ Sn.

3. The learner receives the loss d(σt, σ̂t), Kendall tau distance between σt and σ̂t.

The goal of the learner is to minimize the cumulative loss bound
∑T

t=1 d(σt, σ̂t). This online
protocol captures problems of predicting rankings naturally. For example, one might want
to predict a ranking of the next week (i.e., permutation) over items and so on given rankings
of the past weeks. Also, this protocol is motivated by an online recommendation task where
the user’s past preferences over items are given as permutations and the recommend items
using predicted rankings.

First of all, we derive a lower bound of the cumulative loss of any learning algorithm for
online rank aggregation. More precisely, we show that there exists a probabilistic adversary
such that for any learning algorithm for online rank aggregation, the cumulative loss is at
least

min
σ∈Sn

T∑
t=1

d(σt, σ) + Ω(n2
√
T).

Then we prove hardness results. In particular, we prove that no randomized polynomial
time algorithm whose cumulative loss bound matches the lower bound, under the common
assumption that NP 6⊆ BPP. Further, we show that, under the same assumption, there
exists no fully randomized polynomial approximation scheme (FPRAS) with cumulative
loss bound (1 + ε) minσ∈Sn

∑T
t=1 d(σt, σ) + O(n2

√
T), where FPRAS is a polynomial time

algorithm runs in 1/ε. Therefore, the cumulative loss bound of our algorithm is close to the
best one achieved by polynomial time algorithms.

On the other hand, by using Kakade et al’s offline-online converter Kakade et al. (2007)
and the PTAS algorithm for rank aggregation Kenyon-Mathieu and Schudy (2007), it can
be shown that there exists an algorithm, for any ε > 0, its cumulative loss bound is (1 +

ε) minσ∈Sn
∑T

t=1 d(σt, σ) +O(n2
√
T), with its running time is poly(T)nÕ(1/ε)6 .

Finally, we propose an efficient algorithm for online rank aggregation. For the algorithm
which we call PermRank, we prove its expected cumulative loss bound is at most

3

2
min
σ∈Sn

T∑
t=1

d(σt, σ) +O
(
n2
√
T
)
.

The running time is that for solving a convex optimization problem with O(n2) variables
and O(n3) linear constraints, which does not depends on T . In addition, a version of our
algorithm runs in time O(n2) with a weaker loss bound that has factor 4 instead of 3/2
(omitted). We summarize the cumulative loss bounds in Table 1.

540

Online Rank Aggregation

Table 1: The cumulative loss bounds a minσ∈Sn
∑T

t=1 d(σt, σ) +O(n2
√
T).

factor a time complexity per iteration

1 (optimal) poly time implies NP = BPP our result
(1 + ε) poly(n, T) combination of Kakade et al. (2007) and

Kenyon-Mathieu and Schudy (2007)
3/2 poly(n) our result

There are other related researches. As there have been extensive researches on online
learning with experts (e.g., Weighted Majority (Littlestone and Warmuth, 1994) and Ag-
gregating Algorithm (Vovk, 1990)), it is natural for us to apply existing algorithms for the
online rank aggregation problem.

First of all, a naive method would be to apply Hedge Algorithm (Freund and Schapire,
1997) with n! possible permutations as experts. In this case, we can prove that the cumu-
lative loss bound is at most

min
σ∈Sn

T∑
t=1

d(σt, σ) +O
(
n2
√
Tn lnn

)
.

The disadvantage of this approach is that the running time at each trial is O(n!).
Next, let us consider PermELearn (Helmbold and Warmuth, 2009). Although this al-

gorithm is not designed to deal with Kendall tau distance, it can use Spearman’s footrule,
another distance measure for permutations. It is well known that the following relation-
ship holds for Kendall tau distance d and Spearman’s footrule dF (Diaconis and Graham,
1977): d(σ, σ′) ≤ dF (σ, σ′) ≤ 2d(σ, σ′). So, by using this relationship, we can prove that the
expected cumulative loss bound of PermELearn is at most

2 min
σ∈Sn

T∑
t=1

d(σt, σ) +O
(
n2
√
T lnn

)
.

Its running time per trial is Õ(n6) 1.
Finally, we show some experimental results on synthetic data sets. In our experiments,

our algorithm PermRank performs much better than Hedge algorithm with permutations
as experts and PermELearn.

2. Preliminaries

Let n be a fixed integer s.t. n ≥ 1, and we denote [n] = {1, . . . , n}. Let Sn be the set
of permutations on [n]. The Kendall tau distance d(σ1, σ2) between permutations σ1, σ2 ∈
Sn is defined as d(σ1, σ2) =

∑n
i,j=1 I(σ1(i) > σ1(j) ∧ σ2(i) < σ2(j)), where I(·) is the

indicator function, i.e., I(true) = 1 and I(false) = 0. That is, Kendall tau distance between

1. Main computation in PermELearn is normalization of probability matrices called Sinkhorn balancing.
For this procedure, there is an approximation algorithm running in time O(n6 ln(n/ε)), where ε > 0 is
a precision parameter (Balakrishnan et al., 2004).

541

Yasutake Hatano Takimoto Takeda

two permutations is the total number of pairs of elements for which the orders in two
permutations disagree. By definition, it holds that 0 ≤ d(σ1, σ2) ≤ n(n − 1)/2, and it is
known that Kendall tau distance satisfies the conditions of metric. The Spearman’s footrule
between two permutations σ1, σ2 ∈ Sn is defined as dF (σ1, σ2) =

∑n
i=1 |σ1(i) − σ2(i)|. It

is shown that the following relationship holds (Diaconis and Graham, 1977): d(σ1, σ2) ≤
dF (σ1, σ2) ≤ 2d(σ1, σ2).

Let N = n(n − 1)/2. A comparison vector q is a vector in {0, 1}N . We define the
following mapping φ : Sn → [0, 1]N which maps a permutation to a comparison vector:
For i, j ∈ [n] s.t. i 6= j, φ(σ)ij = 1 if σ(i) < σ(j), and φ(σ)ij = 0, otherwise. Then note
that the Kendall tau distance between two permutations is represented as 1-norm distance
between corresponding comparison vectors, i.e., d(σ1, σ2) = ‖φ(σ1) − φ(σ2)‖1, where 1-
norm ‖x‖1 =

∑N
i=1 |xi|. For example, for a permutation σ = (1, 3, 2), the corresponding

comparison vector is given as φ(σ) = (1, 1, 0). Note that there are 2N possible comparison
vectors wheas there are only n! possible permutations. So, in general, for some comparison
vectors, there is no corresponding permutation. For example, the comparison vector (1, 0, 1)
represents that σ(1) > σ(2), σ(2) > σ(3), σ(3) > σ(1), for which no permutation σ exists.
In particular, if a comparison vector q ∈ {0, 1}N has a corresponding permutation, we say
that q is consistent. We denote φ(Sn) as the set of consistent comparison vectors in {0, 1}N .

For p, q ∈ [0, 1], the binary relative entropy ∆2(p, q) between p and q is defined as
∆2(p, q) = p ln p

q + (1 − p) ln 1−p
1−q . Further, we extend the definition of the binary relative

entropy for vectors in [0, 1]N . That is, for any p, q ∈ [0, 1]N , the binary relative entropy is
given as ∆2(p, q) =

∑N
i=1 ∆2(pi, qi).

3. Lower bound

In this section, we derive a Ω(n2
√
T) lower bound of the cumulative loss for online rank

aggregation. In particular, our lower bound is obtained when the adversary is probabilistic.

Theorem 1 For any online prediction algorithms of permutations and any integer T ≥ 1,
there exists a sequence σ1, . . . , σT such that

T∑
t=1

d(σt, σ̂t) ≥ min
σ∈Sn

T∑
t=1

d(σt, σ) + Ω(n2
√
T). (1)

Proof The proof partly follows a well known technique in (Cesa-Bianchi et al., 1997;
Cesa-Bianchi and Lugosi, 2006). We consider the following strategy of the adversary: At
each trial t, give the learning algorithm either the permutation σt = σ1 = (1, ..., n) or
σt = σ0 = (n, n − 1, ..., 1) randomly with probability half. Note that the corresponding
comparison vectors are φ(σ0) = (0, ..., 0) and φ(σ1) = (1, ..., 1), respectively.

Then, for any t ≥ 1 and any permutation σ̂t, E[d(σt−σ̂t)] =
(
n
2

)
/2. This implies that the

expected cumulative loss of any learning algorithm is exactly
(n2)
2 T , because of the linearity

of the expectation.
Next, we consider the expected cumulative loss of the best of σ0 and σ1, that is,

E
[
mini=0,1

∑T
t=1 d(σt, σ

i)
]
. By our construction of the adversary, this expectation is re-

542

Online Rank Aggregation

duced to

E

[
min
p=0,1

T∑
t=1

d(σt, σ
p)

]
=

(
n

2

)
Ey1,...,yT

[
min
p=0,1

T∑
t=1

|p− yt|

]
,

where y1, . . . , yT are independent random {0, 1}-variables. The above expectation can be
further written as(

n

2

)
Ey1,...,yT

[
min
p=0,1

T∑
t=1

|p− yt|

]
=

(
n
2

)
T

2
−
(
n
2

)
2

Ey1,...,yT [|(# of 0s) - (# of 1s)|]

=

(
n
2

)
T

2
−
(
n
2

)
2

Eδ1,...,δT

[∣∣∣∣∣
T∑
t=1

δt

∣∣∣∣∣
]
,

where δ1, . . . , δT are ±1-valued random independent variables such that Pr{δt = 1} =
Pr{δt = −1} = 1/2. Note that, by the central limit theorem, the distribution of

∑T
t=1 δt

converges to the normal distribution N(0,
√
T). So, for sufficiently large T , Pr{|

∑T
t=1 δt| ≥√

T} is larger than some constant. Therefore, the second term in the last equality is bounded
as −

(
n
2

)
Ω(
√
T).

Thus, we have E
[∑T

t=1 d(σt, σ̂t)−minp=0,1
∑

t=1 d(σt, σ
p)
]
≥ Ω(n2

√
T). So, there ex-

ists a sequence σ1, . . . , σT such that

T∑
t=1

d(σt, σ̂t) ≥ min
p=0,1

∑
t=1

d(σt, σ
p) + Ω(n2

√
T) ≥ min

σ∈Sn

T∑
t=1

d(σt, σ) + Ω(n2
√
T).

Note that, by Corollary 5, the cumulative loss of the second version of PermRank is close
to our lower bound.

4. Hardness

In this section, we discuss the hardness of online prediction with the optimal cumulative loss
bound which matches the lower bound (1). We will show that existence of a randomized
polynomial time prediction algorithm with the optimal cumulative loss bound implies a
randomized polynomial algorithm for the rank aggregation, which is NP-hard (Bartholdi
et al., 1989; Dwork et al., 2001). A formal statement is given as follows:

Theorem 2 Under the assumption that NP 6⊆ BPP , there is no randomized polynomial
time algorithm whose cumulative loss bound matching the lower bound (1) for the online
aggregation problem.

Proof We assume a randomized polynomial time online algorithm A with the optimal
cumulative loss bound. Given m fixed permutations, we choose a permutation uniformly
randomly among them and we run A on the chosen permutation. We repeat this procedure
for T = cm2n4 times repeatedly, where c is a constant such that the average expected loss

543

Yasutake Hatano Takimoto Takeda

of A w.r.t. m permutation is at most that of the best permutation plus 1/(4m). Then,
we pick up a permutation randomly among predicted permutations σ̂1, . . . , σ̂T . We call
this permutation as the representative permutation. Note that expected average loss of the
representative permutation is at most that of the best permutation plus 1/(4m).

Now, we repeat this procedure for k times and get k = O(n4m2) representative permu-
tations. By using Hoefdding’s bound, with probability at least, say, 2/3, the best among
k representative ones has the best average loss plus 1/(2m). Note that, since Kendall tau
distance takes integers in [0, n(n − 1)/2], the average loss of the best representative takes
values in {0, 1/m, 2/m, . . . , n(n− 1)T/2}. So, the average loss of the best representative is
the same with that of the best permutation. Therefore, we can find the best permutation
in polynomial time in n and m with probability at least 2/3. Since rank aggregation is
NP-hard, this implies that NP ⊆ BPP .

Now we consider the possibility of fully polynomial time randomized approximation

schemes (FPRAS) with cumulative loss bound (1 + ε) minσ∈Sn
∑T

t=1 d(σ, σt) +O
(
n2
√
T
)

,

whose running time is polynomial in n, T and 1/ε. We say that such a FPRAS has (1 + ε)-
approximate optimal cumulative loss bound. Then, note that if we set ε = 1/

√
T , then its

cumulative loss bound becomes indeed optimal. This implies the following corollary.

Corollary 3 Under the assumption that NP 6= BPP , there is no FPRAS with (1 + ε)-
approximate optimal cumulative loss bound for the online aggregation problem.

Therefore, it is hard to improve the factor 1 + ε for arbitrary given ε > 0.

5. Our algorithm

In this section we propose our algorithm PermRank. Our idea behind PermRank consists of
two parts. The first idea is that we regard a permutation as a N(= n(n−1)/2) dimensional
comparison vector and deal with a problem of predicting comparison vectors. More precisely,
we consider a Bernoulli trial model for each component ij of a comparison vector. In
other words, for each component ij, we assume a biased coin for which head appears with
probability pij , and we estimate each parameter pij in an online fashion.

The second idea is how we generate a permutation from the estimated comparison
vector. As we mentioned earlier, for a given comparison vector, there might not exist a
corresponding permutation. To overcome this situation, we use a variant of KWIKSORT
algorithm proposed by Ailon et al. (Ailon et al., 2008), LPKWIKSORTh (Ailon, 2008).
Originally, KWIKSORT is used to solve the rank aggregation problem. The basic idea
of KWIKSORT is to sort elements in a brute-force way by looking at local pairwise order
only. We will show later that by using LPKWIKSORTh we can obtain a permutation whose
corresponding comparison vector is close enough to the estimated comparison vector.

The algorithm uses LPKWIKSORTh and projection techniques which are now stan-
dards in online learning researches (see, e.g.,Herbster and Warmuth (2001); Helmbold and
Warmuth (2009)). More precisely, after the update (and before applying LPKWIKSORTh),
PermRank projects the updated vector onto the set of probability vectors satisfying triangle
inequalities: pij ≤ pik+pkj for any i, j, k ∈ [n], where pij = 1−pji. Note that any consistent

544

Online Rank Aggregation

Algorithm 1 PermRank

1. Let p1 = (1
2 , . . . ,

1
2) ∈ [0, 1]N .

2. For t = 1, . . . , T

(a) Predict a permutation σ̂t = LPKWIKSORTh(pt).

(b) Get a true permutation σt and let yt = φ(σt).

(c) Update pt+ 1
2

as

pt+ 1
2
,ij =

pt,ije
−η(1−yt,ij)

(1− pt,ij)e−ηyt,ij + pt,ije−η(1−yt,ij)
.

(d) Let pt+1 be the projection of pt+ 1
2

onto the set of points satisfying triangle

inequalities. That is,

pt+1 = arg inf
p

∆2(p,pt+ 1
2
)

sub. to:

pik ≤ pij + pjk, for i, j, k ∈ [n]

pij ≥ 0, for i, j ∈ [n].

comparison vector satisfies these triangle inequalities. The detail PermRank is shown in
Algorithm 1. In particular, LPKWIKSORTh uses the following function h:

h(x) =


0 0 ≤ x ≤ 1

6
3
2x−

1
4

1
6 < x ≤ 5

6

1 5
6 < x ≤ 1.

Note that h is symmetric in the sense that h(1− x) = 1− h(x).

5.1. Derivation of the update

In this subsection, we derive the update rule in PermRank. The update is motivated by
the following optimization problem:

min
p
η‖y − p‖1 + ∆2(p,p′).

To solve this, we use the following relationship: For any yij ∈ {0, 1} and pi ∈ [0, 1], |yij −
pij | = pij(1− yij) + (1− pij)yij . Then we define the Lagrangian as

L(p) = η
∑
ij

|yij − pij |+
∑
ij

∆2(pij , p
′
ij),

where p′ is the probability vector before the update. Here we note that we remove the
constraint that p ∈ [0, 1]n, since the binary relative entropy ∆2 implicitly enforces the

545

Yasutake Hatano Takimoto Takeda

constraint. By taking the partial derivative of L and enforcing the derivative to be zero, we
get the update:

pij =

(
p′ij

1−p′ij

)
e−η(1−2yij)

1 +
(

p′ij
1−p′ij

)
e−η(1−2yij)

=
p′ije

−η(1−yij)

(1− p′ij)e−ηyij + p′ije
−η(1−yij)

.

5.2. Our Analysis

In this subsection we show our relative loss bound of PermRank.

Lemma 1 For each t = 1, . . . , T and any comparison vector q,

∆2(q,pt)−∆2(q,pt+ 1
2
) ≥− η‖yt − q‖1 + (1− e−η)‖yt − pt‖1.

We show the proof in the supplementary material, which is based on a standard technique
in online learning (see, e.g., (Cesa-Bianchi and Lugosi, 2006)).

Algorithm 2 LPKWIKSORTh (Ailon (2008))

Input: a N -dimensional vector p ∈ [0, 1]N

Output: a permutation

1. Let SL and SR be empty sets, respectively.

2. Pick an integer i from {1, . . . , n} randomly.

3. For each j ∈ {1, . . . , n} such that j 6= i

(a) With probability h(pij), put j in SL.

(b) Otherwise, put j in SR.

4. Let pL,pR be the comparison vector induced by SL and SR, respectively.

5. Output (LPKWIKSORTh(pL), i,LPKWIKSORTh(pR)).

In order to prove the cumulative loss bound of PermRank, we will use the General-
ized Pythagorean Theorem for Bregman divergences (Bregman, 1967) (For details of the
definition of Bregman divergences, see, e.g., (Cesa-Bianchi and Lugosi, 2006)). Since the
binary relative entropy is a Bregman divergence, so does our generalized version ∆2. In
the following, we show a version of the Generalized Pythagorean Theorem adapted for the
binary relative entropy.

Lemma 2 (Generalized Pythagorean Theorem, Bregman (1967)) Let S be a con-
vex set in [0, 1]N and p be a point in [0, 1]N with strictly positive entries. Let p′ ∈ S be
the projection of p onto S in terms of ∆2, i.e., p′ = arg minq∈S ∆2(q,p). Then, for any
q ∈ [0, 1]N ,

∆2(q,p) ≥ ∆2(q,p′) + ∆2(p′,p).

In particular, if S is affine, the inequality holds with equality.

546

Online Rank Aggregation

Using Lemma 2, we prove the next lemma.

Lemma 3 For each t = 1, . . . , T and any comparison vector q,

∆2(q,pt)−∆2(q,pt+1) ≥− η‖yt − q‖1 + (1− e−η)‖yt − pt‖1.

Proof By applying Lemma 2, we obtain

∆2(q,pt)−∆2(q,pt+1) ≥ ∆2(q,pt)−∆2(q,pt+ 1
2
) + ∆2(pt+1,pt+ 1

2
)

≥ ∆2(q,pt)−∆2(q,pt+ 1
2
).

Further, by Lemma 1,

∆2(q,pt)−∆2(q,pt+ 1
2
) ≥ −η‖yt − q‖1 + (1− e−η)‖yt − pt‖1,

which completes the proof.

For LPKWIKSORTh, the following property is proved 2.

Lemma 4 (Ailon (2008)) For each trial t,

E [d(σt, σ̂t)] ≤
3

2
pt · yt,

where the expectation is about the randomization in KWIKSORTh.

By summing up the inequality in Lemma 3 and by using Lemma 4, we obtain the
cumulative loss bound of PermRank as follows:

Theorem 4 For any comparison vector q ∈ {0, 1}N ,

T∑
t=1

‖yt − pt‖1 ≤
η
∑T

t=1 ‖yt − q‖1 + n(n−1)
2 ln 2

1− e−η
.

Proof By summing up the inequality in Lemma 1 for t = 1, . . . , T , we get that

η
∑T

t=1 ‖yt − q‖1 −∆2(q,pT+1) + ∆2(q,p1)

1− e−η
.

Since ∆2(q,pT+1) ≥ 0 and ∆2(q,p1) ≤ ln 2, we complete the proof.

In particular, when we set η = 2 ln(1 + 1/
√
T), by the fact that η ≤ e

η
2 − e−

η
2 , we get

η

1− e−η
≤ e

η
2 = 1 + 1/

√
T , and

1

1− e−η
=

(1 + 1/
√
T)2

1/T + 2/
√
T
≤ 1 +

√
T/2,

respectively. Also, recall that Kendall tau distance is at most n(n − 1)/2. Thus we have
the following corollary.

2. Originally, Lemma 4 is proved for the case where the solution of a LP relaxation of the (partial) rank
aggregation problem is given as input. But, in fact, the lemma holds for any probability vectors satisfying
triangle inequality.

547

Yasutake Hatano Takimoto Takeda

Corollary 5 For η = ln(1 +
√

1/T), the expected cumulative loss of Permrank is at most

E

[
T∑
t=1

d(σt, σ̂t)

]
≤ 3

2
min
σ∈Sn

T∑
t=1

d(σt, σ) +O
(
n2
√
T
)
.

6. Experiments

We show preliminary experimental results for artificial and real data sets. The algorithms
we examine are Hedge Algorithm, PermELearn and PermRank.

For our artificial data, we specify the following way of generating permutations. First we
fix a base permutation in Sn. Then, at each trial, we pick a pair over n elements randomly
and reverse the order of the pair in the base permutation. After repeating this procedure s
times, we give each learning algorithm the resulting permutation. In our experiments, we
fix n = 7 , s = 1, and T = 600, respectively.

Our real data set is the SUSHI Preference data set (Kamishima, 2003). In particular,
we use the “sushi3a.5000.10.order” data, which contains 5000 permutations (preferences)
over 10 fixed sushi items. To reduce computational costs further, we consider only 8 sushi
items (we remove sea urchin and salmon roe from the original data). So, our data set has
T = 5000 permutation over n = 8 items. We run each algorithm over a fixed sequence of T
permutations in the data.

We run Hedge algorithm with n! permutations as experts , PermELearn , and PermRank.
As the parameter η , we consider η ∈ {0.01, 0.02, 0.05, 0.1, 0.2} for these algorithms. We also
compare them with the best permutation at the end. We compute the best permutation by
a brute-force search over n! permutations.

Note that each learning algorithm is probabilistic. So for each setting of η, we run
algorithms twice and choose the one attaining the lowest average cumulative losses as the
best parameter for each algorithm.

We plot the results in Figure 1. More precisely, for each algorithm, we plot its regret,
i.e.,

(regret) = (cumulative loss of the algorithm)− (that of the best fixed permutation).

As can be seen in Figure 1, the regret of PermRank is smaller than that of PermELearn. On
the other hand, Hedge algorithm gradually improves its regret and it gives slightly better
result than PermRank at the end. Perhaps, this is because PermRank has the approximation
factor 3/2 while Hedge algorithm has the approximation factor 1 in their cumulative loss
bounds, respectively. So, when the best fixed permutation has large cumulative loss, for
sufficiently large T w.r.t. n, the regret of PermRank grows linearly in T because of its larger
approximation factor. Note that, however, when n is large, it is not feasible to run Hedge
algorithm with n! experts. Also, as we show in the previous section, it is unlikely that there
exists a polynomial time algorithm with the approximation factor 1. Therefore, PermRank
is a practical choice for online rank aggregation.

7. Conclusions and Future Work

In this paper, we consider online rank aggregation, the online version of the rank aggre-
gation problem. We proposed the online learning algorithm PermRank. for online rank

548

Online Rank Aggregation

0 100 200 300 400 500 600
0

100

200

300

400

500

600

t

R
e

g
re

t

PermRank

PermELearn

Hedge Algorithm

0 1000 2000 3000 4000 5000
0

200

400

600

800

1000

1200

1400

1600

1800

2000

t

R
e

g
re

t

PermRank

PermELearn

Hedge Algorithm

Figure 1: The regret of Hedge, PermELearn, and PermRank, for artificial data (left) and
the subset of SUSHI Preference data (right).

aggregation and prove its cumulative loss bound. Then we prove a lower bound for on-
line rank aggregation which is close to the upper bound of PermRank. We also prove the
hardness of obtaining the optimal cumulative loss bound which matches the lower bound.
Finally, our experimental results show that PermRank performs much better than the naive
implementation of Hedge algorithm with n! permutations as experts.

There are some open questions: (i) What if the input is not a permutation but some
partial order information, e.g., which element in a pair (i, j) ∈ [n]2 precedes (Abernethy
(2010))? (ii) Can we generalize our results for partial rankings such as top k lists? The
first question is posed by Abernethy as an open problem (Abernethy, 2010). Our case, the
online aggregation problem, is an special case where information of all possible pairs are
given. Also, the second problem is important in practice (see, e.g., Ailon (2008); Fagin et al.
(2006) for researches on partial ranking).

Acknowledgement

We thank anonymous reviewers for their helpful comments. This work is supported in
part by JSPS Grand-in-Aid for Young Scientists (B) 23700178 and JSPS Grand-in-Aid for
Scientific Research (B) 23300003.

References

Jacob Abernethy. Can we learn to gamble efficiently? In Proceedings of the 23rd Annual
Conference on Learning Theory (COLT ’10), pages 318–319, 2010.

Nir Ailon. Aggregation of partial rankings, p-ratings and top-m lists. Algorithmica, 57(2):
284–300, 2008.

Nir Ailon, Moses Charikar, and Alantha Newman. Aggregating inconsistent information:
Ranking and clustering. Journal of the ACM, 55(5), 2008.

549

Yasutake Hatano Takimoto Takeda

Alexandr Andoni, Ronald Fagin, Ravi Kumar, Mihai Patrascu, and D. Sivakumar. Corri-
gendum to ”efficient similarity search and classification via rank aggregation” by ronald
fagin, ravi kumar and d. sivakumar (proc. sigmod’03). In Proceedings of the ACM SIG-
MOD International Conference on Management of Data, pages 1375–1376, 2008.

Hamsa Balakrishnan, Inseok Hwang, and Claire J. Tomlin. Polynomial approximation algo-
rithms for belief matrix maintenance in identity management. In 43rd IEEE Conference
on Decision and Control, pages 4874–4879, 2004.

J. Bartholdi, C. A. Tovey, and M. A. Trick. Voting schemes for which it can be difficult to
tell who won the election. Social Choice ad Welfare, 6:157–165, 1989.

J. C. Borda. Mémoire sur les élections au scrutin. Histoire de l’Académie Royale des
Sciences, 1781.

L. M. Bregman. The relaxation method of finding the common point of convex sets and
its application to the solution of problems in convex programming. USSR Computational
Mathematics and Physics, 7:200–217, 1967.

N. Cesa-Bianchi and G. Lugosi. Prediction, Learning, and Games. Cambridge University
Press, 2006.

Nicolò Cesa-Bianchi, Yoav Freund, David Haussler, David P. Helmbold, Robert E. Schapire,
and Manfred K. Warmuth. How to use expert advice. Journal of the Association for
Computing Machinery, 44(3):427–485, 1997.

M. J. Condorcet. Éssai sur l’application de l’analyse à la probabilité des décisions rendues
à la pluralité des voix, 1785.

Persi Diaconis and R. L. Graham. Spearman’s footrule as a measure of disarray. Journal
of the Royal Statistical Society. Series B (Methodological), 39(2):262–268, 1977.

Cynthia Dwork, Ravi Kumar, Moni Naor, and D. Sivakumar. Rank aggregation methods
for the web. In Proceedings of the Tenth International World Wide Web Conference
(WWW’01), pages 613–622, 2001.

Ronald Fagin, Ravi Kumar, and D. Sivakumar. Efficient similarity search and classification
via rank aggregation. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, pages 301–312, 2003.

Ronald Fagin, Ravi Kumar, Mohammad Mahdian, D. Sivakumar, and Erik Vee. Comparing
partial rankings. SIAM Journal on Discrete Mathematics, 20(3):628–648, 2006.

Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and
an application to boosting. Journal of Computer and System Sciences, 55(1):119–139,
1997.

David P. Helmbold and Manfred K. Warmuth. Learning permutations with exponential
weights. Journal of Machine Learning Research, 10:1705–1736, 2009.

550

Online Rank Aggregation

M. Herbster and M. Warmuth. Tracking the best linear predictor. Journal of Machine
Learning Research, 1:281–309, 2001.

Sham Kakade, Adam Tauman Kalai, and Latrina Ligett. Playing games with approximation
algorithms. In Proceedings of the 39th annual ACM symposium on Theory of Computing
(STOC’07), pages 546–555, 2007.

Toshihiro Kamishima. Nantonac collaborative filtering: Recommendation based on order
responses. In Proceedings of the ninth ACM SIGKDD international conference on Knowl-
edge discovery and data mining (KDD’03), pages 583–588. ACM, 2003.

J. G. Kemeny. Mathematics without numbers. Daedalus, 88:571–591, 1959.

J. G. Kemeny and J. Snell. Mathematical Models in the Social Sciences. Blaisdell, 1962.
(Reprinted by MIT Press, Cambridge, 1972.).

Claire Kenyon-Mathieu and Warren Schudy. How to rank with few errors. In Proceedings
of the 39th Annual ACM Symposium on Theory of Computing (STOC’07), pages 95–103,
2007. Draft journal version available at http://www.cs.brown.edu/~ws/papers/fast_

journal.pdf.

Nick Littlestone and Manfred K. Warmuth. The weighted majority algorithm. Information
and Computation, 108(2):212–261, 1994.

V. Vovk. Aggregating strategies. In Proceedings of the 3rd Annual Workshop on Computa-
tional Learning Theory, pages 371–386, 1990.

Appendix A. The cumulative loss bound of Hedge algorithm

In the appendix, we analyze cumulative loss bounds for two previously known algorithms,
Hedge algorithm and PermELearn, for online rank aggregation. Also, we show a proof of
Lemma 1 for completeness.

First, we derive the cumulative loss bound of Hedge algorithm with n! permutations as
experts. Hedge algorithm is designed to deal with loss `t ∈ [0, 1]. More precisely, at each
trial t, each expert σi (1 ≤ i ≤ n!) receive loss `t,i ∈ [0, 1] and the loss of Hedge algorithm is

expected loss
∑n!

i=1wt,i`t,i of experts, where loss is averaged with a weight vector w∈[0, 1]n!

such that,
∑

iwi = 1. For online rank aggregation, we define the loss of expert σi at trial t
as `t,i = 2

n(n−1)d(σt, σ
i), so that the range of loss is [0, 1].

Theorem 6 (Freund and Schapire (Freund and Schapire, 1997)) For any T , the cu-
mulative loss bounds of Hedge algorithm with N experts is bounded as follows:

T∑
t=1

wt · `t ≤
ηminNi=1

∑T
t=1 `t,i + lnN

1− e−η

By using the fact that N = n! ≤ nn, setting η = 2 ln(1 +
√
n lnn/

√
T) and multiplying

n(n−1)/1 on both sides of the inequality, we obtain the following bound of Hedge algorithm
for online rank aggregation.

551

http://www.cs.brown.edu/~ws/papers/fast_journal.pdf
http://www.cs.brown.edu/~ws/papers/fast_journal.pdf

Yasutake Hatano Takimoto Takeda

Corollary 7

E

[
T∑
t=1

d(σt, σ̂t)

]
≤ min

σ∈Sn

T∑
t=1

d(σt, σ) +O
(
n2
√
Tn lnn

)
.

A.1. The cumulative loss bound of PermELearn

We show how to apply PermELearn (Helmbold and Warmuth, 2009) for online rank ag-
gregation. PermELearn uses the matrix representation of permutations. More precisely,
each permutation σ in Sn is represented as a n × n {0, 1}-matrix Π such that, for each
i = 1, . . . , n, σ(i) = j if and only if Πij = 1. For example, for a permutation σ = (2, 4, 3, 1),
the corresponding matrix Π is

Π =


0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

 .

The loss of each permutation is specified by a n × n [0, 1]-matrix L, which we call loss
matrix. Given a loss matrix L, the loss of a permutation σ whose associated matrix is Π is
defined as L •Π =

∑
i,j LijΠij .

Let Pn be the set of the matrices representing permutations in Sn. The online learning
protocol is as follows. At each trial t: (i)The learner predicts a matrix Πt ∈ Pn associated
with a permutation σ̂t. (ii) The adversary chooses the loss matrix Lt associated with the
true permutation σt. (iii) The learner incurs the loss Lt • Πt. Then the following results
holds.

Theorem 8 (Helmbold and Warmuth (Helmbold and Warmuth, 2009)) For any
T ≥ 1 and η > 0, the expected cumulative loss of PermELearn is

E

[
T∑
t=1

Lt •Πt

]
≤
ηminΠ∈Pn

∑T
t=1 Lt •Π + n lnn

1− e−η
.

Since Kendall tau distance does not seem to have a loss matrix representation, we
consider an alternative distance for permutations, that is, Spearman’s footrule dF (σ, σ′) =∑n

i=1 |σ(i) − σ′(i)|. As mentioned earlier, Spearman’s footrule dF approximates Kendall
tau distance d (Diaconis and Graham, 1977):

d(σ1, σ2) ≤ dF (σ1, σ2) ≤ 2d(σ1, σ2). (2)

Fortunately, Spearman’s footrule dF can be written as a loss matrix. For a permutation σ
and σ′, let the loss matrix L be such that Lij = |σ(i)−j|

n−1 for i, j = 1, . . . , n and let Π′ be the
matrix form of σ′. Then, it holds that

L •Π′ = dF (σ, σ′)/(n− 1). (3)

Then by using (2), (3) and setting η = 2 ln(1 +
√

lnn/
√
T), we obtain the cumulative loss

of PermuELearn for online rank aggregation.

552

Online Rank Aggregation

Corollary 9 For any T ≥ 1, the expected cumulative loss of PermuELearn is bounded as

E

[
T∑
t=1

d(σt, σ̂t)

]
≤ 2 min

σ∈Sn

T∑
t=1

d(σt, σ) +O
(
n2
√
T lnn

)
.

A.2. Proof of Lemma 1

Proof

∆2(qij , pt,ij)−∆2(qij , pt+ 1
2
,ij)

=qij ln
pt+ 1

2
,ij

pt,ij
+ (1− qij) ln

1− pt+ 1
2
,ij

1− pt,ij
=− qijη(1− yt,ij)− (1− qij)ηyt,ij − ln

(
(1− pt+ 1

2
,ij)e

−ηyt,ij + pt+ 1
2
,ije
−η(1−yt,ij)

)
=− η|yt,ij − qij | − ln

(
(1− pt+ 1

2
,ij)e

−ηyt,ij + pt+ 1
2
,ije
−η(1−yt,ij)

)
.

Since e−ηyij = 1− (1− e−η)yij for yij ∈ {0, 1}, the terms above becomes

∆2(qij , pt,ij)−∆2(qij , pt+1,ij)

=− η|yt,ij − qij | − ln
(
1− (1− e−η)((1− pt,ij)yt,ij + pt,ij(1− yt,ij))

)
≥− η|yt,ij − qij |+ (1− e−η)|yt,ij − pt,ij |.

Finally, summing up the inequality for all i, j ∈ [n], we complete the proof.

553

	Introduction
	Preliminaries
	Lower bound
	Hardness
	Our algorithm
	Derivation of the update
	Our Analysis

	Experiments
	Conclusions and Future Work
	The cumulative loss bound of Hedge algorithm
	The cumulative loss bound of PermELearn
	Proof of Lemma 1

