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Abstract

Traditional supervised learning algorithms typically assume that the training data and
test data come from a common underlying distribution. Therefore, they are challenged
by the mismatch between training and test distributions encountered in transfer learning
situations. The problem is further exacerbated when the test data actually comes from a
different domain and contains no labeled example. This paper describes an optimization
framework that takes as input one or more classifiers learned on the source domain as
well as the results of a cluster ensemble operating solely on the target domain, and yields a
consensus labeling of the data in the target domain. This framework is fairly general in that
it admits a wide range of loss functions and classification/clustering methods. Empirical
results on both text and hyperspectral data indicate that the proposed method can yield
superior classification results compared to applying certain other transductive and transfer
learning techniques or naively applying the classifier (ensemble) learnt on the source domain
to the target domain.
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1. Introduction

Transfer learning emphasizes the transfer of knowledge across related domains and tasks
(Silver and Bennett, 2008). and distributions that are similar but not the same. This
contribution deals with learning scenarios where training and test distributions are different,
as they represent (potentially) related but not identical tasks. In addition it is also assumed
that the training and test domains involve the same set of class labels, which are only
available from the training domain. There are certain application domains such as the
problem of land-cover classification of spatially separated regions studied in this paper,
where the setting of this paper is appropriate.

The literature on transfer learning is fairly rich and varied (e.g., see Pan and Yang
(2010); Silver and Bennett (2008) and references therein), with much work done in the past
15 years (Thrun and Pratt, 1997). The tasks may be learnt simultaneously (Caruana, 1997)
or sequentially (Bollacker and Ghosh, 2000). Typically these methods assume that if the
target problem involves classification, then at least some labeled examples are available for
the target task, which is not the case here. To address this added challenge, we leverage
the theory of both classifier and cluster ensembles, which is a new aspect, though there is
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a recent paper that uses a single clustering to modify the weights of base classifiers in an
ensemble in order to provide some transfer learning capability (Gao et al., 2008).

Recently we formulated an optimization based approach called C3E (Consensus between
Classification and Clustering Ensembles) (Acharya et al., 2011) — which can be used to aid
weak classifiers via additional clustering results. This work was aimed at situations where
the weakness is caused by lack of training data. In this paper, we provide a reformulation
of C3E for transfer learning settings, and then demonstrate its effectiveness via empirical
studies.

Notation. Vectors and matrices are denoted by bold faced lowercase and capital letters,
respectively. Scalar variables are written in italic font. A set is denoted by a calligraphic
uppercase letter. The effective domain of a function f(y), i.e., the set of all y such that
f(y) < +oo is denoted by dom(f), while the interior and the relative interior of a set )
are denoted by int()) and ri(})), respectively. Also, for y;,y; € R¥, (y;,y;) denotes their
inner product.

2. Description of C3E for Transfer Learning

The overall framework of C3E, depicted in Fig.1, employs one or more classifiers learnt
on the source domain and one or more “clusterers” (clustering algorithms) applied to the
target domain. So without lack of generality we can assume the presence of both a classifier
ensemble as well as a cluster ensemble. Suppose an ensemble of classifiers has been pre-
viously induced from the source domain. The target domain is represented by a separate
set X = {x;}7 , that has not been used to build the ensemble of classifiers and does not
contain any labeled information.

The ensemble of classifiers is first employed to estimate the initial class probabilities
for every instance x; € X. These probability distributions are stored as a set of vectors
{m;}_,. The objective of our approach is to improve upon these estimated class probability
assignments with the help of a cluster ensemble applied to the target domain. From this
point of view, the cluster ensemble provides supplementary constraints for classifying the
instances of X, with the rationale that similar instances are more likely to share the same
class label. Each of the 7;’s is of dimension k so that, in total, there are k classes denoted
by C = {Cy}5_,. In order to capture the similarities between the instances of X', C3E also
takes as input a similarity (co-association) matrix S. Each entry of this matrix corresponds
to the relative co-occurrence of two instances in the same cluster (Strehl and Ghosh, 2002)
— considering all the data partitions that form the cluster ensemble induced from X'. Note
that C3E can also receive as input a prozimity matriz obtained from computing pair-wise
similarities between instances and a cophenetic matriz resulting from running a hierarchical
clustering algorithm. To summarize, C3E receives as inputs a set of vectors {m;}", and the
similarity matrix S. After processing these inputs, C3E outputs a consolidated classification
— represented by a set of vectors {y;}",, where y; = P(C | x;) — for every instance in X.
This procedure is described in more detail in the sequel.

2.1. C3E Algorithm

Consider that rq classifiers, indexed by ¢, and ro clusterers, indexed by g2, are employed
to obtain a consolidated classification. The following steps (A-C) outline the proposed
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Figure 1: Overview of C3E for Transfer Learning.

approach. Steps A and B can be seen as preliminary steps to get the inputs for C3E, and
Step C is, in fact, the C3E Algorithm.

Step A - Obtain input from classifier ensemble. The output of classifier ¢; for
(q1)

instance x; is a k-dimensional class probability vector 7,""’. From the set of such vectors

(q1)yr .
{m;""} q=1, an average vector can be computed for x; as:

L S~ (@)
T = " Z w0 (1)

=1

Step B - Obtain input from cluster ensemble. After applying ry clustering al-
gorithms (clusterers) to X, a similarity (co-association) matrix S is computed. Assuming
each clustering is a hard data partition, the similarity between two instances x; and x; is
simply given by s;; = ri;/r2, where ;5 is the number of clustering solutions in which these
two instances lie in the same cluster and ry is the number of clustering solutions'. Note
that such similarity matrices are byproducts of several cluster ensemble solutions.

Step C - Obtain consolidated results from C3E. Having defined the inputs for
C3E, the problem of combining ensembles of classifiers and clusterers can be posed as an
optimization problem whose objective is to minimize J in (2) w.r.t. the set of probability
vectors {y;}?" ,, where y; = P(C | X;), i.e., y; is the new and hopefully improved estimate
of the aposteriori class probability distribution for a given instance in X.

J = Zﬁ(m,yi) +a Z 5i; L(Yi,Yj) (2)

= (i,§)eX

The quantity L(-,-) denotes a (non-negative) loss function. Informally, the first term in
Eq. (2) captures dissimilarities between the class probabilities provided by the ensemble
of classifiers and the output vectors {y;}/";. This term tries to drive the y;’s towards
m;’s. The second term encodes the cumulative weighted dissimilarity between all possible
pairs (y;,y;). The weights to these pairs are assigned in proportion to the similarity values
sij € [0,1] of matrix S. Intuitively, if the objective function J, given in Eq. 2, is minimized
over {y;}", and s;; is high for a pair of instances (x;,x;), then L(y;,y;) tends to go

1. A similarity matrix can also be defined for soft clusterings — e.g., see (Punera and Ghosh, 2008).
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down, implying that y; and y; are more in agreement with each other. The coefficient
o € Ry controls the relative importance of classifier and cluster ensembles. Therefore,
minimizing the objective function over {y;} ; involves combining the evidence provided
by the ensembles in order to build a more consolidated classification. Note that the final
clustering, and consequently the similarity matrix computed from cluster ensemble, is pretty
robust compared to individual clustering results as it has been empirically shown in (Strehl
and Ghosh, 2002).

The approach taken in this paper is quite general in that any Bregman divergence
(Banerjee et al., 2005) can be used as the loss function £(-,-) in Eq. (2). Bregman diver-
gences include a large number of useful loss functions such as the well-known squared loss,
hinge loss, logistic loss, KL divergence and I-divergence. A specific Bregman Divergence
(e.g. KL-divergence) can be identified by a corresponding convex function ¢ (e.g. negative
entropy for KL-divergence), and hence be written as dg(y;,y;). Using this notation, the
optimization problem can be rewritten as:

min Zd¢(7ri,yi)+04 Z Sijd¢(Yi7Yj) . (3)

7
itz iz (ij)EX

All Bregman divergences have the remarkable property that the single best (in terms of
minimizing the net loss) representative of a set of vectors, is simply the expectation of
this set (!) provided the divergence is computed with this representative as the second
argument of dg(-,-) — see Theorem 1 in the sequel for a more formal statement of this
result. Unfortunately this simple form of the optimal solution is not valid if the variable
to be optimized occurs as the first argument. In that case, however, one can work in the
(Legendre) dual space, where the optimal solution has a simple form — see Banerjee et al.
(2005) for details. Re-examining Eq. (3), we notice that the y;’s to be minimized over
occur both as first and second arguments of a Bregman divergence. Hence optimization
over {y;}I", is not available in closed form.

@

We circumvent this problem by creating two copies for each y; — the left copy, y,”’, and

the right copy, ygr). The left(right) copies are used whenever the variables are encountered
in the first(second) argument of the Bregman divergences. The right and left copies are
updated iteratively, and an additional constraint is used to ensure that the two copies of
a variable remain close during the updates. First, keeping {ygl)}?zl and {ygr) 2\ {yér)}

(r)

fixed, the part of the objective function that only depends on y;  can be written as:

l
J[y(_y-)] = d¢>(ﬂ-§'r)’ y;r)) + a Z Si(l)j(r)dqﬁ(yg ),y](-r)). (4)
! ibex
Note that the optimization of J[y(r)] in (4) w.r.t. yy) is constrained by the fact that the
j
left and right copies of y; should be equal. Therefore, a soft constraint is added in (4), and
the optimization problem now becomes:

. l l
min | do (w7, yi”) a0 D7 s de(vi?yS7) + A do (v vi7) | (5)
Y iDex
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(r)

where X" ;0 ds the corresponding penalty parameter. For every valid assignment of {y i

(™

it can be shown that there is a unique minimizer Y; for the optimization problem in (5).
For that purpose, a new Corollary is developed from the results of Theorem 1 Banerjee
et al. (2005) which is stated below.

Theorem 1 (Banerjee et al. (2005)) Let Y be a random variable that takes values in
Y ={y:}, €S CRF following a probability measure v such that E,[Y] € ri(S). Given a
Bregman divergence dg: S x ri(S) — [0,00), the optimization problem minge sy Ey[dy (Y, s)]
has a unique minimizer given by s* = p = E,[Y].

Corollary 2 Let {Y;}!' | be a set of random variables, each of which takes values in J; =
{yij}je, CSC RY following a probability measure v; such that B, [Y;] € m(S) For a Breg-

man divergence dy: S x 1i(S) — [0,00), the function of the form Jy(s) Z a;Ey, [dg(Yi,s)]
m
with a; € Ry Vi has a unique minimizer given by s* = pu = [Z a; By, 1Y Z ozZ] .
=1
Proof The proof is similar to that of Theorem 1 as given in (Banerjee et al 2005) but
omitted here for space constraints. |

From these results, the unique minimizer of the optimization problem in (5) is obtained as:

r). (1
+’YJ Z 5@)](7)3’1 )\§~ )y]()

(ry* _ ibex
Yi = SIEENG, ’ (6)
L+ 7+ A;
where ’Y](-r) = ad imex Sim e and G;u e = Sm m/ [Zi(l)ex Si(l)j(r):|' The same opti-

mization in (5) is repeated over all the yg.r)’s. After the right copies are updated, the

objective function is (sequentially) optimized w.r.t. all the y(l)’s. Like in the first step,

{y§l) 2\ {ygl)} and {yj(-T n_, are kept fixed, and the equality of the left and right copies
0]

of y; is added as a soft constraint, so that the optimization w.r.t. y;

, can be rewritten as:

min | o S siwjmdsy v+ APy v | (7)
Yi jMex

where )\Z(-l) is the corresponding penalty parameter. As mentioned earlier, one needs to work
in the dual space now, using the convex function ¢ (Legendre dual of ¢):

U(yi) = (yi, Vo~ (yi)) — (Vo (yi)). (8)

One can show that Vy;,y; € int(dom(¢)), dy(yi,y;j) = dyp(Vo(y;), Vo(y:)) — see Banerjee
et al. (2005) for more details. Thus, the optimization problem in (7) can be rewritten in
terms of the Bregman divergence associated with i as follows:

min o Y s0,0ds(Vey), voy") + Adu(vely), velyN | . (9)

®
Vo) | jex
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Algorithm 1: C3E
Inputs: {m;},S. Output: {y;}.
Step 0: Initialize {yy)}, {ygl)} so that y(z) = yge) = % Vee{l,2,--- Kk}
Loop until convergence:
Step 1: Update y§.r) using Eq. (6) V5 € {1,2,--- ,n}.
Step 2: Update y\” using Eq. (10) Vi € {1,2,--- ,n}.
End Loop
Step 3: Compute y; = 0.5y, O 4 ET)] Vie{l,2,--- ,n}.
Step 4: Normalize y; Vi € {1,2, -,n}.

The unique minimizer of the problem in (9) can be computed using Corollary 1. V¢ is
monotonic and invertible for ¢ being strictly convex and hence the inverse of the unique
minimizer for problem (9) is unique and equals to the unique minimizer for problem (7).

@

Therefore, the unique minimizer of problem (7) w.r.t. y,’ is given by:
l
Z G;0 ) V(Y )+ 2D vy
v =vg! O~y : (10)
YA
l
where 7 = a > imex Siwjm and &;u i) = s,/ [Ej(T)GX Si(l)j(T):| :
For the experiments reported in this paper, the generalized I-divergence defined as:
k
o(Yi¥5) Zywlog ) = > (yie — yje), Vyi y; € RE, (11)
Yie =1
has been used. Thus, Eq. (10) can be rewritten as:
l
DN G0 Vo) + A ey ()
*, 1 (r)
v = eap 2 —1. (12)

NON0

Optimization over the left and right arguments of all the data points constitutes one pass
(iteration) of the algorithm. These two steps are repeated till convergence. Since, at each
step, the algorithm minimizes the objective in (3) which is lower bounded by zero and
the minimizer is unique due to the strict convexity of ¢, the algorithm is guaranteed to
converge. On convergence, all y;’s are normalized to unit L; norm, to yield the individual
class probability distributions for every instance x; € X. The main steps of C3E are
summarized in Algorithm 1.

2.2. Pedagogical Example

This example illustrates, via a simple experiment, how the supplementary constraints pro-
vided by the clustering algorithms can be useful for improving the generalization capability
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of classifiers using C3E. Consider the two-dimensional dataset known as Half-Moon, which
has two classes, each of which represented by 400 instances. From this dataset, 2% of the
instances are used for training (source domain), whereas the remaining instances are used
for testing (target domain). A classifier ensemble formed by three well-known classifiers
(Decision Tree, Linear Discriminant, and Generalized Logistic Regression) is adopted. In
order to get a cluster ensemble, a single linkage (hierarchical) clustering algorithm is cho-
sen. The cluster ensemble is then obtained from five data partitions represented in the
dendrogram, which is cut for different number of clusters (from 4 to 8). Fig. 2 shows the
target data class labels obtained from the standalone use of the classifier ensemble, whereas
Fig. 3 shows the corresponding results achieved by C3E. Comparing Fig. 2 to Fig. 3,
one can see that C3E does a better job, since the cluster ensemble is able to indicate the
class-continuity at the edges of the two moons showing that the information provided by
the similarity matrix can improve the generalization capability of classifiers.

* class 1
" class 2

> 051

Figure 2: Results from Classifier Ensemble. Figure 3: Results from C3E.

3. Experimental Evaluation

The real-world datasets employed in the experiments are:

a) Text Documents — (Pan and Yang, 2010): From the well-known text collections
20 newsgroup and Reuters-21758, 9 cross-domain learning tasks are generated. The two-
level hierarchy in both of these datasets is exploited to frame a learning task involving
a top category classification problem with training and test data drawn from different
sub categories — e.g., to distinguish documents from two top newsgroup categories (rec
and talk), the training set is built from “rec.autos”, “rec.motorcycles”, “talk.politics”, and
“talk.politics.misc”, and the test set is formed from the sub-categories “rec.sport.baseball”,
“rec.sport.hockey”, “talk.politics.mideast”, and “talk.religions.misc” (see Dai et al. (2007)
for more details).

b) Botswana — (Rajan et al., 2006): This is an application of transfer learning to the
pixel-level classification of remotely sensed images, which provides a real-life scenario where
such learning will be useful (in contrast to the contrived setting of text classification, which
is chosen as it has previously been used, e.g. Dai et al. (2007). It is relatively easy to acquire
an image, but expensive to label each pixel manually. This is because images typically have
about a million pixels and might often represent inaccessible terrain. Thus, typically, only
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part of an image gets labeled. Moreover, when the satellite again flies over the same area,
the new image can be quite different due to change of season, thus a classifier induced on the
previous image becomes significantly degraded for the new task. These hyperespectral data
sets used are from a 1476 x 256 pixel study area located in the Okavango Delta, Botswana.
It has nine different land-cover types consisting of seasonal swamps, occasional swamps,
and drier woodlands located in the distal portion of the delta. Data from this region for
different months (May, June, and July) were obtained by the Hyperion sensor of the NASA
EO-1 satellite for the calibration/validation portion of the mission in 2001. Data collected
for each month was further segregated into two different areas. While the May scene is
characterized by the onset of the annual flooding cycle and some newly burned areas, the
progression of the flood and the corresponding vegetation responses are seen in the June
and July data. The acquired raw data was further processed to produce 145 features. From
each area of Botswana, different transfer learning tasks are generated: the classifiers are
trained on either May, June or {May U June} data and tested on either June or July data.

For text data, logistic regression (LR), Support Vector Machines (SVM)?, and Win-
now (WIN) are used as baseline classifiers. For clustering the target data, the well-known
CLUTO package (Karypis, 2002) is used (with default settings and two clusters). We also
compare C3E with two transfer learning algorithms from the literature — Transductive
Support Vector Machines (TSVM) and the Locally Weighted Ensemble (LWE) (Gao et al.,
2008).

For the hyperspectral data, two baseline classifiers are used: the well-known naive Bayes
Wrapper (NBW) and the Maximum Likelihood (ML) classifier (which performs well when
used with a best bases feature extractor (Kumar et al., 2001)). The target set instances are
clustered by k-means, using a varied number of clusters (from 30 to 50). PCA is used for
reducing the number of features employed by ML. The parameters of C3E are manually
optimized for better performance.

The results for text data are reported in Table 1. The different learning tasks corre-
sponding to different pairs of categories are listed as “Mode”. As it can be seen, C3E
improves the performance of the classifier ensemble (formed by combining WIN, LR and
SVM via output averaging) for all learning tasks, except for O vs Pl where apparently the
training and test distributions are similar. Also, the C3E accuracies are much better than
those achieved by both TSVM and LWE in most of the datasets. Except for WIN, the
performances of the base classifiers and clustereres (and hence of C3E) are quite invariant,
thereby resulting in very low standard deviations. For the experiments, Bayesian Logis-
tic Regression http://www.bayesianregression.org/ is used for running the logistic re-
gression classifier, LIBSVM (http://www.csie.ntu.edu.tw/~cjlin/libsvm/) for SVM,
SNoW Learning Architecture http://cogcomp.cs.illinois.edu/page/software_view/1
for Winnow, and SVM'gh* http://svmlight.joachims.org/ for transductive SVM. The
posterior class probabilities from SVM are also obtained using the LIBSVM package with
linear kernel. For SNoW, “-S 3 -r 5” is used and the remaining parameters of all the pack-
ages are set to their default values. The values of («, A) are set as (0.01,0.1) for the transfer
learning tasks corresponding to 20 Newsgroup datasets. For Reuters-21578, the values of
the parameters («, \) are set as (0.01,0.1), (0.00001,0.1), and (0.1,0.1) for O vs Pe, O vs PI,

2. The posterior class probabilities are obtained by using the package LIBSVM.
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Table 1: Classification of Text Data — 20 newsgroup and Reuters-21758.

Dataset Mode WIN | LR | SVM | Ensemble | TSVM | LWE | C°E
CvsS | 66.61 | 67.17 | 67.02 69.58 76.97 | 77.07 | 94.61
RvsT | 60.43 | 68.79 | 63.87 65.98 89.95 | 87.46 | 92.78
RwvsS | 80.11 | 76.51 | 71.40 77.39 89.96 | 87.81 | 94.19
SvsT | 7393 | 72.16 | 71.51 75.11 85.59 | 81.99 | 96.39
CvsR | 89.00 | 77.36 | 81.50 85.18 89.64 | 91.09 | 96.75
CvsT | 93.41 | 91.76 | 93.89 93.48 88.26 | 98.90 | 98.90
O vs Pe | 70.57 | 66.19 | 69.25 73.30 76.94 | 76.77 | 81.81
Reuters-21758 | O vs P1 | 65.10 | 67.87 | 69.88 69.21 70.08 | 67.59 | 68.92
Pe vs P1 | 56.75 | 56.48 | 56.20 57.59 59.72 | 59.90 | 68.61

20 Newsgroup

Table 2: Classification of Hyperspectral Data — Botswana.

Data | Source-Target | NBW | NBW+C’E ML ML+C3E a A | PCs
may-june 70.68 | 73.58 (+0.42) | 74.47 | 82.52 (£0.52) [ 0.0070 | 0.1 | 9
Areal may-july 61.85 | 62.22 (+0.29) | 58.58 | 66.47 (£0.53) | 0.0001 | 0.2 | 12
june-july 70.55 | 73.50 (+0.17) | 79.71 | 82.44 (+0.26) | 0.0070 | 0.1 | 127
may /june-july | 75.53 | 81.42 (£0.31) | 85.78 | 86.25 (4+0.23) | 0.0010 | 0.1 | 123
may-june 66.10 | 70.08 (+0.28) | 70.16 | 81.48 (£0.43) | 0.0040 | 0.1 | 9
Aread may-july 61.55 | 63.74 (£0.14) | 52.78 | 65.05 (£0.22) | 0.0001 | 0.2 | 12
june-july 54.89 | 59.93 (+0.53) | 75.62 | 77.12 (£0.37) | 0.0050 | 0.1 | 80
may/june-july | 63.79 | 63.96 (+0.16) | 77.33 | 80.97 (+0.23) | 0.0080 | 0.1 | 122

and Pe vs Pl, respectively (see Table 1). For hyperspectral data, Table 2 reports the results.
Note that C3E provides consistent accuracy improvements for both NBW and ML.? The
column “PCs” indicate the number of principal components used for dimension reduction
while training/testing with ML classifier.

4. Conclusions

We described an optimization framework that takes the outputs of a cluster ensemble ap-
plied to the target task to moderate posterior probability estimates provided by classifiers
previously induced on a related (source domain) task, so that they are better adapted to
the new context. The framework is quite general and has shown very promising results. An
extensive study across a wide variety of problem domains will further reveal its capabilities
as well as potential limitations, and is worth undertaking in light of what we have observed
so far.

A promising venue for future work involves investigating how to perform the automatic
selection of the parameter a. To that end, strategies based on methods like Covariate Shift

3. Standard deviations of the accuracies from NBW and ML were close to 0 and hence not shown.
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(Sugiyama et al., 2007) may be useful. Covariate Shift assumes that the training and test
distributions are known or, more realistically, can be estimated from data, which is a difficult
problem. Note that C3E does not require the densities to be known. In all of our controlled
experiments, we tuned the parameter o using some cross-validation in the training set. This
approach may not be a suitable practice for transfer learning applications, where ideally
we should have some mechanism to select o based on the density differences between the
source and the target domains. This leads to the analogous difficulties faced as when using
Covariate Shift. We shall note that, unlike covariate shift, C3E takes similarity information
from the target domain and does not require the conditional distribution of classes given
instances to be same in both source and target domains. Finally, for high-dimensional data,
the use of a cluster ensemble is additionally attractive as it can potentially project the data
onto lower subspaces, and this aspect is worth exploring further.
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