
JMLR: Workshop and Conference Proceedings 27:51–65, 2012 Workshop on Unsupervised and Transfer Learning

Information Theoretic Model Selection for Pattern Analysis

Joachim M. Buhmann jbuhmann@inf.ethz.ch

Morteza Haghir Chehreghani morteza.chehreghani@inf.ethz.ch

Mario Frank mfrank@berkeley.edu

Andreas P. Streich andreas.streich@alumni.ethz.ch

Department of Computer Science, ETH Zurich, Switzerland

Editor: I. Guyon, G. Dror, V. Lemaire, G. Taylor, and D. Silver

Abstract

Exploratory data analysis requires (i) to define a set of patterns hypothesized to exist in
the data, (ii) to specify a suitable quantification principle or cost function to rank these
patterns and (iii) to validate the inferred patterns. For data clustering, the patterns are
object partitionings into k groups; for PCA or truncated SVD, the patterns are orthogonal
transformations with projections to a low-dimensional space. We propose an informa-
tion theoretic principle for model selection and model-order selection. Our principle ranks
competing pattern cost functions according to their ability to extract context sensitive
information from noisy data with respect to the chosen hypothesis class. Sets of approx-
imative solutions serve as a basis for a communication protocol. Analogous to Buhmann
(2010), inferred models maximize the so-called approximation capacity that is the mutual
information between coarsened training data patterns and coarsened test data patterns.
We demonstrate how to apply our validation framework by the well-known Gaussian mix-
ture model and by a multi-label clustering approach for role mining in binary user privilege
assignments.

Keywords: Unsupervised learning, data clustering, model selection, information theory,
maximum entropy, approximation capacity

1. Model Selection via Coding

Model selection and model order selection [Burnham and Anderson (2002)] are fundamental
problems in pattern analysis. A variety of models and algorithms has been proposed to
extract patterns from data, i.e., for clustering, but a comprehensive theory on how to choose
the “right” pattern model given the data is still missing. Statistical learning theory as in
Vapnik (1998) advocates to measure the generalization ability of models and to employ
the prediction error as a measure of model quality. In particular, stability analysis of
clustering solutions has shown very promising results for model order selection in clustering
[Dudoit and Fridlyand (2002); Lange et al. (2004)], although discussed controversially by
Ben-David et al. (2006). Stability is, however, only one aspect of statistical modeling, e.g.,
for unsupervised learning. The other aspect of the modeling tradeoff is characterized by the
informativeness of the extracted patterns. A tolerable decrease in the stability of inferred
patterns in the data (data model) might be compensated by a substantial increase of their
information content (see also the discussion in Tishby et al. (1999)).
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We formulate a principle that balances these two antagonistic objectives by transforming
the model selection problem into a coding problem for a generic communication scenario.
Thereby, the objective function or cost function that maps patterns to quality scores is con-
sidered as a noisy channel. Different objectives are ranked according to their transmission
properties and the cost function with the highest channel capacity is then selected as the
most informative model for a given data set. Thereby, we generalize the set-based coding
scheme proposed by Buhmann (2010) to sets of weighted hypotheses in order to simplify
the embedding of pattern inference problems in a communication framework. Learning, in
general, resembles communication from a conceptual viewpoint: For communication, one
demands a high rate (a large amount of information transferred per channel use) together
with a decoding rule that is stable under the perturbations of the messages by the noise in
the channel. For learning patterns in data, the data analyst favors a rich model with high
complexity (e.g., a large number of groups in clustering), while the generalization error of
test patterns is expected to remain stable and low. We require that solutions of pattern
analysis problems are reliably inferred from noisy data.

This article first summarizes the information theoretic framework of weighted approxi-
mation set coding (wASC) for validating statistical models. We then demonstrate, for the
first time, how to practically transform a pattern recognition task into a communication
setting and how to compute the capacity of clustering solutions. The feasibility of wASC
is demonstrated for mixture models on real world data.

2. Brief Introduction to Approximation Set Coding

In this section, we briefly describe the theory of weighted Approximation Set Coding
(wASC) for pattern analysis as proposed by Buhmann (2010).

Let X = {X1, . . . , Xn} ∈ X be a set of n objects O and n measurements in a data space
X , where the measurements characterize the objects. Throughout the paper, we assume
the special case of a bijective map between objects and measurements, i.e., the ith object
is isomorphic to the vector xi ∈ RD. In general, the (object, measurement) relation might
be more complex than an object-specific feature vector.

A hypothesis, i.e. a solution of a pattern analysis problem, is a function c that assigns
objects (e.g. data) to patterns of a pattern space P:

c : X → P, X 7→ c(X). (1)

Accordingly, the hypothesis class is the set of all such functions, i.e. C(X) := {c(X) :
X ∈ X}. For clustering, the patterns are object partitionings P = {1, . . . , k}n. A model for
pattern analysis is characterized by a cost or objective function R(c,X) that assigns a
real value to a pattern c(X). To simplify the notation, model parameters θ (e.g., centroids)
are not explicitly listed as arguments of the objective function. Let c⊥(X) be the pattern
that minimizes the cost function, i.e. c⊥(X) ∈ arg mincR(c,X). As the measurements
X are random variables, the global minimum c⊥(X) of the empirical costs is a random
variable as well. In order to rank all solutions of the pattern analysis problem, we introduce
approximation weights

w : C × X × R+ → [0, 1] , (c,X, β) 7→ wβ(c,X) . (2)
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The weights are chosen to be non-negative wβ(c,X) ≥ 0, the maximal weight is allocated
to the global minimizer c⊥ and it is normalized to one (wβ(c⊥,X) = 1). Semantically, the
weights wβ(c,X) quantify the quality of a solution w.r.t. the global minimizer of R(.,X).
The scaling parameter β controls the size of the solution set. Large β yields a small solution
set and small β renders many solutions as good approximations of the minimizer c⊥(X) in
terms of costs, i.e., wβ(c,X) > 1−ε denotes that c is regarded as an ε/β-good approximation
of the minimal costs R(c⊥,X). Therefore, we also require that weights fulfil the inverse order
constraints compared to costs, i.e., a solution c with lower or equal costs than c̃ should have
a larger or equal weight, i.e.,

R(c,X) ≤ R(c̃,X) ⇐⇒ wβ(c,X) ≥ wβ(c̃,X) . (3)

Given a cost function R(c,X)) these order constraints determine the weights up to a mono-
tonic (possibly nonlinear) transformation f(.) which effectively rescales the costs (R̃(c,X) =
f(R(c,X))). The family of (Boltzmann) weights

wβ(c,X) := exp
(
−β∆R(c,X)

)
, with ∆R(c,X) := R(c,X)−R(c⊥,X)) (4)

parameterized by the inverse computational temperature β, fulfils these requirements. Al-
though the Boltzmann weights are a particular choice, all other weighting schemes can be
explained by a monotonic rescaling of the costs.

Conceptually, wASC assumes a “two sample set scenario” as in Tishby et al. (1999).
Let X(q), q ∈ {1, 2}, be two datasets with the same inherent structure but different noise
instances. In most cases, their sets of global minima differ, i.e. {c⊥(X(1))} ∩ {c⊥(X(2))} =
∅, demonstrating that the global minimizers often lack robustness to fluctuations. The
approximation weights (2) have been introduced to cure this instability. Solutions with
large approximation weights wβ(c,X) ≥ 1− ε, ε� 1 can be accepted as substitutes of the
global minimizers. Adopting a learning theoretic viewpoint, the set of solutions with large
weights generalizes significantly better than the set of global minimizers, provided that β is
suitably chosen. The concept wASC serves the purpose to determine such an appropriate
scale β. The two data sets X(q), q ∈ {1, 2}, define two weight sets wβ(c,X(q)). These weights
give rise to the two weight sums Zq and the joint weight sum Z12

Zq := Z(X(q)) =
∑

c∈C(X(q))

exp
(
−β∆R(c,X(q))

)
, q = 1, 2 (5)

Z12 := Z(X(1),X(2)) =
∑

c∈C(X(2))

exp
(
−β(∆R(c,X(1)) + ∆R(c,X(2)))

)
, (6)

where exp(−β(∆R(c,X(1)) + ∆R(c,X(2)))) measures how well a solution c minimizes costs
on both datasets. The sums (5,6) play a central role in our framework. If β = 0, all weights
wβ(c,X) = 1 are independent of the costs. In this case, Zq = |C(X(q))| indicates the size of
the hypothesis space, and Z12 = Z1 = Z2. For high β, all weights are small compared to
the weight wβ(c⊥,X(q)) of the global optimum and the weight sum essentially counts the
number of globally optimal solutions. For intermediate β, Z(·) takes a value between 0 and
|C(X(q))|, giving rise to the interpretation of Z(·) as the effective number of patterns that
approximately fit the dataset X(q), where β defines the precision of this approximation.
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Figure 1: Communication process: (1) the sender selects transformation τ , (2) the problem
generator draws X(2) ∼ P(X) and applies τ to it, and (3) the receiver estimates
τ̂ based on X̃ = τ ◦X(2).

Essentially, Zq counts all statistically indistinguishable data patterns that approximate the
minimum of the objective function. The global optimum c⊥(X) can change whenever we
optimize on another random subset of the data, whereas, for a well-tuned β, the set of
weights {wβ(c,X)} remains approximately invariant. Therefore, β defines the resolution of
the hypothesis class that is relevant for inference. Noise in the measurements X reduces
this resolution and thus coarsens the hypothesis class. As a consequence, the key problem
of learning is to control the resolution optimally: How high can β be chosen to still ensure
identifiability of {wβ : wβ(c,X) ≥ 1 − ε} in the presence of data fluctuations? Conversely,
choosing β too low yields a too coarse resolution of solutions and does not capture the
maximal amount of information in the data.

We answer this key question by means of a communication scenario. The communication
architecture includes a sender S and a receiver R with a problem generator PG between
the two terminals S, R (see Fig. 1). The communication protocol is organized in two stages:
(i) design of a communication code and (ii) the communication process.

For the communication code, we adapt Shannon’s random coding scenario, where
a codebook of random bit strings covers the space of all bit strings. In random coding,
the sender sends a bit string and the receiver observes a perturbed version of this bit
string. For decoding, the receiver has to find the most similar codebook vector in the
codebook which is the decoded message. In the same spirit, for our scenario, the sender
must communicate patterns to the receiver via noisy datasets. Since we are interested in
patterns with low costs, the optimal pattern c⊥(X(1)) can serve as a message. The other
patterns in the codebook are generated by transforming the training data τ ◦X(1) with the
transformation τ ∈ T := {τ1, ..., τ2nρ}. The number of codewords is 2nρ and ρ is the rate of
the protocol. The choice of such transformations depends on the hypothesis class and they
have to be equivariant, i.e., the transformed optimal pattern equals the optimal pattern of
the transformed data τ ◦ c(X(1)) = c(τ ◦X(1)). In data clustering, permuting the indices of
the objects defines the group of transformations to cover the pattern space. Each clustering
solution c ∈ C(X(1)) can be transformed into another solution by a permutation τ on the
indices of c.

To communicate, S selects a transformation τs ∈ T and sends it to a problem generator
PG as depicted in Fig. 1. PG then generates a new dataset X(2), applies the transformation
τs, and sends the resulting data X̃ := τs ◦ X(2) to R. On the receiver side, the lack of
knowledge on the transformation τs is mixed with the stochastic variability of the source
generating the data X. R has to estimate the transformation τ̂ based on X̃. The decoding
rule of R selects the pattern transformation τ̂ that yields the highest joint weight sum of
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τ̂ ◦X(1) and X̃, i.e.,

τ̂ ∈ arg max
τ∈T

∑
c∈C(X(1))

exp(−β(R(c, τ ◦X(1)) +R(c, X̃))) . (7)

In the absence of noise in the data, we have X(1) = X(2), and error-free communication
works even for β →∞. The higher the noise level, the lower we have to choose β in order
to obtain weight sums that are approximately invariant under the stochastic fluctuations
in the measurements thus preventing decoding errors. The error analysis of this protocol
investigates the probability of decoding error P(τ̂ 6= τs|τs). As derived for an equivalent
channel in Buhmann (2011), an asymptotically vanishing error rate is achievable for rates

ρ ≤ Iβ(τs, τ̂) =
1

n
log

(
|{τs}|Z12

Z1 · Z2

)
=

1

n

(
log
|{τs}|
Z1

+ log
|C(2)|
Z2

− log
|C(2)|
Z12

)
. (8)

The three logarithmic terms in eq.(8) denote the mutual information between the coarsening
of the pattern space on the sender side and the coarsening of the pattern space on the receiver
side.

The cardinality |{τs}| is determined by the number of realizations of the random trans-
formation τ , i.e. by the entropy of the type (in an information theoretic sense) of the
empirical minimizer c⊥(X). As the entropy increases for a large number of patterns, |{τs}|
accounts for the model complexity or informativeness of the solutions. For noisy data, the
communication rate is reduced as otherwise the solutions can not be resolved by the receiver.
The relative weights are determined by the term Z12/(Z1 · Z2) ∈ [0, 1] which accounts for
the stability of the model under noise fluctuations.

In analogy to information theory, we define the approximation capacity as

CAP(τs, τ̂) = max
β
Iβ(τs, τ̂) . (9)

Using these entities, we can describe how to apply the wASC principle for model selection
from a set of cost functions R: Randomly split the given dataset X into two subsets X(1)

and X(2). For each candidate cost function R(c,X) ∈ R, compute the mutual information
(eq. 8) and maximize it with respect to β. Then select the cost function that achieves
highest capacity at the best resolution β?.

There exists a long history of information theoretic approaches to model selection, which
traces back at least to Akaike’s extension of the Maximum Likelihood principle. AIC pe-
nalizes fitted models by twice the number of free parameters. The Bayesian Information
Criterion (BIC) suggests a stronger penalty than AIC, i.e., number of model parameters
times logarithm of the number of samples. Rissanen’s minimum description length princi-
ples is closely related to BIC (see e.g. Hastie et al. (2008) for model selection penalties).
Tishby et al. (1999) proposed to select the number of clusters according to a difference
of mutual informations which they called the imformation bottleneck. This asymptotic
concept is closely related to rate distortion theory with side information (see Cover and
Thomas (2006)). Finite sample size corrections of the information bottleneck allowed Still
and Bialek (2004) to determine an optimal temperature with a prefered number of clusters.
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3. Approximation Capacity for Parametric Clustering Models

Let X(q), q ∈ {1, 2} be two datasets drawn from the same source. We consider a parametric
clustering model with K clusters. Then the cost function can be written as

R(c,X) =

n∑
i=1

εi,c(i) with ∀i, c(i) ∈ {1, ..,K} . (10)

εi,c(i) indicates the costs of assigning object i to cluster c(i). These costs εi,c(i) also contains
all relevant parameters to identify a clustering solution, e.g. centroids. In the well-known
case of k-means clustering we derive εi,c(i) = ‖xi − yc(i)‖2.

Calculating the approximation capacity requires the following steps:

1. Identify the hypothesis space of the models and compute the cardinality of the set of
possible transformations |{τs}|.

2. Calculate the weight sums Zq , q = 1, 2, and the joint weight sum Z12.

3. Maximize Iβ in Eq. (8) with respect to β.

In clustering problems, the hypothesis space is spanned by all possible assignments of
objects to sources. The appropriate transformation in clustering problems is the permuta-
tion of objects. Albeit a solution contains the cluster assignments and cluster parameters
like centroids, the centroid parameters contribute almost no entropy to the solution. With
given cluster assignments the solution is fully determined as the objects of each cluster
pinpoint the centroids to a particular vector. With the permutation transformations one
can construct all clusterings starting from a single clustering. However, as the mutual infor-
mation in Eq. (8) is estimated solely based on the identity transformation, one can ignore
the specific kind of transformations when computing this estimate. The cardinality |{τs}|
is then the number of all distinct clusterings on X(1).

We obtain the individual weight sums and the joint weight sum by summing over all
possible clustering solutions

Zq =
∑

c∈C(X(q))

exp

(
−β

n∑
i=1

ε
(q)
i,c(i)

)
=

n∏
i=1

K∑
k=1

exp
(
−βε(q)i,k

)
, q = 1, 2, (11)

Z12 =
∑

c∈C(X(2))

exp

(
−β

n∑
i=1

(ε
(1)
i,c(i) + ε

(2)
i,c(i))

)
=

n∏
i=1

K∑
k=1

exp
(
−β
(
ε
(1)
i,k + ε

(2)
i,k

))
. (12)

By substituting these weight sums to Eq. (8), the mutual information amounts to

Iβ =
1

n
log |{τs}|+

1

n

n∑
i=1

(
log

K∑
k=1

e
−β

(
ε
(1)
i,k+ε

(2)
i,k

)
− log

K∑
k=1

e−βε
(1)
i,k

K∑
k′=1

e
−βε(2)

i,k′

)
. (13)

The approximation capacity is numerically determined as the maximum of Iβ over β.

56



Model Selection for Pattern Analysis

4. Approximation Capacity for Mixtures of Gaussians

In this section, we demonstrate the principle of maximum approximation capacity on the
well known Gaussian mixture model (GMM). We first study the approximation set coding
for GMMs and then we experimentally compare it against other model selection principles.

4.1. Experimental Evaluation of Approximation Capacity

A GMM with K components is defined as p(x) =
∑K

k=1 πk N (x | µk,Σ), with non-negative
πk and

∑
k πk = 1. For didactical reasons, we do not optimize the covariance matrix Σ

and simply fix it to Σ = 0.5 · I. Then, maximizing the GMM likelihood essentially reduces
to centroid-based clustering. Therefore, εi,k := ‖xi − µk‖2 indicates the costs of assigning
object i to cluster k.

For experimental evaluation, we define K = 5 Gaussians with parameters πk = 1/K, µ ∈
{(1, 0), (0, 1.5), (−2, 0), (0,−3), (4.25,−4)}, and with covariance Σ = 0.5 · I. Let X(q), q ∈
{1, 2} be two datasets of identical size n = 10, 000 drawn from these Gaussians. We optimize
the assignment variables and the centroid parameters of our GMM model via annealed Gibbs
sampling [Geman and Geman (1984)]. The computational temperature in Gibbs sampling
is equivalent to the assumed width of the distributions. Thereby, we provide twice as many
clusters to the model in order to enable overfitting. Starting from a high temperature, we
successively cool down while optimizing the model parameters. In Figure 2(a), we illustrate
the positions of the centroids with respect to the center of mass. At high temperature, all
centroids coincide, indicating that the optimizer favors one cluster. As the temperature is
decreased, the centroids separate into increasingly many clusters until, finally, the sampler
uses all 10 clusters to fit the data.

Figure 2(b) shows the numerical analysis of the mutual information in Eq. (13). When
the stopping temperature of the Gibbs sampler coincides with the temperature β−1 that
maximizes mutual information, we expect the best tradeoff between robustness and informa-
tiveness. And indeed, as illustrated in Figure 2(a), the correct model-order K̂ = 5 is found
at this temperature. At lower stopping temperatures, the clusters split into many instable
clusters which increases the decoding error, while at higher temperatures informativeness
of the clustering solutions decreases.

4.2. Comparison with other principles

We compare approximation capacity against two other model order selection principles: i)
generalization ability, and ii) BIC score.

Relation to generalization ability: A properly regularized clustering model explains
not only the dataset at hand, but also new datasets from the same source. The inferred
model parameters and assignment probabilities from the first dataset X(1) can be used to
compute the costs for the second dataset X(2). The appropriate clustering model yields low
costs on X(2), while very informative but unstable structures and also very stable but little
informative structures have high costs due to overfitting or underfitting, respectively.

We measure this generalization ability by computing the “transfer costs” R(c(1),X(2))
[Frank et al. (2011)]: At each stopping temperature of the Gibbs sampler, the current
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(a) Clustering hierarchy (b) Mutual info. and transfer costs

(c) BIC measure

Figure 2: Annealed Gibbs sampling for GMM: Influence of the stopping temperature for
annealed optimization on the mutual information, on the transfer costs and on
the positions of the cluster centroids. The lowest transfer cost is achieved at the
temperature with highest mutual information. This is the lowest temperature at
which the correct number of clusters K̂ = 5 is found. The hierarchy in Fig. 2(a)
is obtained by projecting the two-dimensional centroids at each stopping temper-
ature to the optimal one-dimensional subspace using multidimensional scaling.
BIC verifies correctness of K̂ = 5.

parameters µ(1) and assignment probabilities P(1) inferred from X(1) are transfered to
X(2). The assignment probabilities P(1) assume the form of a Gibbs distribution

p(µ
(1)
k |x

(1)
i ) = Z−1x exp

(
−β‖x(1)

i − µ
(1)
k ‖

2
)
, (14)

with Zx as the normalization constant. The expected transfer costs with respect to these
probabilities are then

〈
R(c(1),X(2))

〉
=

n∑
i=1

K∑
k=1

p(x
(1)
i ,µ

(1)
k )‖x(2)

i − µ
(1)
k ‖

2 ≈ 1

n

n∑
n=1

K∑
k=1

p(µ
(1)
k |x

(1)
i )‖x(2)

i − µ
(1)
k ‖

2 ,

(15)
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Figure 2(b) illustrates the transfer costs as a function of β and compares it with the ap-
proximation capacity. The optimal transfer costs are obtained at the stopping temperature
that corresponds to the approximation capacity.

Relation to BIC Arguably the most popular criterion for model-order selection is BIC as
proposed by Schwarz (1978). It is, like wASC, an asymptotic principle, i.e. for sufficiently
many observations, the fitted model preferred by BIC ideally corresponds to the candidate
which is a posteriori most probable. However, the application of BIC is limited to models
where one can determine the number of free parameters as here with GMM. Figure 2(c)
confirms the consistency of wASC with BIC in finding the correct model order in our
experiment.

5. Model Selection for Boolean matrix factorization

To proceed with studying different applicability aspects of wASC, we now consider the task
to select one out of four models for factorizing a Boolean matrix with the clustering method
proposed in Streich et al. (2009). Experiments with known ground truth allow us to rank
these models according to their parameter estimation accuracy. We investigate whether
wASC reproduces this ranking.

5.1. Data and Models

Consider binary data X ∈ {0, 1}n×D in D dimensions, where a row xi describes a single
data item. Each data item i is assigned to a set of sources Li, and these sources generate
the measurements xi of the data item. The probabilities vk,d of a source k to emit a
zero in dimension d parameterize the sources. To generate a data item i, one sample
is drawn from each source in Li. In each dimension d, the individual samples are then
combined via the Boolean OR to obtain the structure part of the data item x̃i. Finally, a
noise process generates the xi by randomly selecting a fraction of ε elements and replacing
them with random values. Following this generative process, the negative log-likelihood is
R =

∑
iRi,Li , where the individual costs of assigning data item i to source set Li are

Ri,Li = −
D∑
d=1

log
(

(1− ε) (1− vLi,d)
xid v1−xidLi,d + ε rxid (1− r)1−xid

)
. (16)

Multi-Assignment Clustering (MAC) supports the simultaneous assignment of one data item
to more than one source, i.e. the source sets can contain more than one element (|Li| ≥ 1),
while Single-Assignment Clustering (SAC) has the constraint |Li| = 1 for all i. Hence,
when MAC has K sources and L different source combinations, the SAC model needs L
independent sources for an equivalent model complexity. For MAC, vLi,d :=

∏
λ∈Li vλ,d

is the product of all source parameters in assignment set Li, while for SAC, vLi,d is an
independent parameter of the cluster indexed by Li. Consequently, SAC must estimate
L ·D parameters, while MAC uses the data more efficiently to only learn K ·D parameters
of the individual modes.

The model parameter ε is the mixture weight of the noise process, and r is the probability
for a noisy bit to be 1. Fixing ε = 0 corresponds to a generative model without noise process.
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In summary, there are four model variants, each one defined by the constraints of its
parameters: MAC models are characterized by |Li| ≥ 1, v ∈ [0, 1]K·D, SAC models by
|Li| = 1, v ∈ [0, 1]L·D; generative models without noise are described by ε = 0 and its noisy
version by ε ∈ [0, 1[.

5.2. Computation of the approximation capacity.

For the cost function in Eq. (16), the hypothesis space is spanned by all possible assignments
of objects to source combinations. A solution (a point in this hypothesis space) is encoded
by the n source-sets Li, i ∈ {1, .., n} with |Li| ∈ {1, ..,K}. We explained in the last section
that L has the same magnitude for all four model variants. Therefore, the hypothesis space
of all four models equals in cardinality. In the following, we use the running index L to sum
over all L possible assignment sets.

As the probabilistic model factorizes over the objects (and therefore the costs are a sum

over object-wise costs R(vLi∗,x
(q)
i∗ ) in Eq. (16)) we can conveniently sum over the entire

hypothesis space by summing over all possible assignment sets for each object, similar as
described in Section 3. The weight sums are then

Z(q) =
n∏
i=1

L∑
L=1

exp
(
−βR(vL∗,x

(q)
i∗ )
)
, q = 1, 2 , (17)

Z12 =
n∏
i=1

L∑
L=1

exp
(
−β(R(vL∗,x

(1)
i∗ ) +R(vL∗,x

(2)
i∗ ))

)
. (18)

where the two datasets must be aligned before computing R(vL∗,x
(2)
i∗ ) such that x

(1)
i∗ and

x
(2)
i∗ have a high probability to be generated by the same sources. In this particular exper-

iment we guaranteed alignment by generation of the data. With real-world data one must
use a mapping function as, for instance, in Frank et al. (2011).

The weight sums of the four model variants differ only in the combined source estimates
vL∗,∀L. We train these estimates on the first dataset x(1) prior to computing the mutual
information Eq. (8). With the formulas for the weight sums, one can readily evaluate the
mutual information as a function of the inverse computational temperature β. We maximize
this function numerically for each of the model variants.

5.3. Experiments

We investigate the dependency between the accuracy of the source parameter estimation
and the approximation capacity. We choose a setting with 2 sources and we draw 100
samples from each source as well as from the combination of the two sources. The sources
have 150 dimensions and a Hamming distance of 40 bits. To control the difficulty of the
inference problem, the fraction ε of random bits varies between 0 and 0.99. The parameter
of the Bernoulli-noise process is set to r = 0.75. The model parameters are then estimated
by MAC and SAC both with and without a noise model. We use the true model order, i.e.
K = 2 and L = 3 and infer the parameters by deterministic annealing Rose (1998).

The mismatch of the estimates to the true sources and the approximation capacity
are displayed in Figures 3(a) and 3(b), both as a function of the noise fraction ε. Each
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(a) Source Estimation Mismatch (b) Approximation Capacity

Figure 3: Error of source parameter estimation versus approximation capacity.

method has very precise estimates up to a model-dependent critical noise level. For higher
noise values, the accuracy breaks down. For both MAC and SAC, adding a noise model
shifts this performance decay to a higher noise level. Moreover, MACmix estimates the
source parameters more accurately than SACmix and shows its performance decay at a
significantly increased noise levels. The approximation capacity (Fig. 3(b)) confirms this
ranking. For noise-free data (ε = 0), all four models attain the theoretical maximum of the
approximation capacity, log2(3) bits. As ε increases, the approximation capacity decreases
for all models, but we observe vast differences in the sensitivity of the capacity to the noise
level. Two effects decrease the capacity: inaccurately estimated parameters and (even with
perfect estimates) the noise in the data that favors the assignment probabilities of an object
to clusters to be more uniform (for ε = 1 all clusters are equally probable). In conclusion,
the wASC agrees with the ranking by parameter accuracy. We emphasize that parameter
accuracy requires knowledge of the true source parameters while wASC requires only the
data at hand.

6. Phase Transition in Inference

This section discusses phase transitions and learnability limits. We review theoretical results
and show how the wASC principle can be employed to verify them.

6.1. Phase Transition of Learnability

Let the two centroids µk, k = 1, 2, be orthogonal to each other and let them have equal
magnitudes: |µ1| = |µ2|. The normalized separation u is defined as u := |µ1 − µ2|/

√
2σ0,

where σ0 indicates the variance of the underlying Gaussian probability distributions with
Σ = σ0 · I. We consider the asymptotic limit D → ∞ while α := n/D, σ0 and u are kept
finite as described in Barkai et al. (1993). In this setting, the complexity of the problem,
measured by the Bayes error, is proportional to

√
1/D. Therefore, we decrease the distance

between the centroids by a factor of
√

1/D when going to higher dimensions in order to keep
the problem complexity constant. Similar to the two dimensional study, we use annealed
Gibbs sampling to estimate the centroids µ1, µ2 at different temperatures. The theory of
this problem is studied in Barkai and Sompolinsky (1994) and Witoelar and Biehl (2009).
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(a) Phase Diagram (b) Overlap (c) Mutual Information

Figure 4: Experimental study of the overlap r and the mutual information Iβ in different
learnability limits. The problem complexity is kept constant while varying the
number of objects per dimension α.

The study shows the presence of different phases depending on the values of stopping
temperature and α. We introduce the same parameters as in Barkai and Sompolinsky
(1994): The separation vector ∆µ̂ = (µ̂1 − µ̂2)/2, as well as the order parameters s =
σ0|∆µ̂|2 (the separation between the two estimated centers) and r = ∆µ̂ ·∆µ/u (the
projection of the distance vector between the estimated centroids onto the distance vector
between the true centroids). Computing these order parameters guides to construct the
phase diagram. Thereby, we sample n = 500 data items from two Gaussian sources with
orthogonal centroids µ1, µ2 and equal prior probabilities π1 = π2 = 1/2, and fix the variance
σ0 at 1/2. We vary α by changing the dimensionality D. To keep the Bayes error fixed, we
simultaneously adapt the normalized distance. For different values of α we perform Gibbs
sampling and infer the estimated centroids µ̂1 and µ̂2 at varying temperature. Then we
compute the order parameters and thereby obtain the phase diagram shown in Fig. 4(a)
which is consistent with the theoretical and numerical study in Barkai and Sompolinsky
(1994):

Unsplit phase: s = r = 0. For high temperature and large α the estimated cluster
centroids coincide, i.e. µ̂1 = µ̂2.

Ordered split phase: s, r 6=0. For values of α > αc = 4u−4, the single cluster obtained
in the unsplit phase splits into two clusters such that the projection of the distance
vector between the two estimated and the two true sources is nonzero.

Random split phase: s 6= 0, r = 0. For α < αc, the direction of the split between the
two estimated centers is random. Therefore, r vanishes in the asymptotic limits. The
experiments also find such a meta-stability at low temperatures which correspond to
the disordered spin-glass phase in statistical physics.

Therefore, as temperature decreases, different types of phase transitions can be observed:

1. α � αc: Unsplit → Ordered. We investigate this scenario by choosing D = 100 and
then α = 5. The order parameter r in Fig. 4(b) shows the occurrence of such a phase
transition.

2. α ' αc: Unsplit → Ordered → Random. With n = D = 500, we then have α = 1.
The behavior of the parameter r is consistent with the phase sequence “Unsplit →
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Figure 5: Expected transfer costs and approximation capacity when the number of observa-
tions per dimensions α = 5. The Gibbs sampler is initialized with four centroids.

Ordered→ Random” as the temperature decreases. This result is consistent with the
previous study in Barkai and Sompolinsky (1994).

3. α� αc: Random phase. With the choice of D = 3000, α = 1/6 then r is always zero.
This means there is almost no overlap between the true and the estimated centroids.

As mentioned before, changing the dimensionality affects the complexity of the problem.
Therefore, we adapt the distance between the true centroids to keep the Bayes error fixed.
In the following, we study the approximation capacity for each of these phase transitions
and compare them with the results we obtain in simulations.

6.2. Approximation Capacity of Phase Transition in Learnability Limits

Given the two datasets X(1) and X(2) drawn from the same source, we calculate the mutual
information between the first and the second datasets according to Eq. 13. We again
numerically compute the mutual information Iβ for the entire interval of β to obtain the
approximation capacity (Eq. 9). Figure 4(c) shows this numerical analysis for the three
different learnability limits. The approximation capacity reflects the difference between the
three scenarios described above:

1. Unsplit → Ordered: The centroids are perfectly estimated. The approximation
capacity attains the theoretical maximum of 1 bit at low temperature.

2. Unsplit → Ordered → Random: The strong meta-stability for low temperatures
prevents communication. The mutual information is maximized at the lowest tem-
perature above this random phase.

3. Random: The centroids are randomly split. Therefore, there is no information be-
tween the true and the estimated centroids over the entire temperature range. In this
regime the mutual information is always 0 over all values of β.

We extend the study to a hypothesis class of 4 centroids, thus enabling the sampler to
overfit. Using Gibbs sampling on X(1) ∈ R500×100 (scenario (1)) under an annealing sched-
ule, we compute the clustering c(X(1)). At each temperature, we then compute the mutual
information and the transfer costs. In this way, we study the relationship between ap-
proximation capacity and generalization error in the asymptotic limits. Figure 5 illustrates
the consistency of the costs of the transferred clustering solution with the approximation
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capacity. Furthermore, in the annealing procedure, the correct model order, i.e. K̂ = 2, is
attained at the temperature that corresponds to the maximal approximation capacity.

7. Conclusion

Model selection and model order selection pose critical design issues in all unsupervised
learning tasks. The principle of maximum approximation capacity (wASC) offers a theoret-
ically well-founded approach to answer these questions. We have motivated this principle
and derived the general form of the capacity. As an example, we have studied the ap-
proximation capacity of Gaussian mixture models (GMM). Thereby, we have demonstrated
that the choice of the optimal number of Gaussians based on the approximation capacity
coincides with the configurations yielding optimal generalization ability. Weighted approx-
imation set coding finds the true number of Gaussians used to generate the data.

Weighted approximation set coding is a very general model selection principle which
is applicable to a broad class of pattern recognition problems (for SVD see Frank and
Buhmann (2011)). We have shown how to use wASC for model selection and model order
selection in clustering. Ongoing research addresses the question how much information can
be extracted by algorithms from a data set, i.e., when the algorithms are not designed to
minimize an objective function. Weighted approximation set coding enables us to quantify
the robustness and informativeness of sorting algorithms when different noise levels have
perturbed the input data (see e.g. Busse et al. (2012)).
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