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Abstract

Multi-task learning aims at transferring knowledge between similar tasks. The multi-task
Gaussian process framework of Bonilla et al. models (incomplete) responses of C data
points for R tasks (e.g., the responses are given by an R×C matrix) by using a Gaussian
process; the covariance function takes its form as the product of a covariance function
defined on input-specific features and an inter-task covariance matrix (which is empirically
estimated as a model parameter). We extend this framework by incorporating a novel
similarity measurement, which allows for the representation of much more complex data
structures. The proposed framework also enables us to exploit additional information
(e.g., the input-specific features) when constructing the covariance matrices by combining
additional information with the covariance function. We also derive an efficient learning
algorithm which uses an iterative method to make predictions. Finally, we apply our model
to a real data set of recommender systems and show that the proposed method achieves
the best prediction accuracy on the data set.
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1. Introduction

Multi-task learning (Caruana, 1997) is a machine learning framework that aims to improve
performance through the learning of multiple tasks at the same time, and sharing the
information of each task. An application of multi-task learning is a recommender system.
For example, a recommender system of movies makes recommendations of movies which
a user may prefer based on the history of the user’s preferences. Since the total number
of movies is much larger than the number of movies which one user has watched in the
past, one user’s preferences are insufficient for accurate prediction. Multi-task learning
enhances the prediction performance by regarding each user as a relevant task and by
sharing the preferences information of the users whose preferences are similar to each other.
Such techniques are called collaborative filtering and are widely applied in recommender
systems.
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Several methods for multi-task learning have been proposed (Pan and Yang, 2010), which
includes a method based on a Gaussian process (GP) called the multi-task GP (Bonilla et al.,
2008). GP models can make predictions as a distribution, and they provide not only a mean
of the prediction but also a variance, which can be used as a reliability of the prediction.
Another advantage of the GP approach is that the learning of a model and prediction
making are consistently done within the Bayesian framework. As the GP models represent
the similarities of each data sample as a covariance matrix, the multi-task GP parametrizes
the similarities between tasks and the similarities between data points as two independent
covariance matrices, which enables to transfer knowledge among different tasks and data
points efficiently. The multi-task GP is a special case of a tensor GP (Yu et al., 2007), and
it has various applications such as a robotic manipulation (Chai et al., 2009).

However, if either inputs or task-specific features are not provided, the multi-task GP
cannot measure the similarities and thus we cannot construct the corresponding covariance
matrix with kernel functions. Since task-specific features are generally difficult to obtain,
the method proposed by Bonilla et al. estimates a full covariance matrix over tasks in an
empirical Bayesian framework. They also provide a parametric estimation procedure for
the covariance with low-rank constraint. The method proposed by Yu et al. (2007) directly
estimates the outputs of the GP as parameters, which can be seen as a matrix-factorization-
like approximation.

These parametric approaches work well when the model includes the true distribution
of the observations, e.g., the observed responses have a low-rank structure. However, such
modeling is sometimes too restrictive for real data. In addition, when given responses are
sparse and have high dimensionality, i.e., the dimension of the covariance matrix is large
compared to the number of the observations, the empirical estimation of the full covariance
matrix would be unstable, which may cause a negative effect for prediction.

Another challenge is to improve scalability. The naive computation of the mean of the
predictive distribution requiresO(M3) complexity, whereM denotes the number of observed
responses. When applying the multi-task GP to a large-scale data set, it is inevitable to
introduce some approximations such as limitations of kernel functions (e.g., linear kernel)
and low-rank approximations of the Gram matrix. The empirical Bayes approach also raises
further the computational cost; it is only applicable when the number of tasks or data points
is small.

In this paper, we propose a new GP framework for multi-task learning problems. Our
main contributions are as follows:

Self-measuring similarities We use the responses themselves to measure the similari-
ties between the tasks and the data points. The response-based similarities allow
for the flexible representation of more complex data structures. Additional features
(e.g., input-specific features) would enhance the prediction accuracy but that is not a
requirement in our framework.

Efficient and exact inference scheme We propose an efficient algorithm which com-
putes the predictive mean of the GP with O(RC(R+C)) computational cost without
any approximations, where R and C denote the number of tasks and data points,
respectively.
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Figure 1: A problem setting of multi-task learning in this paper. Additional information S
and T are not indispensable.

We evaluate our method in a collaborative filtering problem with a real data set and show
that it attains the lowest prediction error.

2. Multi-task Gaussian Process

Suppose that we are given R tasks and the i-th task has incomplete outputs xi: ∈ RC which
may contain unknown values. Our purpose is to predict unobserved elements in a response
matrix X = (x>1:, . . . ,x

>
R:)
> ∈ RR×C in which xi: denotes the i-th row vector of X. In

some situations, additional information for data points S = (s1, . . . , sC) and those for tasks
T ≡ (t1, . . . , tR) are also given. Figure 1 is a summary of the problem setting, which is
particularly called multi-label learning, a special case of multi-task learning.

2.1. Notations

We define the “vec” operator which creates a vector “vecX” by stacking the column vectors
of X, i.e.,

vec X =

x:1
...
x:C


where x:k is the k-th column vector. We denote I as an index set of the observed elements,
and we have M = |I| observations {xik|(i, k) ∈ I}. We also denote xI as an M -dimensional
vector which contains the observed elements of X in a certain order without overlapping.
For later convenience, we introduce an observation matrix P ∈ {0, 1}M×RC which removes
the unobserved elements, i.e., xI = P(vec X).

2.2. Modeling, Learning, and Predicting

The multi-task GP models X as

xik = mik + µ+ εik, εik ∼ N(0, σ2) (1)
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where µ is a common bias and εik is an i.i.d. spherical Gaussian noise. mik follows a tensor
GP (Yu et al., 2007), which is defined as

m ∼ GP(0,Σ⊗Ω) (2)

where ⊗ denotes the Kronecker product and both Σ ∈ RC×C and Ω ∈ RR×R are symmetric
and PSD. Each Σ and Ω represents a covariance over columns and rows (i.e., data points
and tasks), respectively. From the definition, the covariance between xik and xjl is written
as

cov[xik, xjl] = ΩijΣkl + δijδklσ
2 (3)

where δij is the Kronecker’s delta, i.e., δij = 1 if i = j otherwise δij = 0. Equation (3) shows
that the multi-task GP assumes the similarity (i.e., covariance) between the two responses
xik and xjl can be factorized into product of the task similarity Ωij and the data point
similarity Σkl. The joint distribution of X is given by the Gaussian distribution∫

p(X |M , µ, σ2)p(M | Σ,Ω)dM = N(vec X | µ,g) (4)

where µ = (µ, . . . , µ) ∈ RRC and g = Σ⊗Ω+σ2I. Note that the multi-task GP is a special
case of GP in which the covariance matrix has the structure of the Kronecker product.

By following the GP’s framework, we need to determine the covariance matrices Σ and
Ω in a nonparametric way. On one hand, Bonilla et al. (2008) construct the covariance Σ
via a covariance function g(·, ·) with the input-specific features S as

Σkl = g(sk, sl). (5)

On the other hand, the task covariance Ω is estimated as the empirical Bayesian method.
We consider obtaining a maximum-likelihood solution Ω̂ by maximizing the log-likelihood
function of the observed elements, which is given by marginalizing out the unobserved
elements from the joint distribution ( 4), i.e.,

ln

∫
N(vec X | µ,g)

∏
(i,k)/∈I

dxik

= −1

2
(xI − µI)>g−1I (xI − µI)−

1

2
ln det |gI |+ const. (6)

where µI = Pµ and gI = PgP> ∈ RM×M is a covariance matrix over the observed
elements. The common bias µ is also estimated as a maximum-likelihood solution µ̂ =
1
M

∑
(i,k)∈I xik.

Given the partially observed response matrix and the input-specific featuresD = {X,S},
the multi-task GP predicts an unobserved response xab by a corresponding mean of the
predictive distribution

E[xab | D, Ω̂] = (ga ⊗ ω̂b)
>
I g−1I (xI − µ̂I) + µ̂ (7)

where ga = (k(sa, s1), . . . , k(sa, sC))> and ω̂b denotes the b-th row vector of Ω̂. Since
Equation (7) contains the inverse g−1I , the naive computational complexity of the predictive
means is O(M3).
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3. Multi-task Gaussian Process with Self-measuring Similarity

Now we extend the multi-task GP model. First we introduce a way to construct the covari-
ance matrices from the response matrix itself. Then we derive an efficient learning algorithm
using the conjugate gradient method.

3.1. Self-measuring Similarities

We construct the covariance matrices by using the responses themselves:

Ωij = k(xi:,xj:) and Σkl = g(x:k,x:l), (8)

where k and g are arbitrary PSD kernel functions. As previously mentioned that xi: de-
notes the i-th row vector and x:k denotes k-th column vector of X. We call this idea
Self-measuring Similarity. The self-measuring similarity allows us to compute the covari-
ance matrices without any additional information. The computation of the self-measuring
similarity is simply done with evaluate the values of the covariance functions; it is much
faster than the empirical Bayesian approach.

Ta
sk

s

Data points

Figure 2: The idea of self-measuring similarities.

We introduce latent variables {zik} for the missing elements {xik|(i, k) /∈ I} to compute
the kernel function in which the input contains missing values. After learning the latent
variables, we use the completed matrix X̃ as kernel inputs, where x̃ik = xik if (i, k) ∈ I
otherwise x̃ik = zik. We use the means of the predictive distribution as estimators of the
latent variables, i.e., ẑik = E[xik|D] in a heuristic way.1 Note that, however, the EM-like
heuristic can be seen as an approximate marginalization (see Appendix A for more details).

Since the values of {ẑik} affect the predictive mean (7) through the kernel functions,
the heuristic can be performed iteratively. Note that if the number of the missing elements
(i.e. the latent variables) is larger than that of the observed elements, many iterations
may cause over-fitting. We avoid this problem by early stopping of the iterations with a

1. One of the proper estimation methods for the latent variables is the empirical Bayesian. However, the
optimization of the log-likelihood (4) with respect to {zik} is computationally infeasible especially for
large-scale data.
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randomly picked validation set. For an initial value of ẑik, we use a row-wise mean x̄i· or a
column-wise mean x̄·k:

x̄i· =
1

Mi·

∑
k,(i,k)∈I

xik, x̄·k =
1

M·k

∑
i,(i,k)∈I

xik,

where Mi· and M·k are the number of observed elements of xi: and x:k, respectively.
If we have additional information such as input-specific features {sk|k = 1, . . . , C} for

each data point, we exploit them by combining them with the self-measuring covariance
function. For example, we extend the covariance function into a sum form

Σkl = g(x:k,x:l) + g′(sk, sl) (9)

or a product form

Σkl = g(x:k,x:l)g
′(sk, sl). (10)

Note that if both g and g′ are PSD, then the resulting kernel functions are still PSD (Ras-
mussen and Williams, 2006).

3.2. Computation for Prediction

As mentioned, we need to compute the inverse of gI in Equation (7) for the predictive
means, and it requires O(M3) computational cost. Instead, we solve the linear equation

xI − µ̂I = gIβ (11)

with respect to β. Note that gI is positive definite when σ2 > 0. After obtaining the
solution β̂, we simply compute the predictive mean of xab as an inner product

E[xab | D, Ẑ] = (ga ⊗ gb)
>
I β̂ + µ̂. (12)

We solve Equation (11) using the conjugate gradient method (Shewchuk, 1994), which
is an iterative method to solve a linear system in which the matrix is positive definite.
Each iteration of the conjugate gradient needs to perform a matrix-vector multiplication; in
our case that corresponds to the multiplication of gI and an M -dimensional vector, which
requires O(M2) computation and O(M) memory space.

The computational cost of the multiplication can still be reduced by exploiting a spe-
cial structure in the matrix. Because of the structure of the Kronecker product in gI , a
multiplication of gI and an M -dimensional vector v is rewritten as

gIv = P(Σ⊗Ω + σ2I)P>v

= vec P(ΩV Σ + σ2V ) (13)

where V ∈ RR×C is a matrix form of P>v, i.e., vec V = P>v. This technique, called
vec-trick (Vishwanathan et al., 2007; Kashima et al., 2009), reduces the computational
complexity from O(M2) to O(RC(R+ C)).

150



Self-measuring Similarity for Multi-task GP

Suppose we stop the iteration of the conjugate gradient when the `2 error of β̂l (i.e.,
between the solution at the l-th iteration and a true solution β∗) is less than the error of
the initial values β̂0 with a tolerance ε, i.e., ||β∗− β̂l||2 ≤ ε||β∗− β̂0||2. Then the maximum
number of iterations is bounded

l ≤ 1

2

√
κ log

(
2

ε

)
(14)

where κ is the condition number of gI , which is defined as the ratio of the maximum and the
minimum eigenvalue of gI . The total cost for obtaining the solution β̂ is O(

√
κRC(R+C)).

With an observation rate α, the number of observations has a relation M = αRC.
If X is nearly square, i.e., R ' C, then the computational complexity can be rewritten
as O((

√
κ/α

3
2 )M

3
2 ), which is much faster than the naive complexity O(M3). Finally we

summarize the entire algorithm as a pseudo code in Algorithm 1.

Algorithm 1: Computation of predictive means with conjugate gradient.

1. Initialize Ẑ0 with row-means or column-means of X

2. For l = 1 to maximum number of iterations

(a) Construct Σ and Ω with Ẑ l−1 and additional features

(b) Solve xI = gIβ by the conjugate gradient with a tolerance ε

(c) Compute predictive means {E[xab | D, Ẑ l−1] | (a, b) /∈ I} of unobserved elements

(d) Construct Ẑ l from the predictive means

3. Return Ẑ l

4. Experimental Results

We evaluate the proposed method by applying it to a collaborative filtering problem. We
use the Movielens 100k data set2, which contains 100, 000 ratings xik ∈ {1, 2, 3, 4, 5} for
1, 682 movies (data points) labeled by 943 users (tasks). The observation ratio α is ' 0.06.
The data set contains user-specific features § (e.g., age, gender, ...) and movie-specific
features T (release date, genre, ...). The data set provides 90, 570 ratings for training and
remaining 9, 430 ratings for testing. After learning with the training data set, we evaluate
the root-mean-squared-error (RMSE) for the testing data set. All experiments are done
with a Xeon 2.93 GHz 8 core machine.

In the experiment, we prepare three forms of covariance functions: a covariance mea-
sured by the user-specific and the movie-specific features (“Feature”), a self-measuring co-
variance (“Self-measuring”), and a combination of them with the product form (10) (“Prod-
uct”). Note that our model with “Feature” setting is equivalent to the kernel method pro-
posed by Bonilla et al. (2007). We summarize the covariance functions in Table 1. We use
the RBF kernel k(x,x′) = g(x,x′) = exp(−λ ||x− x′||2) for the covariance functions. We

2. http://www.grouplens.org/node/73
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Table 1: Settings of the covariance functions.

Feature Self-measuring Product

Ωij k(si, sj) k(xi:,xi:) k(xi:,xi:)k(si, sj)
Σkl g(tk, tl) g(x:k,x:l) g(x:k,x:l)g(tk, tl)

Table 2: RMSEs on the Movielens 100k dataset. Lower RMSE indicates higher prediction
performance. (Left) The RMSE behaviour of the EM-like heuristic. l indicates
the number of iterations. (Right) Existing methods v.s. proposed method with
early stopping.

l Feature Self-measuring Product
1 1.0517 0.9431 0.9393
2 – 0.9276 0.9231
3 – 0.9329 0.9292
4 – 0.9439 0.9410

Method RMSE time
User-KNN 0.9507 7s
Movie-KNN 0.9354 42s
Matrix Factorization 0.9345 1m38s
Feature 1.0517 7m01s
Self-measuring 0.9308 16m22s
Product 0.9256 18m25s

choose the hyper-parameters as (σ2, λ) = (0.5, 0.001) for “Feature” and (σ2, λ) = (0.1, 0.1)
for {“Self-measuring”, “Product”}, selected by three-fold cross validation from candidates
σ2 ∈ {1, 0.5, 0.1, 0.05} and λ ∈ {10−1, 10−2, 10−3, 10−4, 10−5}. We set the tolerance of the
conjugate gradient ε as 10−3. As the initial values of {zik} we use the row-mean for Σ and
the column mean for Ω.

For fair comparison, the number of the EM-like iteration is determined by early stop-
ping with a validation set randomly drawn 5% of the training set. We compare with stan-
dard methods for recommendation system which includes user- and movie-based K-nearest
neighbour (KNN) with the Pearson correlation and matrix factorization (see Su and Khosh-
goftaar (2009) for more details.) We use MyMediaLite3 as these implementations and set
the hyper-parameters by following the examples specially recommended for the Movielens
100k dataset.

We summarize the prediction errors in Table 2. The result shows that “Feature” is
the worst performance; it suggests that the additional information-based similarity is not
enough to capture the observed data structure, and the self-measuring similarity is much
more important for the prediction. Nevertheless, the combination with the additional in-
formation (“Product”) further improves the prediction performance compared to using the
self-measuring alone (“Self-measuring”). The left panel of Table 2 shows the EM-like heuris-
tic drastically improves the prediction accuracy at the second iteration, while the third or
further iterations produce worse results. The best score (“Product”) in the right panel of
Table 2 is also the best over other 76 methods listed in mlcomp.org4 as of May, 2011.

3. http://www.ismll.uni-hildesheim.de/mymedialite
4. http://mlcomp.org/datasets/341
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5. Conclusion

In this paper, we have presented a new framework to solve multi-task problems by using a
Gaussian process based on self-measuring similarities. We proposed the efficient algorithm
based on the conjugate gradient method with the vec-trick. Our method achieved the best
score of the Movielens 100k data set.
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Appendix A. Interpretation of EM-like Heuristic

The EM-like heuristic can be interpreted as an approximation of the marginalization of the
predictive distribution with respect to Z. First, given estimated latent variables Ẑ l−1, we
consider to use the predictive distribution p(X|D, Ẑ l−1) as a posterior of Z, i.e., p(Z|D) ≈
p(X|D, Ẑ l−1). If we further approximate the posterior distribution as a delta function
∆(Z − E[X|D, Ẑ l−1]), then we have∫

E[X | D,Z]p(Z | D)dZ ≈
∫

E[X | D,Z]∆(Z − E[X|D, Ẑ l−1])dZ = Ẑ l

Note that (Ẑ l)ab is also a predictive mean for an observation xab.
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