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Abstract

In this paper, we introduce a stochastic unsupervised learning method that was used in the
2011 Unsupervised and Transfer Learning (UTL) challenge. This method is developed to
preprocess the data that will be used in the subsequent classification problems. Specifically,
it performs K-means clustering on principal components instead of raw data to remove the
impact of noisy/irrelevant/less-relevant features and improve the robustness of the results.
To alleviate the overfitting problem, we also utilize a stochastic process to combine multiple
clustering assignments on each data point. Finally, promising results were observed on all
the test data sets. Indeed, this proposed method won us the second place in the overall
performance of the challenge.

Keywords: Stochastic Unsupervised Learning, Clustering, K-means, Principal Compo-
nent Analysis (PCA)

1. Introduction

Data preprocessing is usually critical for the success of building classification models. There
are many unsupervised learning techniques which can be exploited for data preprocessing
in a complementary way. First, clustering techniques target on dividing data objects into
different groups such that the objects in the same cluster are more similar to one another
than to those from different clusters. Clustering techniques are widely used for summarizing
data objects and capturing key data characteristics (Jain and Dubes, 1988). Among various
clustering algorithms, K-means clustering has been identified as one of the top 10 algorithms
in data mining by the IEEE International Conference on Data Mining (ICDM) in December
2006 (Wu et al., 2008).

Also, principal Component Analysis (PCA) (Jolliffe, 2002) is an effective technique for
dimension reduction and feature preprocessing. It transforms the data into a new coordinate
system such that the greatest variance is achieved by projecting the data into the first
coordinate (called the first principal component), the second greatest variance achieved
into the second coordinate, and so on. Many researchers combined the K-means and PCA
together to achieve more stable results (Ben-Hur and Guyon, 2003). It has been shown that
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the principal components are the continuous solutions to the discrete cluster membership
indicators for K-means clustering (Ding and He, 2004).

The 2011 Unsupervised and Transfer Learning Challenge (Guyon et al., 2011) provided a
platform for participants to learn good data representations through data preprocessing that
can be re-used across tasks by building models that capture regularities of the input space.
The representations are evaluated by the organizers on supervised learning target tasks
which are unknown to the participants. In the first phase of the challenge, the competitors
are given only unlabeled data to learn their data representation. In the second phase of the
challenge, the competitors have available, in addition to unlabeled data, a limited amount
of labeled data from source tasks distinct from the target tasks.

In this paper, we present the method that we used in the unsupervised learning challenge
(first phase). By exploiting the advantages of both PCA and cluster ensemble techniques, we
propose a stochastic unsupervised learning method for data processing. This unsupervised
learning method is developed to preprocess the data that will be used in the subsequent
binary classification problems. There are two challenging issues for the proposed task. First,
there is no labeled data in support of this data preprocessing. Without ground truth, it is
difficult to identify noisy or irrelevant features. Second, unsupervised learning methods like
K-means start by randomly choosing initial cluster seeds. The results obtained in this way
are not only dependent on the chosen seeds, but can also be locally optimal. For the first
issue, we use K-means to cluster data represented only with the first P principal components
by PCA. In this way, it is expected to remove the negative impact of noisy/irrelevant/less-
relevant features. For the second issue, we apply a stochastic strategy to combine clustering
results of multiple runs of K-means with random initialization. An ensemble of cluster
labels is produced for each data point, which is expected to help alleviate the problem of
robustness, clustering quality, and overfitting. This stochastic clustering process has been
explored in the semi-supervised learning problems (Xie and Xiong, 2011).

The effectiveness of the data representation obtained by unsupervised learning is evalu-
ated by the organizers on supervised learning tasks (i.e. using labeled data not available to
the participants) using Hebbian classifier. Specifically, with the training data matrix X (one
row per instance), the classifier computes the wieght w as XTy, where y = (y1, y2, · · · , yn)T ,
yi = 1/np if the ith training instance is positive, yi = −1/nn otherwise, where np, nn are
the number of positive and negative training examples respectively. The test instance x
(column vector) will be classified according to the linear discriminant wTx. It is noted that
the size of training data X is very small (no more than 64 per classification problem) in this
challenge. The model performance is reported with the metric of Area under the Learning
Curve (ALC) which is referred to as the global score. The participants are ranked by ALC
for each individual data set. The winner is determined by the best average rank over all
data sets for the results of their last complete experiment. We will see the proposed method
is effective especially in such a small training set scenario.

Such a linear discriminant classifier assumes the instances lying in the feature space are
linearly separable. However, it is not necessarily true in many real-world data sets. For
example, Figure 1 illustrates a situation of a mixture model, where the positive instances
indicated by the plus marks are surrounded by 3 groups of negative instances indicated by
the circles. Noises are indicated by green dots. With clustering algorithms, we can cluster
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Figure 1: An example of a mixture model.

the data set into 4 groups, whose representation becomes linearly separable by the Hebbian
classifier. The above can be reflected in the experimental results.

Overview. The remainder of this paper is organized as follows. In Section 2, we
describe the stochastic unsupervised learning method based on K-means and PCA. Section
3 shows the results. In Section 4, we discuss the limitations of the proposed approaches and
describe the potential directions for future work.

2. The Stochastic Clustering Algorithm

2.1. The Algorithm

Algorithm 1 details the common strategy we used for all 5 data sets in the challenge. The
output is the final data representation, which is a binary representation of derived cluster
labels. If K is 3 for a given data set, the binary representations of label 1, 2 and 3 are (1
0 0), (0 1 0) and (0 0 1), respectively. Therefore, our final data representation will be a
bagged N ×KT matrix, where N is the number of examples, K is the number of clusters
and T is the number of stochastic iterations. Each data element in the matrix is either 1
or 0. Such a binary representation is chosen to eliminate the numeric meaning of clustering
labels which is misleading for the Hebbian classifier.

It is noted that the data set X is not the raw data set. It is the first P principal com-
ponents of the raw data set. In the challenge, we used different P and necessary variants
of naive PCA for each data set based on online feedback from the validation set. For ex-
ample, instead of analyzing the principal components of covariance matrix for all features,
we also tried to decomposing the correlation matrix, which implies dividing by standard
deviation prior to computing the covariances. The transformation of the raw data to re-
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Algorithm 1: The Stochastic Clustering Algorithm

Input Data set X, the number of clusters K, the number of stochastic iterations T

Output Data set Y

1. For t = 1, 2, · · · , T

(a) Randomly choose K seeds from X for K-means to generate clusters. Denote the
clustering assignments by I.

(b) Transform I to binary format, i.e. for each assignment

i 7→ ei = (ei1, ei2, · · · , eiK)

where eij =

{
1 i = j

0 i 6= j
. Denote the binary matrix by

Bt =


eI1
eI2

...
eIN


where In is the assignment of the nth instance.

2. Combine Bt, t = 1, 2, · · · , T together as Y = (B1|B2| · · · |BT).

trieved principal components also can be followed by additional processing strategies, such
as standardization (to subtract mean and divide deviation for each feature) and weighting
(to weight each component by its corresponding eigenvalue).

For the clustering algorithm K-means, the number of clusters was also determined
based on online feedback during this challenge. For nearly every data set, we found the
real number of classes to be predicted. The only exception is SYLVESTER, where the real
numbers of classes in the validation set and the final set are 2 and 3 respectively, and we
used 3 as the number of clusters. In addition to K, we also used different distance/similarity
metrics for different data sets. Basically, for low dimensional X, Euclidean distance is used.
Otherwise in the high dimensional case, cosine similarity is preferred. Cosine performs an
implicit instance-level standardization, i.e., the instance vector is normalized to be of unit
length. We found feature-level standardization could also improve the clustering results,
such as HARRY. For TERRY, which is in text recognition domain, the well-known TF-IDF
transformation is used prior to computing cosine similarities.

Another parameter in Algorithm 1 is the number of stochastic iterations. The motivation
of the stochastic process is to settle the overfitting phenomenon. Although the binary
matrix generated from only one clustering solution can be directly fed to the classifier, the
final classification result will vary a lot with the clustering solution. By combining several
different clustering solutions, we found the final classification result could be improved better
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than that based on any single clustering solution. Ideally, the final result will converge along
with the increasing number of stochastic iterations. When the result becomes stable on the
validation set, we believe the overfitting problem on the final set has also been circumvented.
We analyzed the results of 20, 40, 60, 80 and 100 iterations. For most of the data sets, stable
results are observed on the validation set after 60 iterations. Thus, in our submission to
the challenge, we set the number of stochastic iterations as 100. Details of these variations
on each data set will be described in Section 3.

2.2. Cluster Assumption

In fact, the proposed algorithm maps the data from the original data space to the space
discovered by the underlying clustering algorithm, in the hope that the class does not change
in regions of high density within clusters. Such a cluster assumption can be explained using
cluster kernels. Specifically, with the achieved clustering solution

l : z 7→ l(z) ∈ {1, 2, · · · ,K}
where l(z) is the clustering assignment for any clustered instance z, the mapping function
is

φ(z) = ([l(z) = 1], [l(z) = 2], · · · , [l(z) = K])T ,

and the inner product kernel

φ(x)Tφ(z) = [l(x) = l(z)]

will be used by Hebbian classifier. By combining multiple clustering solutions together, the
inner product of x and z in the mapped space is

∑T
t=1[lt(x) = lt(z)], where lt is the tth

clustering solution. Such a combination is also used in the study of consensus clustering
(Hu and Sung, 2005).

2.3. An Illustrative Example

To illustrate the effectiveness and rationale of the proposed algorithm, especially of the
clustering component, we analyzed the results of 100 runs of K-means for the toy data
set ULE whose true labels are available. For each clustering solution, in addition to mean
squared error (MSE) as the clustering criterion function, we also computed ALC and purity
(the fraction of correctly classified data when all data in each cluster is classified as the
majority class in that cluster). As shown by the representative solutions in Table 1, one
can see that better classification results really come along with better clustering solutions.
The best ALC value of 0.83764 is achieved with the lowest MSE value of 0.9102239 and
the highest purity value of 0.93872. More interestingly, by combining all 100 clustering
solutions, we can achieve an ALC value of 0.86642, which is significantly better than that
of the best single solution. Such an ensemble effect is the key motivation of the proposed
algorithm.

3. Results

In this section, we provide an empirical study of the proposed stochastic unsupervised
learning method. In most of the data sets studied, the proposed method achieves better
performances than that of the raw data and PCA.

115



Liu Xie Ge Xiong

Table 1: A Comparison of MSE, purity and ALC.

MSE Purity ALC
0.9102239 0.93872 0.83764
0.9782505 0.65332 0.51611
0.9959307 0.64429 0.51231
1.0049960 0.63550 0.48539
1.0049971 0.63550 0.48545
1.0050026 0.63501 0.48563
1.0050027 0.63452 0.48586
1.0050034 0.63599 0.48262

Table 2: The Results on AVICENNA.

Validation Final Algorithm details
Raw Data 0.1034 0.1501 Original data
PCA 0.1386 0.1906 First 50 standardized PCs from Covariance Matrix and First

50 standardized PCs from Correlation Matrix
K-Means 0.1668 0.1511 Stochastic K-means on first 100 standardized PCs. Cluster

number = 5.

3.1. AVICENNA: Arabic manuscripts

The results on the AVICENNA data set are shown in Table 2. It seems difficult to get
good results on either the validation set or the final set, for the best global score on the
leader board turns out less than 0.2 for the validation set. This is the only data set in
our experiments where the PCA itself has better global scores on the final data set than
K-means. We believe this is due to the label overlaps in this data set; that is, one example
can belong to multiple classes.

The learning curves of the three scenarios (raw data, PCA and K-Means) are shown
in Figure 2. The PCs are standardized for this data set such that each feature has zero
mean and unit variance. We did notice that the K-means underperforms PCA during the
first phase of the challenge through the on-line feedback on the validation set. Therefore,
we chose the PCA results as our final experiment. However, we did some improvements on
K-means during the second phase. We found that if we first did a record level normaliza-
tion on each variables (this is equivalent to a Term-Frequency transformation in document
classification), then did PCA on the normalized variables and stochastic K-means on the
first 100 PCs, we could lift the global score on the validation set from 0.1386 to 0.1668.
Unfortunately, this improvement on the validation set did not hold on the final set. Our
K-means results on the final set actually dropped to 0.1511 from 0.1906.

3.2. HARRY: Human action recognition

Table 3 lists our experimental results on both PCA and K-means on the HARRY data set.
In the table, we can observe that PCA works very well on the validation set. The first 5
weighted PCs (weighted by the corresponding eigenvalue of each principal component) can
achieve a 0.8056 global score in the validation set. For this data, which is high dimensional
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(a) Validation (b) Final

Figure 2: The learning curve on AVICENNA

Table 3: The Results on HARRY.

Validation Final Algorithm details
Raw Data 0.6264 0.6017 Original data
PCA 0.8056 0.6243 First 5 weighted PCs from correlation matrix
K-Means 0.9085 0.7357 Stochastic K-means on standardized data. Cluster number

= 3.
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(a) Validation (b) Final

Figure 3: The Learning curves on HARRY

and very sparse, the stochastic K-means on standardized data works better than that on
PCs. We used the Cosine similarity as the distance measure in K-means clustering. The
number of clusters is set to 3. In Table 3, we can see that, while PCA works pretty well,
the stochastic K-means without PCA works much better. Such a phenomenon was also
observed in TERRY, which is also high dimensional and very sparse.

The learning curves on both the validation and the final sets are illustrated in Figure 3.
We can see that the improvements on the validation set do hold well on the final set.

3.3. RITA: Object recognition

Table 4: The results on RITA.

Validation Final Algorithm details
Raw Data 0.2504 0.4133 Original data
PCA 0.2834 0.4622 First 50 PCs from covariance matrix
K-Means 0.3737 0.4782 Stochastic K-means on standardized 50 PCs. Cluster num-

ber = 3.

RITA is another difficult data set in addition to AVICENNA. Our experimental results
on both PCA and K-means on the RITA data set are shown in Table 4. The first 50
principal components achieve ALC = 0.2834, 0.4622 on the validation set and the final
set, respectively. The stochastic K-means gives the best results. We find that Euclidian
distance is better than the Cosine similarity in this case. The number of clusters is set to
3. The learning curves on both validation and final sets are illustrated in Figure 4. We
can see that the improvements on the global score from PCA and K-means over the raw
data mainly come from the beginning of the learning curve, which may correspond to small
number of training samples.
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(a) Validation (b) Final

Figure 4: The learning curve on RITA

Table 5: The results on SYLVESTER.

Validation Final Algorithm details
Raw Data 0.2167 0.3095 Original data
PCA 0.5873 0.4436 First 7 standardized PCs from correlation matrix
K-Means 0.7146 0.5828 Stochastic K-means on standardized 15 PCs. Cluster num-

ber = 3.

3.4. SYLVESTER: Ecology

Table 5 lists our experimental results on both PCA and K-means on the SYLVESTER data
set. SYLVESTER has only 100 features and is not sparse. In the table, we can see that
the first 7 principal components can do much better than the original data. The stochastic
K-means using K = 3 further improves the PCA results from 0.4436 to 0.5828 on the final
set. Indeed, our result on the final set was ranked No. 1 in the first phase of the challenge.

Also, Figure 5 shows the learning curves on both the validation set and the final set. In
the figure, a similar trend of performances can be observed as in Table 5.

3.5. TERRY: Text recognition

Table 6: The results on TERRY.

Validation Final Algorithm details
Raw Data 0.6969 0.7550 Original data
PCA 0.7949 0.8317 First 5 PCs from covariance matrix
K-Means 0.8176 0.8437 Stochastic K-means on TF-IDF data. Cluster number = 5.

Table 6 lists our experimental results on both PCA and K-means on the TERRY data
set. This is another high dimensional and very sparse data set similar to HARRY. We find
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(a) Validation (b) Final

Figure 5: The learning curve on SYLVESTER.

Table 7: A Comparison of our results with the overall winner’s results. The winner is
determined by the average rank on all 5 final data sets. Our results are ranked
No. 2.

Data Winner-Valid Winner-Final Winner-Rank Our-Valid Our-Final Our-Rank
AVICENNA 0.1744 0.2183 1 0.1386 0.1906 6
HARRY 0.8640 0.7043 6 0.9085 0.7357 3
RITA 0.3095 0.4951 1 0.3737 0.4782 5
SYLVESTER 0.6409 0.4569 6 0.7146 0.5828 1
TERRY 0.8195 0.8465 1 0.8176 0.8437 2

the PCA can generate much better results than the original data like those of HARRY. The
first 5 principal components can achieve a global score of 0.8317 on the final set.

However, standardization does not help the clustering anymore. The TERRY data set
is from the text recognition domain, where the TF-IDF weight (term frequency-inverse
document frequency) is often used for information retrieval and text mining. This weight is
a statistical measure used to evaluate how important a word is to a document in a collection
or corpus. Thus, instead of standardization, we first did TF-IDF transformation on the raw
data, then did stochastic K-means using K = 5 based on the Cosine similarity.

The learning curves on the validation and final sets are illustrated in Figure 6. We can
see that the improvements on the validation set hold well on the final set. The greatest lift
on the learning curve over raw data happens in the middle range of the x-axis. Our results
on the final set is ranked No. 2 in the challenge.

4. Discussion

In this section, we first show a comparison of the proposed method with the overall winner.
Then, we conclude this study by discussing its limitations and potential extensions.
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(a) Validation (b) Final

Figure 6: The learning curve on TERRY.

First, by combining PCA and K-means, the proposed stochastic unsupervised learning
method achieves the stable results on most of the data sets. Table 7 lists our global scores
on all 5 data sets against those of the overall winner. We are ranked 1st on SYLVESTER,
2nd on TERRY and 3rd on HARRY. Although the results on AVICENNA and RITA are
not impressive in rank compared to others, they are within about 0.02 in ALC from the
winner’s results. Our overall performance in rank was placed 2nd in the challenge.

Indeed, the performance of the proposed method significantly depends on its compo-
nent: K-means clustering. Although we employed a stochastic strategy of cluster ensemble,
the inherent characteristics of K-means still have impact on the final results. For instance,
since K-means tends to favor globular clusters with similar sizes (Xiong et al., 2006, 2009),
it cannot handle some of the data sets in the challenge that have different shapes or sizes
of clusters. Also, K-means is very sensitive to data density. In the case that data have
various densities, some density based clustering algorithms, such as DBSCAN (Ester et al.,
1996), could be used in the proposed method. Moreover, some fuzzy clustering methods
could be used to handle the data with overlapping labels (Nock and Nielsen, 2006), such
as AVICENNA. Finally, when the labels of the data sets are available, we can explore the
relationship between the quality of the clustering results and the accuracy of the final clas-
sification results. Such information may help to make informed decision in both generation
and combination phases of cluster ensemble.
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