JMLR: Workshop and Conference Proceedings 27:167-181, 2012 Workshop on Unsupervised and Transfer Learning

Inductive Transfer for Bayesian Network Structure Learning

Alexandru Niculescu-Mizil ALEX@NEC-LABS.COM
NEC Laboratories America, 4 Independence Way, Princeton, NJ 08540

Rich Caruana RCARUANA@MICROSOFT.COM
Microsoft Research, One Microsoft Way, Redmond, WA 98052-6399

Editor: I. Guyon, G. Dror, V. Lemaire, G. Taylor, and D. Silver

Abstract

We study the multi-task Bayesian Network structure learning problem: given data for
multiple related problems, learn a Bayesian Network structure for each of them, sharing
information among the problems to boost performance. We learn the structures for all the
problems simultaneously using a score and search approach that encourages the learned
Bayes Net structures to be similar. Encouraging similarity promotes information sharing
and prioritizes learning structural features that explain the data from all problems over
features that only seem relevant to a single one. This leads to a significant increase in the
accuracy of the learned structures, especially when training data is scarce.!

1. Introduction

Bayes Nets (Pearl, 1988) provide a compact description of the dependency structure of
a domain by using a directed acyclic graph to encode probabilistic dependencies between
variables. The ability to learn this structure from data makes Bayes Nets an appealing
data analysis tool, as the learned structure can convey, in an intuitive manner, a wealth of
information about the domain at hand.

Until now, Bayes Net structure learning research has focused on learning a single struc-
ture for a single problem (task) in isolation (e.g. learn the structure for only one species of
yeast from the gene expression data from that one species alone) (e.g. Cooper and Hersovits,
1992; Heckerman, 1999; Spirtes et al., 2000; Teyssier and Koller, 2005). In many situations,
however, we are faced with multiple problems (tasks) that are related in some way (e.g.
learn about the gene regulatory structure of several species of yeast, not just one). In these
cases, rather than learning the Bayes Net structure for each problem in isolation, and ignor-
ing the relationships with the other tasks, it would be beneficial to learn all the structure for
all the problems jointly. Indeed, the transfer learning literature (e.g. Caruana, 1997; Bax-
ter, 1997; Thrun, 1996) suggests that significant benefits can be obtained by transferring
relevant information among the related problems.

In this paper we present a transfer learning approach that jointly learns multiple Bayesian
Network structures from multiple related datasets. We follow a score and search approach,
where the search is performed over sets of DAGSs rather than over single DAGs as in case
of traditional structure learning. We derive a principled measure of the quality of a set of

1. A version of this paper appeared in (Niculescu-Mizil and Caruana, 2007). The work was done while both
authors were at Cornell University.

© 2012 A. Niculescu-Mizil & R. Caruana.

NICULESCU-MI1ZIL CARUANA

structures that rewards both a good fit of the training data as well as high similarity between
the structures in the set. This score is then used to guide a greedy hill climbing procedure
in a properly defined search space to find a high quality set of Bayes Net structures.

We evaluate the proposed technique on problems generated from the benchmark ALARM
(Beinlich et al., 1989) and INSURANCE (Binder et al., 1997) networks, as well as on a real
bird ecology problem. The results of the empirical evaluation show that learning the Bayes
Net structures jointly in a multi-task manner does indeed yield a boost in performance and
leads to learning significantly more accurate structures than when learning each structure
independently. As with other transfer learning techniques, the benefit is especially large
when the training data is scarce.

2. Background: Learning the Bayes Net Structure for a Single Problem

A Bayesian Network B = {G, 6} compactly encodes the joint probability distribution of
a set of n random variables X = {X1, Xo,..., X;,}. It is specified by a directed acyclic
graph (DAG) G and a set of conditional probability functions parametrized by 6 (Pearl,
1988). The Bayes Net structure, G, encodes the probabilistic dependencies in the data:
the presence of an edge between two variables means that there exists a direct dependency
between them. An appealing feature of Bayes Nets is that the dependency graph G is easy
to interpret and can be used to aid understanding the problem domain.

Given a dataset D = {x!,...,2™} where each 2' is a complete assignment of variables
X1, ..., Xp, it is possible to learn both the structure G and the parameters 6 (Cooper and
Hersovits, 1992; Heckerman, 1999; Spirtes et al., 2000). In this paper we will focus on
structure learning, and more specifically on the score and search approach to it.

Following the Bayesian paradigm, the posterior probability of the structure given the
data is estimated via Bayes rule:

P(G|D) o P(G)P(D|G) (1)

The prior, P(G), indicates the belief, before seeing any data, that the structure G is
correct. If there is no reason to prefer one structure over another, one should assign the
same probability to all structures. If there exists a known ordering on the nodes in G such
that all the parents of a node precede it in the ordering, a prior can be assessed by specifying
the probability that each of the n(n — 1)/2 possible arcs is present in the correct structure
(Buntine, 1991). Alternately, when there is access to a structure believed to be close to
the correct one (e.g. from an expert), P(G) can be specified by penalizing each difference
between G and the given structure by a constant factor (Heckerman et al., 1995).

The marginal likelihood, P(D|G), is computed by integrating over all parameter values:

P(D|G) = / P(D|G,0)P(0|G)do (2)

When the local conditional probability distributions are from the exponential family,
the parameters ; are mutually independent, we have conjugate priors for these parameters,
and the data is complete, P(D|G) can be computed in closed form (Heckerman, 1999).

Treating the posterior, P(G|D), as a score, one can search for a high scoring network
using heuristic search (Heckerman, 1999). Greedy search, for example, starts from an
initial structure, evaluates the score of all the neighbors of that structure and moves to the

168

INDUCTIVE TRANSFER FOR BAYESIAN NETWORK STRUCTURE LEARNING

neighbor with the highest score. A common definition of the neighbor of a structure G is a
DAG obtained by removing or reversing an existing arc in G, or by adding an arc that is
not present in G. The search terminates when the current structure is better than all it’s
neighbors. Because it is possible to get stuck in a local minima, this procedure is usually
repeated a number of times starting from different initial structures.

3. Learning Bayes Net Structures for Multiple Related Problems

In the previous section we reviewed how to learn the Bayes Net structure for a single
problem. What if we have data for a number of related problems (e.g., gene expression data
for several species) and we want to jointly learn Bayes Net structures for each of them?
Given k data-sets, D1, ..., Dy, defined on overlapping but not necessarily identical sets of
variables, we want to learn the structures of the Bayes Nets By = {G1, 601}, ..., Bx = {G, 0x}.

In what follows, we will use the term configuration to refer to a set of structures (G1, ..., Gg).
From Bayes rule, the posterior probability of a configuration given the data is:
P(G1,...,Gg|Dr, ..., Dy) o< P(G1, ..., Gg) P(D1, ..., Dg|G1, ..., Gg) (3)

The marginal likelihood P(Dj, ..., Dg|G1,...,Gy) is computed by integrating over all
parameter values for all the k& networks:

P(Dy, ..., Dy|G1, ...,G) = /P(Dl,...,Dk|G1,...,Gk,al, oy 0) - P(01,....04|Gy, ..., Gr)d0:...d0),

k
= /P(017...79k\G1,..., H (D,|G,p, 6,)db,...db), (4)

If we make the parameters of different networks independent a priori (i.e. P(6y,...,0|G1,

. Gk) = P(01|G1)...P(0;|Gy)), the marginal likelihood factorizes into the product of the

marginal likelihoods of each data set given its network structure. In this case the posterior
probability of a configuration is:

k
P(G1,..,Gy|D1,..,Dy) x P(Gy, ..,G H (D,|G,) (5)

Making the parameters independent a prioriis unfortunate, and contradicts the intuition
that related problems should have similar parameters, but it is needed in order to make
the learning efficient (see Section 3.3). Note that this is not a restriction on the model.
Unlike Naive Bayes for instance, where the attribute independence assumption restricts the
class of models that can be learned, here the learned parameters will be similar if the data
supports it. The only downside of making the parameters independent a priori is that it
prevents multi-task structure learning from taking advantage of the similarities between
the parameters during the structure learning phase. After the structures have been learned,
however, such similarities could be leveraged to learn more accurate parameters. Finding
ways to allow for some a priori parameter dependence while still maintaining computational
efficiency is an interesting direction for future work.

169

NICULESCU-MI1ZIL CARUANA

3.1. The Prior

The prior knowledge of how related the different problems are and how similar their struc-
tures should be is encoded in the prior P(G1, ..., Gy). If there is no reason to believe that
the structures for each task should be related, then GG, ..., Gi should be made independent
a priori (i.e. P(G1,...,Gi) = P(G1) -...- P(Gg)). In this case the structure-learning can be
performed independently on each problem.

At the other extreme, if the structures for all the different tasks should be identical,
the prior P(GY, ..., Gx) should put zero probability on any configuration that contains non-
identical structures. In this case one can efficiently learn the same structure for all tasks
by creating a new data set with attributes Xy, ..., X,,, TSK, where T'SK encodes the prob-
lem each case is coming from.> Then learn the structure for this new data set under the
restriction that T'SK is always the parent of all the other nodes. The common structure
for all the problems is exactly the learned structure, with the node T'SK and all the arcs
connected to it removed. This approach, however, does not easily generalize to the case
where the problems have only partial overlap in their attributes.

Between these two extremes, the prior should encourage configurations with similar
network structures. One way to generate such a prior for two structures is to penalize each
arc (X;, X;) that is present in one structure but not in the other by a constant § € [0, 1]:

P(G1,Ga) = Zs - (P(G)P(G) ™[] (1-9) (6)
(X4, X;5)€
G1AG2
where Zj is a normalization constant and G1AG» represents the symmetric difference be-
tween the edge sets of the two DAGs (in case some variables are only present in one of the
tasks, arcs connected to such variables are not counted).

If 6 = 0 then P(G1,G2) = P(G1)P(G2), so the structures are learned independently. If
d = 1 then P(G1,G2) = /P(G)P(G) = P(G) for G; = Go = G and P(G1,G2) = 0 for
G1 # (o, leading to learning identical structures for all problems. For § between 0 and 1,
the higher the penalty, the higher the probability of more similar structures. The advantage
of this prior is that P(G1) and P(G2) can be any structure priors that are appropriate for
the task at hand.

One way to interpret the above prior is that it penalizes by 0 each edit (i.e. arc addition,
arc removal or arc reversal) that is necessary to make the two structures identical (arc
reversals can count as one or two edits). This leads to a natural extension to more than
two tasks: penalizes each edit that is necessary to obtain a set of identical structures:

P(G17 ey Gk) = Z(;,k . H P(GS) 1+<k‘171)5 X H(l _ 5)6dit$i7j (7)
i,

1<s<k

where edits; ; is the minimum number of edits necessary to make the arc between X; and
X the same in all the structures. We will call this prior the Edit prior. The exponent
1/(1 4 (k —1)0) is used to transition smoothly between the case where structures should
be independent (i.e. P(Gi,...,Gx) = (P(G1)...P(Gy))! for 6 = 0) and the case where

2. This is different from pooling the data, which would mean that not only the structures, but also the
parameters will be identical for all problems.

170

INDUCTIVE TRANSFER FOR BAYESIAN NETWORK STRUCTURE LEARNING

structures should be identical (i.e. P(G,..,G) = (P(G)...P(G))"/* for § = 1). This prior
can be easily generalized by using different penalties for different edges, and/or different
penalties for different edit operations.

Another way to specify a prior in configurations for more than two tasks is to multiply
the penalties incurred between all pairs of structures:

P(Gy,..,Gr) = Zsi- || PG)T x 11 IT a-9 (8)

1<s<k 1<s<t<k \ (X;.X;)e
GsAG

We will call this prior the Paired prior. The exponent 1/(k — 1) is used because each
individual structure is involved in k — 1 terms (one for each other structure).

One advantage that the Paired prior has over the Edit prior is that it can be generalized
by specifying different penalties between different pairs of structures. This can handle
situations where there is reason to believe that Taskl is related to Task2, and Task2 is
related to Task3, but the relationship to between Taskl and Task3 is weaker.

There are, of course, other priors that encourage finding similar networks for each task
in different ways. In particular, if the process that generated the related tasks is know, it
might be possible to design a suitable prior.

2. Greedy Structure Learning

Treating P(Gq, ..., G| D1, ..., Dy) as a score, we can search for a high scoring configuration
using an heuristic search algorithm. If we choose to use greedy search for example, we start
from an initial configuration, compute the scores of the neighboring configurations, then
move to the configuration that has the highest score. The search ends when no neighboring
configuration has a higher score than the current one.

One question remains: what do we mean by the neighborhood of a configuration? An
intuitive definition of a neighbor is the configuration obtained by modifying a single arc in
a single DAG in the configuration, such that the resulting graph is still a DAG. With this
definition, the size of the neighborhood of a configuration is O(k * n?) for k problems and
n variables. Unfortunately, this definition introduces a lot of local minima in the search
space and leads to significant loss in performance. Consider for example the case where
there is a strong belief that the structures should be similar (i.e. the penalty parameter of
the prior, §, is near one resulting in a prior probability near zero when the structures in
the configuration differ). In this case it would be difficult to take any steps in the greedy
search since modifying a single edge for a single DAG would make it different from the other
DAGs, resulting in a very low posterior probability (score).

To correct this problem, we have to allow all structures to change at the same time.
Thus, we will define the neighborhood of a configuration to be the set of all configurations
obtained by changing the same arc in any subset of the structures. Examples of such
changes are removing an existing arc from all the structures, or just removing it from
half of the structures, or removing it from one structure, reverse it in another, and leave
it unchanged in the rest. This way we avoid creating local minimas in the search space
while still ensuring that every possible configuration can be reached. Given this definition,

171

NICULESCU-MI1ZIL CARUANA

the size of a neighborhood is O(n?3"), which is exponential in the number of problems,
but only quadratic in the number of nodes.®> When setting 6 = 1, leading to learning
identical structures, multi-task learning with this definition of neighborhood will find the
same structures as the specialized algorithm described in Section 3.1.

3.3. Searching for the Best Configuration

At each iteration, the greedy procedure described in the previous section must find the best
scoring configuration from a set A of neighboring configurations. In a naive implementation,
the score of every configuration in N has to be computed to find the best one, which can
quickly become computationally infeasible given our definition of neighborhood.

In this section we show how one can use branch-and-bound techniques to find the best
scoring configuration without evaluating all configurations in . Let a partial configuration
of order [, C; = (G4, .., Gi), be a configuration where only the first [structures are specified
and the rest of k — [structures are not specified. We say that a configuration C matches a
partial configuration C; if the first [structures in C are the same as the structures in ;.

A search strategy for finding the best scoring configuration in A can be represented via
a search tree of depth k with the following properties: a) each node at level [contains a
valid partial configuration of order [; b) all nodes in the subtree rooted at node C; contain
only (partial) configurations that match C; (i.e. the first [structures are the same as in C;.)

If, given a partial configuration, the score of any complete configuration that matches
it can be efficiently upper bounded, and the upper bound is lower than the current best
score, then the entire subtree rooted at the respective partial configuration can be pruned.

Let edits;; ; be the minimum number of edits necessary to make the arc between X;
1

and X the same in the first [structures, and let Best, = maxg, {P(Gq) ™" D5 P(D,|Gy)}.
If the marginal likelihood of a configuration factorizes in the product of the marginal like-
lihoods of the individual structures, as in equation 5, then the score of any configuration
that matches the partial configuration C; = (G4, ..., G;) can be upper bounded by:

UJJ\E/(CZ) = H(l _5)6ditsl’i’j : H P(Gp)l+(kl_1)5P(Dp‘Gp) : H Bestq | (9)

i,J 1<p<l I+1<q<k

if using the Edit prior (equation 7), and by

vbey=| II TI a-o| | II rey @ mprwc,) || TI Best

1<s<t<l (X;,X)€ 1<p<i +1<q<k
GsAG:
(10)

if using the Paired prior (equation 8).

3. The restriction that changes, if any, have to be made to the same arc in all structures could be dropped,
but this would lead to a neighborhood that is exponential in both n and k. Considering the assumption
that the structures should be similar, such a restriction is not inappropriate.

172

INDUCTIVE TRANSFER FOR BAYESIAN NETWORK STRUCTURE LEARNING

0.00014
0.00012
0.0001
8e-05
6e-05
4e-05 |

2e-05

0

0 1le-30 le-25 le-20 le-15 le-10 1le-05 1

Figure 1: Fraction of partial configurations evaluated as a function of the penalty

This branch and bound search significantly reduces the number of partial configurations
(and consequently complete configurations) that need to be explored. As an example of how
much the branch and bound search can help, Figure 1 shows the fraction of configurations
that are evaluated by branch and bound as the multi-task penalty parameter § is varied,
for a problem with five tasks and thirty seven variables. In this case, branch and bound
evaluates four orders of magnitude less configurations than a naive search would.

4. Experimental Results

We evaluate the performance of multi-task structure learning using multi-task problems
generated by perturbing the ALARM (Beinlich et al., 1989) and INSURANCE (Binder
et al., 1997) networks, and on a real problem in bird ecology.

Multi-task structure learning is compared to single-task structure learning, and learning
identical structures for all tasks. Single-task structure learning uses greedy hill-climbing
with 100 restarts and tabu lists to learn the structure of each task independently of the
others. The learning of identical structures is performed via the algorithm presented in
Section 3.1 and also uses greedy hillclimbing with 100 restarts and tabu lists.* Multi-task
structure learning uses the greedy algorithm described in Section 3.2 with the solution
found by single-task learning as the starting point.® The penalty parameter of the multi-
task prior, ¢, is selected from a logarithmic grid to maximize the mean log-likelihood of a
small validation set. For all methods, the Bayes net parameters are learned using Bayesian
updating ((see e.g. Cooper and Hersovits, 1992)) independently for each problem.

The goal is to recover as closely as possible the true Bayes Net structures for all the
related tasks, so the main measure of performance we use is average edit distance® between
the true structures and learned structures. Edit distance directly measures the quality
of the learned structures, independently of the parameters of the Bayes Net. We also
measure the average empirical KL-divergence (computed on a large test set) between the
distributions encoded by the true networks and the learned ones. Since KL-Divergence is

4. Learning identical structures and single-task structure learning can be viewed as learning an augmented
naive Bayesian network and a Bayesian multi-net (Friedman et al., 1997) respectively, where the “class”
of each example is the task it belongs to . Unlike in the usual setting, however, here we are not interested
in predicting to which task an example belongs to. We are only interested in recovering accurate network
structures for each task.

5. Initializing MTL search with the STL solution does not provide an advantage to MTL, but makes the
search more efficient.

6. Edit distance measures how many edits (arc additions, deletions or reversals) are needed to get from one
structure to the other.

173

NICULESCU-MI1ZIL CARUANA

Figure 2: Reduction in edit distance (left) and KL-Divergence (right) for ALARM

also sensitive to the parameters of the Bayes Net it does not measure directly the quality of
the learned structures, but, in general, more accurate structures should lead to models with
lower KL-Divergence. For the bird ecology problem, where the true networks are unknown,
we measure performance in terms of mean log likelihood on a large independent test set.

4.1. The ALARM and INSURANCE problems

For the experiments with the ALARM and INSURANCE networks, we generate five related
tasks by perturbing the original structures. We use two qualitatively different methods for
perturbing the networks: randomly deleting edges with some probability, and changing
entire subgraphs. In the first case, we create five related tasks by starting with the original
network and deleting arcs with probability Py;. This way, the structures of the five tasks can
be made more or less similar by varying Py (For Py = 0 all the structures are identical.
Given the restriction we imposed in Section 3 that parameters for different tasks should
be independent a priori, we want to investigate the performance of multi-task structure
learning in settings where the parameters are indeed independent between tasks (ALARM-
IND and INSURANCE-IND), as well as in settings where the parameters are actually
correlated between tasks (ALARM and INSURANCE).

We also experiment with a qualitatively different way of generating related tasks (ALARM-
COMP). We split the ALARM network in 4 subgraphs with disjoint sets of nodes. For each
of the five tasks, we randomly change the structure and parameters of zero, one or two of
the subgraphs, while keeping the rest of the Bayes net (including parameters) unchanged.
This way parts of the structures are shared between tasks while other parts are completely
unrelated.

Figures 2 and 3 show the average percent reduction in loss, in terms of edit distance and
KL-divergence, achieved by multi-task learning over single-task learning for a training set of
1000 points on the ALARM and INSURANCE-IND problems. The figures for the ALARM-
IND, ALARM-COMP, and INSURANCE problems are similar and are not included. On
the x-axis we vary the penalty parameter of the multi-task prior on a log-scale. Note that
the x-axis plots 1 —J. The higher the penalty (the lower 1—¢), the more similar the learned
structures will be, with all the structures being identical for a penalty of one (1 — ¢ = 0,
left end of graphs). Each line in the figure corresponds to a particular value of Py. Error
bars are omitted to maintain the figure readable.

174

INDUCTIVE TRANSFER FOR BAYESIAN NETWORK STRUCTURE LEARNING

5% Reduction in Loss for KL-Divergence

Figure 3: Reduction in edit distance (left) and KL-Divergence (right) for INSURANCE-
IND

KL Divergence

Figure 4: Edit distance (left) and KL-Div (right) for STL, learning identical structures and
MTL

The trends in the graphs are exactly as expected. For all values of Py, as the penalty
increases, the performance increases because the learning algorithm takes into account infor-
mation from the other tasks when deciding whether to add a new arc or not. If the penalty is
too high, however, the algorithm loses the ability to find true differences between tasks and
the performance drops. As the tasks become more similar (lower values of Pg), the best
performance is obtained at higher penalties. Also as the tasks become more similar, more
information can be extracted from the related tasks, so usually multi-task learning provides
more benefit. Multi-task learning provides similar benefits whether the tasks have highly
correlated parameters (ALARM and INSURANCE problems) or independent parameters
(ALARM-IND and INSURANCE-IND problems). This shows that making the parameters
independent a priori (see Section 3) does not hurt the performance of multi-task learning.

One thing to note is that multi-task structure learning provides a larger relative improve-
ment in edit distance than in KL-divergence. This happens because multi-task structure
learning helps to correctly identify the arcs that encode weaker dependencies (or inde-
pendences) which have a smaller effect on KL-divergence. The arcs that encode strong
dependencies, and have the biggest effect on KL-divergence, can be easily learned without
help from the other tasks.

175

NICULESCU-MI1ZIL CARUANA

Edit Distance
KL-Divergence

Figure 5: Edit distance (left) and KL-Divergence (right) vs. train set size for ALARM-
COMP.

Figure 4 shows the edit distance and KL-Divergence performance for single task learning
(STL), learning identical networks (IDENTICAL), and multi-task learning (MTL). The
training set has 1000 instances with 50 instances used to select the penalty parameter for
the multi-task prior. Single-task learning and identical structure learning use all the data for
learning since they do not have free parameters. The figure shows that multi-task learning
yields a 10%-54% reduction in edit distance and a 2% - 13% reduction in KL-divergence
when compared to single task structure learning. All differences except for KL-divergence
on ALARM-IND and INSURANCE-IND problems are .95 significant according to paired
T-tests. When compared to learning identical structures, multi-task learning reduces the
KL-divergence 7% - 32% and the number of incorrect arcs in the learned structures by
4% - 60%. All differences are .95 significant, except for edit distance on the ALARM-IND
problem. Since the five tasks for the ALARM, INSURANCE, and ALARM-COMP problems
share a large number of their parameters, one might believe that simply pooling the data
would work well. This is, however, not the case. Except for the ALARM problem, where it
achieves about the same edit distance as learning identical structures, pooling the data has
much worse performance both in terms of edit distance and in terms of KL-divergence.

Figure 5 shows the performance of single and multi-task learning as the train set size
varies from 250 to 16000 cases (MTL uses 5% of the training points as a validation set
to select the penalty parameter). As expected, the benefit from multi-task learning is
larger when the data is scarce and it diminishes as more training data is available. This
is consistent with the behavior of multi-task learning in other learning setting (see e.g.
(Caruana, 1997)). For smaller training set sizes multi-task learning needs about half as
much data as single-task learning to achieve the same edit distance. In terms of KL-
divergence, multi-task learning provides smaller savings in sample size. One reason for this
is that, as discussed before, multi-task learning yields lower improvements in KL-divergence
than in edit distance. For the most part however, the smaller savings in sample size are due
to the fact that more training data leads not only to more accurate structures, but also to
more accurate parameters. Since multi-task structure learning only improves the structure
and not the parameters, it is not able to make up for the loss of large amounts of training
data.

176

INDUCTIVE TRANSFER FOR BAYESIAN NETWORK STRUCTURE LEARNING

Figure 6: North American Bird Conservation Regions.

4.2. The Bird Ecology Problem

We also evaluate the performance of multi-task structure learning on a real bird ecology
problem. The data for this problem comes from Project FeederWatch (PFW)7, a winter-
long survey of North American birds observed at bird feeders. Each PFW submission is
described by multiple attributes, which can be roughly grouped into features related to
which birds have been observed, observer effort, weather during the observation period,
and attractiveness of the location and neighborhood area for birds. The goal is to gain a
better understanding of the various bird species by identifying environmental factors that
attract or detract certain bird species, as well as how different bird species interact with
each other.

Ecologists have divided North America into a number of ecologically distinct Bird Con-
servation Regions (BCRs; see Figure 6). This division naturally splits the data into multiple
tasks, one task per BCR. For the results in this section we use six related tasks correspond-
ing to BCRs 30, 29, 28, 22, 13 and 23. Because each bird species lives in some BCRs but
not in others, this is an instance of a problem where the different tasks are not defined over
identical sets of variables.

The results on the BIRD problem mimic the ones in the previous section. Figure 7
shows the average (across the 6 BCRs/tasks) mean log likelihood on a large independent
test set for multi-task structure learning as a function of the penalty parameter of the

7. http://birds.cornell.edu/pfw

177

http://birds.cornell.edu/pfw

NICULESCU-MI1ZIL CARUANA

Mean Log Likelihood

1e-d0 1e35 1e30 1e25 1e-20 le-5 1e-10 1e-05 1
1- penalty

Figure 7: Average mean log likelihood vs. the penalty parameter for multi-task structure
learning on the BIRD problem.

Mean Log Likelihood

Figure 8: Average mean log likelihood vs. training set size for the BIRD problem.

multi-task prior. Each line corresponds to a different type of multi-task prior. The x-axis
plots 1 — §, so the right most point corresponds to no penalty (single task learning) and
the leftmost point corresponds to a penalty of one (learning identical structures). Higher
mean log likelihood represents better performance. As the penalty parameter increases
(1 — & decreases), information starts to be transferred between the different tasks and the
performance quickly increases. After reaching a peak, the performance starts to decrease
slowly as the penalty increases further. Since the tasks are not all defined on the same set
of variables, the algorithm for learning identical structures for all tasks from Section 3.1
can not be easily applied. Our algorithm on the other hand can handle this situation and
learns a set of identical structures for all tasks that performs reasonably well (left end of the
plot). The type of multi-task prior does not have a significant impact on the performance
for this problem.

Figure 8 shows the average mean log likelihood performance of multi-task structure
learning and single task structure learning as a function of the training set size. Multi-task
learning uses 5% of the training data to select the penalty parameter for the multi-task

178

INDUCTIVE TRANSFER FOR BAYESIAN NETWORK STRUCTURE LEARNING

prior. Again, the benefit from multi-task learning is largest for smaller training set sizes.
As the training size increases single-task learning catches up and eventually outperforms
multi-task learning. Unfortunately, since we do not know the real network structures for
this problem, we can not directly asses the quality of the learned structures. The results on
the ALARM and INSURANCE problems, however, suggest that the improvement provided
by multi-task learning in terms of structural accuracy (edit distance) would probably be
even larger than the improvement in terms of average mean log likelihood.

5. Conclusions and Discussion

Learning the structure of Bayes Nets from data has received a lot of attention in the litera-
ture and numerous techniques have been developed to solve this problem (e.g. (Cooper and
Hersovits, 1992; Heckerman, 1999; Buntine, 1996; Spirtes et al., 2000)). In this paper, we
have focused on, arguably, the most basic one: score-and-search using greedy hill-climbing
in the space of network structures (DAG-search), and extended this technique to the multi-
task learning scenario. The key ingredients in achieving this have been: defining a princi-
pled scoring function that takes into account the data from all the tasks and encourages
the learning of similar structures, defining a suitable search space, and devising a branch
and bound procedure that enables efficient moves in this search space. We experimented
with perturbed ALARM and INSURANCE networks and a real bird ecology problem, and
showed that the multi-task structure learning technique yields significantly more accurate
Bayes Net structures, especially when training data is scarce.

Even though in the paper we have focused on DAG-search, one can straightforwardly
obtain multi-task Bayes Net structure learning algorithms based on other techniques such
as greedy search in the space of equivalence classes (Chickering, 1996), obtaining confidence
measures on the structural features of the configurations via bootstrap analysis (Friedman
et al., 1999), and structure learning from incomplete datasets via the structural EM algo-
rithm (Friedman, 1998). Other extensions such as obtaining a sample from the posterior
distribution via MCMC methods might be more problematic. Because of the larger search
space, MCMC methods might not converge in reasonable time. Evaluating different MCMC
schemes is a direction for future work.

Another open question is whether we can relax the requirement that the parameters
of the Bayes Nets for the different related tasks are independent a priori. Relaxing this
requirement might further improve the performance of multi-task learning since the task
would be able to share not only the structures but also the parameters, thus having more
opportunities for inductive transfer. Further improvement is also possible by eliminating
the need for the user to specify the penalty parameter §. At this point, one has to rely on
cross-validation to determine a reasonable value for this parameter, which leads to a loss
in performance and an increase in computational time. It would be very desirable to find
techniques to infer ¢ directly from the data, or integrate over it in a bayesian manner.

Multi-task structure learning might also prove useful in learning Bayesian multi-nets
(Friedman et al., 1997). In Bayesian multi-nets a special attribute is selected (usually the
class attribute), and a separate network is learned for each value of that attribute. To
the best of our knowledge, all work in learning Bayesian multi-nets treats each separate
network as an independent learning problem, in a single-task manner. Since it is reasonable

179

NICULESCU-MI1ZIL CARUANA

to assume that the networks for the different values of the class attribute should be similar,
learning all the networks jointly using multi-task structure learning might yield improved
performance.

References

J. Baxter. A bayesian/information theoretic model of learning to learn via multiple task
sampling. Mach. Learn., 28(1):7-39, 1997. ISSN 0885-6125.

I.A. Beinlich, H.J. Suermondt, R.M. Chavez, and G.F. Cooper. The ALARM monitoring
system: A case study with two probabilistic inference techniques for belief networks. In
Proceedings of the Second FEuropean Conference on Artificial Intelligence in Medicine,
1989.

J. Binder, D. Koller, S. Russell, and K. Kanazawa. Adaptive probabilistic networks with
hidden variables. Machine Learning, 29, 1997.

W. Buntine. Theory refinement on bayesian networks. In Proc. 7th Conference on Uncer-
tainty in Artificial Intelligence (UAI ’91), 1991.

W. Buntine. A guide to the literature on learning probabilistic networks from data. IEEFE
Trans. On Knowledge and data Engineering, 8:195-210, 1996.

R. Caruana. Multitask learning. Machine Learning, 28(1):41-75, 1997.

D. Chickering. Learning equivalence classes of Bayesian network structures. In Proc. 12th
Conference on Uncertainty in Artificial Intelligence (UAI’96), 1996. ISBN 1-55860-412-X.

G. Cooper and E. Hersovits. A bayesian method for the induction of probabilistic networks
from data. Maching Learning, 9:309-347, 1992.

N. Friedman. The Bayesian structural EM algorithm. In Proc. 14th Conference on Uncer-
tainty in Artificial Intelligence (UAI ’98), 1998.

N. Friedman, D. Geiger, and M. Goldszmidt. Bayesian Network Classifiers. Machine Learn-
ing, 29(2):131-163, 1997.

N. Friedman, M. Goldszmidt, and A. J. Wyner. Data analysis with bayesian networks: A
bootstrap approach. In Proc. 15th Conference on Uncertainty in Artificial Intelligence,
1999.

D. Heckerman. A tutorial on learning with bayesian networks. Learning in graphical models,
pages 301-354, 1999.

D. Heckerman, A. Mamdani, and M.P. Wellman. Real-world applications of Bayesian net-
works. Communications of the ACM, 38(3):24-30, 1995.

A. Niculescu-Mizil and R. Caruana. Inductive transfer for bayesian network structure learn-
ing. In Proc. 11th International Conf. on Al and Statistics, 2007.

180

INDUCTIVE TRANSFER FOR BAYESIAN NETWORK STRUCTURE LEARNING

J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann, San Mateo, CA, 1988.

P. Spirtes, C. Glymour, and R. Scheines. Causation, Prediction, and Search. The MIT
Press, Cambridge, MA, second edition, 2000.

M. Teyssier and D. Koller. Ordering-based search: A simple and effective algorithm for
learning bayesian networks. In Proceedings of the Twenty-first Conference on Uncertainty
in AI (UAI), pages 584-590, Edinburgh, Scottland, UK, July 2005.

S. Thrun. Is learning the n-th thing any easier than learning the first? In Advances in
Neural Information Processing Systems, 1996.

181

	Introduction
	Background: Learning the Bayes Net Structure for a Single Problem
	Learning Bayes Net Structures for Multiple Related Problems
	The Prior
	Greedy Structure Learning
	Searching for the Best Configuration

	Experimental Results
	The ALARM and INSURANCE problems
	The Bird Ecology Problem

	Conclusions and Discussion

