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Abstract

The high dimensionality of the data, the expressions of thousands of features in a much
smaller number of samples, presents challenges that affect applicability of the analytical
results. In principle, it would be better to describe the data in terms of a small number of
meta-features, derived as a result of matrix factorization, which could reduce noise while
still capturing the essential features of the data. Three novel and mutually relevant meth-
ods are presented in this paper: 1) gradient-based matrix factorization with two adaptive
learning rates (in accordance with the number of factor matrices) and their automatic
updates; 2) nonparametric criterion for the selection of the number of factors; and 3) non-
negative version of the gradient-based matrix factorization which doesn’t require any extra
computational costs in difference to the existing methods. We demonstrate effectiveness of
the proposed methods to the supervised classification of gene expression data.
Keywords: matrix factorization, unsupervised learning, clustering, nonparametric crite-
rion, nonnegativity, bioinformatics, leave-one-out, classification

1. Introduction

The analysis of gene expression data using matrix factorization has an important role to
play in the discovery, validation, and understanding of various classes and subclasses of
cancer. One feature of microarray studies is the fact that the number of samples collected
is relatively small compared to the number of genes per sample which are usually in the
thousands. In statistical terms this very large number of predictors compared to a small
number of samples or observations makes the classification problem difficult.

Many standard classification algorithms have difficulties in handling high dimensional
data and due to a relatively low number of training samples, they tend to overfit. Moreover,
usually only a small subset of examined genes is relevant in the context of a given task. For
these reasons, feature selection methods are an inevitable part of any successful microarray
data classification algorithm.

Another approach to reduce the overfitting is to describe the data in terms of metagenes
as a linear combinations of the original genes.

Recently, models such as independent component analysis and nonnegative matrix fac-
torization (NMF) have become popular research topics due to their obvious usefulness (Oja
et al., 2010). All these blind latent variable models in the sense that no prior knowledge on
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the variables is used, except some broad properties like gaussianity, statistical independence,
or nonnegativity.

As pointed out by Tamayo et al. (2007), the metagene factors are a small number of gene
combinations that can distinguish expression patterns of subclasses in a data set. In many
cases, these linear combinations of the genes are more useful in capturing the invariant
biological features of the data. In general terms, matrix factorization, an unsupervised
learning method, is widely used to study the structure of the data when no specific response
variable is specified.

Examples of successful matrix factorization methods are singular value decomposition
and nonnegative matrix factorization (Lee and Seung, 1999). In addition, we developed a
novel and very fast algorithm for gradient-based matrix factorization (GMF), which was
introduced in our previous study (Nikulin and McLachlan, 2009).

The main subject of this paper is a more advanced version of the GMF. We call this
algorithm as GMF with two learning rates and their automatic updates (A2GMF). Details
about this algorithm are given in Section 2.1. The main features of the A2GMF are two
flexible (adaptive) learning rates in accordance to the number of factor matrices. By the
definition, the learning rates will be updated during learning process. The explicit update
formulas are given in Section 2.1.

Clearly, the number of factors is the most important input parameter for any matrix
factorization algorithm. In Section 2.2 we are proposing a novel unsupervised method for
the selection of the number of factors. This method is absolutely general, and we show in
Section 4.5 one possible extension to the clustering methodology, see Figure 3. Using super-
vised classification with leave-one-out (LOO) evaluation criterion, we can develop another
approach to select the numbers of factors. Classification results, which are based on five
well-known and publicly available datasets, and presented in Section 4 demonstrate corre-
spondence between the outcomes of both methods. However, speed is the main advantage
of the proposed here nonparametric criterion.

The third proposed novelty is a nonnegative version of GMF (NN-GMF), see Section 2.3.
Essentially, an implementation of the NN-GMF doesn’t require any extra computational
costs. Consequently, the NN-GMF is as fast as GMF, and may be particularly useful for
a wide range of the professionals who are working with real data directly and who are
interested to find out an interpretation of the data in terms of meta-variables.

2. Methods

Let (xj,y;),j = 1,...,n, be a training sample of observations where x; € R? is p-dimensional
vector of features, and y; is a multiclass label, which will not be used in this section. Bold-
face letters denote vector-columns, whose components are labelled using a normal typeface.
Let us denote by X = {z;5,i = 1,...,p,j = 1,...,n} the matrix containing the observed
values on the n samples.

For gene expression studies, the number p of genes is typically in the thousands, and
the number n of experiments is typically less than 100. The data are represented by an
expression matrix X of size p X n, whose rows contain the expression levels of the p genes in
the n samples. Our goal is to find a small number k < p of metagenes or factors. We can
then approximate the gene expression patterns of samples as a linear combinations of these
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metagenes. Mathematically, this corresponds to factoring matrix X into two matrices
X ~ AB, (1)

where weight matrix A has size p X k, and the matrix of metagenes B has size k X n, with
each of k rows representing the metagene expression pattern of the corresponding sample.

Algorithm 1 A2GMF.

1: Input: X - microarray matrix.

2: Select m - number of global iterations; k - number of factors; Ay, Ap > 0 - initial learning rates,
0 < 7(¢) <1 is a scaling function of the global iteration ¢.
Initial matrices A and B are generated randomly.

Global cycle: for ¢ =1 to m repeat steps 5 - 16:
genes-cycle: for i = 1 to p repeat steps 6 - 15:
samples-cycle: for j = 1 to n repeat steps 7 - 15:

compute prediction S;; = 21;21 aifbyj;

compute error of prediction: E;; = x;; — S;j;

internal factors-cycle: for f =1 to k repeat steps 10 - 15:
10: compute o = a;fbyj;

11: update a;¢ <= a;y — 7(0) - Ao - 9itj;

12: Eij = Eij +a— aifbfj;

13: compute o = a;fb¢j;

14: update by; <= by; —7(€) - Xp - hifj;

15: Eij = Eij + o — al-fbfj;

16: update A, and A, according to (5) and (7);

17: Output: A and B - matrices of metagenes or latent factors.

2.1. A2GMF algorithm under the stochastic gradient descent framework

Let us consider the following loss function

L(A,B) = zp:zn:EQJ (2)

i=1 j=1

where E;; = x5 — Z’}Zl aif - byj.

The above target function (2) includes in total k(p 4+ n) regulation parameters and may
be unstable if we minimise it without taking into account the mutual dependence between
elements of the matrices A and B.

Derivatives of the function E are given below:

= z2] =—-2-E;;-b 3
Gifj 9aif Lyt Ofg, ( a)
hiri = 12] =-2-F 3b
ifj Ob ;i C g A (3b)

Considering step 11 of Algorithm 1, we can replace in (2) a;¢ by its update a;f — Ao gif;,
assuming that 7(¢) = 1, where scaling function 7 is defined in Remark 2.1. After that, we
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can rewrite (2) in the following way

L(A,B,)\,) ZZEZﬁA Uij)*,

where
k k
Ui = gis - bs = =2Bi 3 bj;:
=1 =1
Minimising (4) as a function A,, we shall find

D n T
i=1 Zj:l Ei;Uij
P n 2

_ 1 Z] IZf lbf] E2 12? 1 Jd)J
23:1(2f:1 ]) z:1 Ez2 22] 1 J

Aag = —

where

p
bj _bejv J :ZEZQ
i=1

Considering step 14 of Algorithm 1, we can replace in (2) by; by its update by; —

assuming that 7(¢) = 1. After that, we can re-write (2) in the following way

AB )\b ZZ E”—I—)\bv;] 3
=1 j=1

where

B

k
= Zhlf] . aif = —QEZ']‘ Zagf

f=1 f=1
Minimising (6) as a function Ay, we shall find
i1 21 EijVi
=1 251 Vi

k
1 > IZf 1 ?fZ? 1 2 12@ 1%%
221 I(Zf 1 zf) Z] I‘E2 221 1 'L

A=

where

k n
a; = Za?f, P = ZE2
f=1 Jj=1

Aohigj,

(6)

Figure 1(a-e) illustrates clear advantage of the A2GMF compared to the GMF algorithm.
We did not try to optimize performance of the A2GMF, and used the same regulation

parameters against all five datasets described in Section 3.
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Figure 1: Convergence of the GMF (black line) and A2GMF (dashed blue line, Algorithm 1) algo-
rithms in the cases of (a) colon, (b) leukaemia,(c) Sharma, (d) Khan and (e) lymphoma
sets. The last window (f) illustrates the difference in behavior between learning rates A,
(red) and A, (dashed green), see Algorithm 1.

Remark 1 Scaling function T is a very important in order to ensure stability of Algo-
rithm 1. Assuming that the initial values of matrices A and B were generated randomly, we
have to use smaller values of T during the first few global iterations. The following structure
of the function T(¢) was used for the illustrations given in Figure 1:

7(€) = 0.005(1 — r) + 0.2r,r = 4/ %,

where parameters £ and m are defined in the body of Algorithm 1.

Remark 2 We note an important fact: a significant difference in behavior of the learning
rates A, and Ay as functions of the global iteration, see Figure 1(f). This difference reflects,
also, the main conceptual difference between A2GMF and GMF algorithms.

Definition 3 We define GMF algorithm as Algorithm 1 but without the scaling function T
and with constant and equal learning rates Ag = \p = 0.01 (Nikulin and McLachlan, 2009).
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Figure 2: Nonparametric feature selection with criterion (8), where (a) colon, (b) leukaemia, (c)
Sharma, (d) Khan and (e) lymphoma datasets. Window (f) illustrates the numbers of
misclassified samples as a function of k£ - number of metagenes, where we used evaluation
scheme Alg.1 + LOO{lm} applied to the colon dataset.

The value 0.01 was used in the comparison experiments Figure 1(a-e). However, the optimal
settings may be different depending on the particular dataset.

2.2. Nonparametric unsupervised criterion for selection of the number of
meta-variables

The basic idea of nonparametric inference is to use data to infer an unknown quantity while
making as few assumptions as possible (Wasserman, 2006). The criterion, which we propose
in this section is the most general and may attract interest as a self-target in fundamental
sense, but not only as an application for the selection of the number of meta-variables. It is
very logical to assume that the microarray matrix contains some systematic dependencies,
which will be discovered or revealed by the matrix factorization. We can easily destroy
those hidden dependencies by randomly re-shuffling the elements within any column. Note,
also, that all the columns will be re-shuffled independently.

Let us denote by X (7),7 =1,...,3 three random re-shuffling of the original matrix X.
By A® and B®™ we shall denote the corresponding factor matrices. Figure 2 illustrates
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behavior of

as a function of k, where

M M
D, = 7L<A’“Bk),q>§]): LA B) s
pn pn

As expected, the values of Dj are always positive. Initially, and because of the small
number of factors k, the values of Dy, are low. This fact has very simple explanation, as far as
the number of metagenes is small, those metagenes are not sufficient to contain the hidden
dependencies and relations. Then, the values of Dy will grow to some higher level. The
pick point appears to be an appropriate criterion for the selection of the optimal number of
meta-variables. After that point, the values of Dy will decline because of the overfitting.

2.3. On the nonnegative modification of the GMF (NN-GMF)

Many real-world data are nonnegative and the corresponding hidden components have a
physical meaning only when nonnegative (Cichocki et al., 2009). Suppose that microarray
matrix X is nonnegative (that means, all the elements of the matrix are nonnegative).
Then, it is very logical to have factor matrices A and B in (1) to be nonnegative as well.
In order to implement this, we can easily create a special modification of Algorithm 1.

The main idea behind this modification is a remarkably simple. Let us consider a
generalization of (1)

X ~(A)(B), (9)

where £ is a differentiable function, and £(A) is a matrix with the same dimensions as matrix
A and elements {£(aij),i=1,...,p,j=1,...,k}.

Taking into account the fact that an exponential function is always nonnegative, we can
consider £(-) = exp(-). Equation (9) represents a flexible framework, where we can apply
any suitable function. For example, we can create another modification of the NN-GMF
with squared or logistic function.

According to Gao and Church (2005), it is obvious that dimension reduction to a much
lower dimension (smaller than the number of observations) is appropriate. Principal compo-
nent analysis (PCA) or singular value decomposition and partial least squares are two such
methods that have been applied to cancer classification with satisfactory results. However,
due to the holistic nature of PCA, the resulting components are global interpretations and
lack intuitive meaning. To solve this problem, Lee and Seung (1999) demonstrated that
NMF is able to learn localized features with obvious interpretation. Their work was applied
elegantly to image and text analysis.

According to Fogel et al. (2007), singular value decomposition (SVD) attempts to sep-
arate mechanisms in an orthogonal way, although nature is all but orthogonal. As a conse-
quence, SVD components are unlikely to match with real mechanisms and so are not easily
interpreted. On the contrary, NMF appears to match each real mechanism with a particular
component.
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Clearly, we can extend above two statements to the NN-GMF algorithm.

As it was pointed by Lin (2007), there are many existing methods for NMF. Most of
those method are presented in (Cichocki et al., 2009). However, NN-GMF is an essentially
novel algorithm (based on the different platform), and can not be regarded as a modification
of NMF (Lee and Seung, 1999).

2.4. Sparsity and Regularization

A sparse representation of the data by a limited number of components is an important
research problem. In machine learning, sparseness is closely related to feature selection and
certain generalizations in learning algorithms, while nonnegativity relates to probability
distributions (Cichocki et al., 2009).

The most standard way to achieve sparsity is to include regularization term in (2), which
penalises usage of the elements of the matrices A and B. We shall exploit here flexibility
of Algorithm 1. The structure of the regularized GMF will be the same, but we have to
make some changes in the formulas for derivatives (3a) and (3b), which may be found using
standard techniques (Nikulin and McLachlan, 2010).

2.5. Handling missing values

Suppose that some elements of the matrix X have low level of confidence or missing. Based
on the principles of the stochastic gradient descent technique, we are considering during any
global iteration not the whole target function, but particular terms of the target function.
Accordingly, we can easily exclude from an update process those terms, which have low level
of confidence or missing. Using GMF algorithm we can make possible factorization of a huge
matrices, for example, in the case of the well known Netflix Cup (marketing applications)
we are dealing with hundreds of thousands of customers and tens of thousands of items,
assuming that only about 5% or 10% of true relationships or preferences are available
(Koren, 2009).

2.6. Boosting with GMF

Algorithm 1 represents a flexible framework, where we can easily insert suitable model as a
component. For example, we can use the idea of boosting (Dettling and Buhlmann, 2003)
in the following way. In the case if the element x;; has been approximated poorly (step N8),
we can increase the value of learning rate. On the other hand, in the case if an absolute
value of Fj; is small enough, we can overpass the steps NN9-15. As a direct consequence,
the algorithm will run faster and faster in line with general improvement of the quality of
approximation.

3. Data

All experiments were conducted against 5 well known and publicly available microarray
datasets named colon, leukaemia, Sharma, Khan and lymphoma. Some basic statistical
characteristics of the datasets are given in Table 2, and more details are presented in (Nikulin
et al., 2011).
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Table 1: Classification results (numbers of misclassified samples) in the case of the scheme: SV D+
LOO{Im}.

k H colon [ leukaemia [ Sharma [ Khan [ lymphoma
2 22 8 24 48 6
4 10 5 22 27 2
6 9 2 18 15 1
8 7 1 14 5 0
10 8 1 9 6 0
12 8 1 10 2 0
14 8 2 9 0 0
16 10 2 10 0 0
18 9 2 10 0 0
20 10 2 11 0 0
22 11 5 10 0 0
24 13 3 13 0 0
26 13 1 15 1 1
28 11 1 16 1 1
30 14 2 16 1 2
32 13 3 16 3 1
34 9 2 18 2 1
36 12 3 18 3 1
38 14 4 18 3 2
40 15 6 20 3 3

4. Experiments

After decomposition of the original matrix X, we used the leave-one-out (LOO) evalua-
tion scheme, applied to the matrix of metagenes B. This means that we set aside the ith
observation and fit the classifier by considering remaining (n — 1) data points. We con-
ducted experiments with Im function in R, which is a standard linear regression without
any regulation parameters.

4.1. Evaluation scheme

We shall denote such a scheme (Nikulin and McLachlan, 2009) as
Alg.1 4+ LOO{lm}. (10)

Above formula has very simple interpretation as a sequence of two steps: 1) compute the
matrix of metagenes B using Algorithm 1 (dimensionality reduction), and 2) run LOO
evaluation scheme with Im as a base classification model.

As a reference, we mention that similar evaluation model was employed in (Li and
Ngom, 2010) to classify samples in NMF space using kNN algorithm. In accordance with
the evaluation framework (10), we can express this model in the following way: NMF +
LOO{kNN}.

Remark 4 As far as Algorithm 1 is an unsupervised (labels are not used), we do not have
to include it into the LOO internal loop in (10).
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Table 2: Comparison between the numbers of factors (metagenes) kyp and k*, where knp was
selected according to the nonparametric criterion of Section 2.2 as a point on the horizontal
axis corresponding to the maximum loss, see Figure 2(a-¢); and k* was selected according
to the independent scheme SV D + LOO{im}, see Table 2 (in supplementary material),
where column “NM” indicates the numbers of corresponding misclassified samples.

Data || n | p || k¥ | knp ||NM
Colon || 62 | 2000 || | 10 | 7
Leukaemia || 72 | 1896 || l [
Sharma H 60 [ 1368 “ 10 ‘ “ 9
Khan || 83 [ 2308 | 14 | 12 | o
Lymphoma || 62 | 4026 || 8 | 8 | o

Table 3: Classification results in the case of the scheme Alg.1 + LOO{lm}, where we used 20 runs
against colon dataset with random initial settings, columns “min, mean, mazx, std” repre-
sent the corresponding statistical characteristics for the numbers of misclassified samples.
In the column “SVD” we presented the numbers of misclassified samples in the case of the
scheme Alg.1 + LOO{lm}, where initial settings were generated using SV D method.

|| min | mean | max | std || SVD

16 21.89 28 4.50 21
7 15.22 19 3.53 10
7 10.56 18 3.39 9
5 8.50 11 2.09 7
6 8.92 12 1.72 6
12 6 9.33 12 2 7
8
7
8

—_
o 0ok N F

14 9.22 11 1.09 9
16 9.89 12 1.54 10
18 10 11 1.12 10
20 8 10.33 13 1.58 10
22 11 12.56 15 1.59 10
24 11 12.78 15 1.20 13
26 12 12.56 14 0.73 12
28 10 12.67 16 2.06 12
30 10 13.22 16 1.64 14
32 12 14.33 17 1.58 14
34 12 15.11 18 1.90 12

36 11 14 17 2.18 14
38 13 14.78 17 1.39 14
40 13 15 17 1.22 14

4.2. Singular value decomposition (SVD)

An alternative factorisation may be created using svd function in Matlab or R:

X =UDV,
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where U is p X n matrix of orthonormal eigenvectors, D is n x n diagonal matrix of non-
negative eigenvalues, which are sorted in a decreasing order, and V is n X n matrix of
orthonormal eigenvectors.

The absolute value of an eigenvalue indicates the significance of the corresponding eigen-
vector relative to the others. Accordingly, we shall use the matrix V), with k first eigenvectors
(columns) taken from the matrix V as a replacement to the matrix X. According to (10),
we shall denote above model by SV D+ LOO{Im}, where classification results are presented
in Table 1.

It is a well known fact that principal components, or eigenvectors corresponding to the
biggest eigenvalues, contain the most important information. However, the other eigenvec-
tors, which may contain some valuable information will be ignored. In contrast, nothing will
be missed by definition in the case of the GMF, because the required number of metavari-
ables will be computed using the whole microarray matrix. The main weakness of the GMF
algorithm is its dependence on the initial settings, see Table 3. By combining SVD and
GMF algorithms together, we can easily overcome this weakness: it appears to be logical to
use matrices Vj, and Uy as an initial for the GMF algorithm, where Uy, is defined according
to U using the same method as in the case of Vj and V.

In the column “SVD”, Table 3, we presented classification results, which were calculated
using the model Alg.1+ LOO{lm} with initial setting produced by the SVD method. These
results demonstrate some improvement compared to the “colon” column of Table 1. Similar
improvements were observed in application to four remaining datasets.

4.3. Partial least squares and selection bias

Partial least squares (PLS) (Nguyen and Rocke, 2002) is an essentially different compared
to GMF or to PCA, because it is a supervised method. Therefore, the evaluation scheme
(10) with PLS as a first component will not be free of a selection bias. As an alternative,
we can apply evaluation model

LOO{PLS +Im}, (11)

which is about n times more expensive computationally compared to (10). According to
(11), we have to exclude from the training process features of the test sample (that means we
have to run PLS within any LOO evaluation loop), and this may lead to the overpessimistic
results, because those features are normally available and may be used in the real life.

Very reasonably (Cawley and Talbot, 2006), the absence of the selection bias is regarded
as a very significant advantage of the model, because, otherwise, we have to deal with
nested cross-validation, which is regarded as an impractical (Jelizarow et al., 2010, p.1996)
in general terms.

Based on our own experience with the nested CV, this tool should not be used until
it is absolutely necessary, because nested CV may generate secondary serious problems
as a consequence of 1) the dealing with an intense computations, and 2) very complex
software (and, consequently, high level of probability to make some mistakes) used for the
implementation of the nested CV. Moreover, we do believe that in most of the cases scientific
results produced with the nested CV are not reproducible (in the sense of an absolutely
fresh data, which were not used prior). In any case, “low skills bias” could be much more
damaging compared to the selection bias.
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Figure 3: Illustrative examples based on two simulated datasets with known solutions (numbers of
clusters) in support to the nonparametric criterion for the selection of the numbers of
factors, Section 2.2. See for more details Section 4.5.

We fully agree with Jelizarow et al. (2010), p.1990, that the superiority of new algo-
rithms should always be demonstrated on an independent validation data. In this sense, an
importance of the data mining contests is unquestionable. The rapid popularity growth of
the data mining challenges demonstrates with confidence that it is the best known way to
evaluate different models and systems.

4.4. Classification results

As it was noticed in (Nikulin and McLachlan, 2009), the number of factors/metagenes must
not be too large (in order to prevent overfitting), and must not be too small. In the latter
case, the model will suffer because of the over-smoothing and loss of essential information
as a consequence, see Figure 2(f), Tables 2 and 3 (in supplementary material).

As we reported in our previous studies (Nikulin and McLachlan, 2009, Nikulin et al.,
2010a), classification results observed with the model GMF + LOO{lm} are competitive
with those in (Dettling and Buhlmann, 2003, Hennig, 2007). Further improvements may
be achieved using A2GM F algorithm, because an adaptive learning rates make the factor-
ization model more flexible. In addition, the results of Tables 2 and 3 (in supplementary
material) may be easily improved if we shall apply instead of function Im more advanced
classifier with parameter tuning depending on the particular dataset.

The numbers of factors kyp and k*, reported in Table 2, were computed using absolutely
different methods, and we can see quite close correspondence between kyp and k£*. In two
cases (leukaemia and lymphoma), when NM = 0, we observed an exact correspondence.
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This fact indicates that the nonparametric method of Section 2.2 is capable to discover
some statistical fundamentals in microarray datasets.

Remark 5 Additionally, we conducted extensive experiments with NMF and SVD matrix
factorizations. The observed classification results were similar in terms of the numbers of
misclassified. However, misclassified samples were not the same. This fact may be exploited
by the suitable ensembling technique.

4.5. Illustrative example

The goal of cluster analysis is to partition the observations into groups (clusters) so that
the pairwise dissimilarities between those assigned to the same cluster tend to be smaller
than those in different clusters (Hastie et al.., 2008).

Figure 3 illustrates two experiments with kmeans algorithm, which were conducted
against simulated 2D data with known numbers of clusters, see Figure 3(a) - five clusters
(n = 10000); Figure 3(d) - eight clusters (n = 20000).

As a next step we re-shuffled independently the coordinates (columns) of the data, see
Figure 3(b); Figure 3(e).

Figures 3(c) and (f) illustrate behavior of

Dy = Ry — R, (12)

as a function of the number of the clusters k, where 1) R and 2) R are two averaged
dissimilarity measures with squared loss functions corresponding to 1) the re-shuffled and
to 2) the original data.

In both cases, we can see correct detection: Figures 3(c) - k =5, and (f) - k = 8.

4.6. Computation time

A multiprocessor Linux workstation with speed 3.2GHz was used for most of the computa-
tions. The time for 100 global iterations (see, for example, trajectory of Figure 1) against
colon set in the cases of the GMF and A2GMF algorithm was 6 and 8 sec. (expenses for
the other sets were similar).

5. Concluding remarks

It seems natural to use different learning rates applied to two factor matrices. Also, the
values of the learning rates must not be fixed and it is proposed to update them after any
global iteration according to the given formulas. Based on our experimental results, the
A2GMF algorithm presented in this paper is significantly faster. That means, less number
of global iterations will be required in order to achieve the same quality of factorization.
Besides, the final results have smaller value of the loss function. This fact indicates that
the A2GMF algorithm is better not only technically in the sense of speed, but is better
in principle: to achieve essentially better quality of factorization for the given number of
factors.

The proposed criterion for the selection of the number of factors/metagenes is nonpa-
rameteric and general. By application of such criterion (as an alternative to an extensive
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LOO experiments) it will be possible to save valuable computational time. Besides, we are
confident that similar method is applicable elsewhere. An example with kmeans algorithm
in given in Section 4.5.

An implementation of the third proposed novelty, a nonnegative modification of GMF,
doesn’t require any extra computational time. As an outcome, the NN-GMF is as fast
as GMF algorithm itself. We can expect that practitioners in many fields will find this
algorithm to be a competitive alternative to the well-known NMF.
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