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Abstract

We organized a data mining challenge in “unsupervised and transfer learning” (the UTL
challenge) followed by a workshop of the same name at the ICML 2011 conference in
Bellevue, Washington1. This introduction presents the highlights of the outstanding con-
tributions that were made, which are regrouped in this issue of JMLR W&CP. Novel
methodologies emerged to capitalize on large volumes of unlabeled data from tasks related
(but different) from a target task, including a method to learn data kernels (similarity
measures) and new deep architectures for feature learning.

Keywords: transfer learning, unsupervised learning, metric learning, kernel learning, un-
labeled data, challenges

1. Introduction

Unsupervised learning considers the problem of discovering regularities or structure in unla-
beled data (e.g., finding sub-manifolds or clustering examples) based on a representation of
the domain. Transfer learning considers the use of prior knowledge (such as labeled training
examples, or shared features) from one or more source tasks when developing a hypothesis
for a new target task. While human beings are adept at transfer learning using mixtures of
labeled and unlabeled examples, even across widely disparate domains, we have only begun
to develop machine learning systems that exhibit the combined use of unsupervised learning
and knowledge transfer.

To foster greater research in this area we organized a international challenge on Unsu-
pervised and Transfer Learning that culminated in a workshop of the same name at the
ICML-2011 conference in Bellevue, Washington, on July 2, 2011. This workshop addressed
a question of fundamental and practical interest in machine learning: the development and

1. http://clopinet.com/isabelle/Projects/ICML2011/.
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assessment of methods that can generate data representations (features) that can be reused
across domains of tasks.

This edition of JMLR W&CP presents the challenge results and a collection of out-
standing contributed articles on the subject of transfer learning and unsupervised learning.
This paper and the edition focuses on unsupervised and transfer learning for classification
problems based on real-valued feature representations that are related more closely to data
mining tasks. Methods of transfer learning have also been investigated for reinforcement
learning (Ramon et al., 2007; Taylor and Stone, 2007), however these are outside the scope
of this edition.

2. Overview of Transfer Learning and Unsupervised Learning

2.1. Transfer Learning

Transfer learning refers to use of knowledge for one or more source tasks to develop ef-
ficiently a more accurate hypothesis for a new target task. Transfer learning has most
frequently been applied to sets of labeled data that have a supervised target value for each
example. For instance, there would be significant benefit in using an accurate diagnostic
model of one disease to develop a diagnostic model for a second related disease for which
you have few training examples. While all learning involves generalization across problem
instances, transfer learning emphasizes the transfer of knowledge across domains, tasks, and
distributions that are similar but not the same. Inductive transfer has gone by a variety
of names: bias learning, learning to learn, machine life-long learning, knowledge transfer,
transfer learning, meta-learning, and incremental, cumulative, and continual learning.

Research in inductive transfer began in the early 1980s with discussions on inductive
bias, generalization and the necessity of heuristics for developing accurate hypotheses from
small numbers of training examples (Mitchell, 1980; Utgoff, 1986). This early research
suggested that the accumulation of prior knowledge for the purposes of selecting inductive
bias is a useful characteristic for any learning system. Following the first major workshop on
inductive transfer (NIPS1995 Workshop, 1995) a series of articles were published in special
issues of Connection Science (Lorien Pratt (Editor), 1996) and Machine Learning (Pratt
and Sebastian Thrun (Editors), 1997), and a book entitled “Learning to Learn” (Thrun
and Lorien Y. Pratt (Editors), 1997) .

Since that time, research on inductive transfer has occurred using traditional machine
learning methods (Caruana, 1997; Baxter, 1997; Silver and Mercer, 1996; Heskes, 2000;
Thrun and Lorien Y. Pratt (Editors), 1997; Bakker and Heskes, 2003; Ben-David and
Schuller, 2003), statistical regression methods (Greene, 2002; Zellner, 1962; Breiman and
Friedman, 1998), Bayesian methods involving constraints such as hyper priors (Allenby
and Rossi, 1999; Arora et al., 1998; Bakker and Heskes, 2003), and more recently kernel
methods such as support vector machines (SVMs) (Jebara, 2004; Allenby and Rossi, 2005).
All of these approaches rely upon the development of a hypothesis for a target task un-
der a constraint or regularization that characterizes a similarity or relatedness to one or
more source tasks. In 2005, a second major workshop on inductive transfer occurred at
NIPS. Papers from this workshop can be found in (Silver and Bennett, 2008) as well as at
(NIPS2005 Workshop, 2005).
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More recently, there has been work on inductive transfer in the areas of self-taught
learning (Raina et al., 2007b), transductive learning (Arnold et al., 2007), context-sensitive
multiple task learning (Silver et al., 2008), the learning of model structure (Niculescu-Mizil
and Caruana, 2007), unsupervised transfer learning [Yu,Wang], and a variety of methods
that mix unsupervised and supervised learning to be discussed in greater detail below.

2.2. Unsupervised Learning

Unsupervised learning refers to the process of finding structure in unlabeled data resulting
in new data representations (including feature representations) and/or clustering data into
categories of similar examples, based on such representations (Hinton and Sejnowski, 1999).
The unlabeled data distinguishes unsupervised learning from supervised learning and re-
inforcement learning. Important recent progress has been made in purely unsupervised
learning (Smola et al., 2001; Bengio et al., 2003; Globerson and Tishby, 2003; Ghahramani,
2004; Lawrence, 2005; Luxburg, 2007). However, these advances tend to be ignored by
practitioners who continue using a handful of popular algorithms like PCA and ICA (for
feature extraction and dimensionality reduction), and K-means, and various hierarchical
clustering methods for clustering (Jain et al., 1999).

2.3. Combining Unsupervised and Transfer Learning

It is often easier to obtain large quantities of unlabeled data from databases and sources
on the web, for example images of unlabeled objects. For this reason the idea of using
unsupervised learning in combination with supervised learning has attracted interest for
some time. Semi-supervised learning is a machine learning approach that is halfway between
supervised and unsupervised learning. In addition to the labeled data for a given task of
interest, the algorithm is provided with unlabeled data for the same task - typically a small
amount of labeled data and a large amount of unlabeled data (Blum and Mitchell, 1998).
Note that these approaches usually assume that the categories of the unlabeled data, even
though unknown to the learning machine, are the same as the categories of the labeled data,
i.e., that the “tasks” are the same.

In contrast, in the transfer learning setting, the unlabeled data does not need to come
from the same task. There has been considerable progress in the past decade in developing
cross-task transfer using both discriminative and generative approaches in a wide variety of
settings (Pan and Yang, 2010). These approaches include multi-layer structured learning
machines from the “Deep Learning” family such as convolutional neural networks, Deep
Belief Networks, and Deep Boltzmann Machines (Bengio, 2009; Gutstein, 2010; Erhan et al.,
2010), sparse coding (Lee et al., 2007; Raina et al., 2007a), and metric or kernel learning
methods (Bromley et al., 1994; WU et al., 2009; Kulis, 2010). The “Learning to learn”
and “Lifelong Learning” veins of research have continued to provide interesting results in
both machine learning and cognitive science in terms of short-term learning with transfer
and long-term retention of learned knowledge (Silver et al., 2008). These references include
recent evidence of the value of combining unsupervised generative learning with transfer
learning to generate a rich set of representation (features) upon which to build related
supervised discriminative tasks. The goal of the challenge we organized was to perform an

3



Silver Guyon Taylor Dror Lemaire

evaluation of unsupervised and transfer learning algorithms free of inventor bias to help to
identify and popularize algorithms that have advanced the state of the art.

3. Overview of the UTL Challenge

Part of the ICML workshop was devoted to the presentation of the results of the Unsu-
pervised and Transfer Learning challenge (UTL challenge Guyon et al., 2011a,b). The
challenge, which started in December 2010 and ended in April 2011, was organized in 2
phases. The aim of Phase 1 was to benchmark unsupervised learning algorithms used
as preprocessors for supervised learning, in the context of transfer learning problems. The
aim of phase 2 was to encourage researchers to exploit the possibilities offered by new
cutting-edge cross-task transfer learning algorithms, which transfer supervised learning
knowledge from task to task.

To that end, the competitors were presented with five datasets illustrating classification
problems from different domains: handwriting recognition, video processing, text process-
ing, object recognition, and ecology. Each dataset was split into 3 subsets: development,
validation, and final evaluation sets. In phase 1, all subsets were provided without labels to
the participants. The labels remained known only to the organizers throughout the chal-
lenge. The goal of the participants was to produce the best possible data representation
for the final evaluation data. This representation was then evaluated by the organizers on
supervised learning classification tasks by training and testing a linear classifier on subsets
of the final evaluation data, such than a learning curve would be produced. The evaluation
metric was the area under the learning curve, which is a means of aggregating performance
results over a range of number of training examples considered.

To avoid the possibility of participants selecting their model based on final evaluation set
performance, the final results remained secret until the end of the challenge. Rather, feed-
back was provided on-line during the challenge on the performance obtained on validation
data, and the final evaluation set data was used only for the final ranking. For both
phases, the participants could either submit a data representation (for validation data and
final evaluation data) or a matrix of similarity between examples (a kernel). Hence, the
competition was equivalently a data representation learning challenge and a kernel learning
challenge.

In contrast with a classical evaluation of unsupervised learning as a preprocessing, the
three subsets (development, validation, and final evaluation sets) were not drawn from the
same distribution. In fact, they all had different sets of class labels. Picture for instance
a problem of optical character recognition (OCR), the development set could contain only
lowercase alphabetical letters, the validation set could contain uppercase letters, and the
final evaluation set, digits and symbols. This setting is typical of real world problems in
which there is an abundance of data available for training from a source domain, which is
distinct from the target domain of interest. For instance, in face recognition, there is an
abundance of pictures from unknown strangers that are available on the Internet, compared
to the few images of your close family members that you care to classify. The development
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set represents a source domain whereas the validation and final evaluation sets represent
alternative target domains on which different sets of tasks can be defined2.

In the second phase of the challenge, a few labels of the development set were provided,
offering to the participants the possibility of using supervised learning in some way to
produce better data representations for the validation and final evaluation sets. The setting
remained otherwise unchanged.

One of the main findings of this challenge is the power of unsupervised learning as a
preprocessing tool. For all the datasets of the challenge, unsupervised learning produced
results significantly better than the baseline methods (raw data or simple normalizations).
The participants exploited effectively the feed-back received on the validation set to se-
lect the best data representations. The skepticism around the effectiveness of unsupervised
learning is justified when no performance on a supervised task is available. However, unsu-
pervised learning can be the object of model selection using a supervised task, similarly to
preprocessing, feature selection, and hyperparameter selection. An interesting new outcome
of this challenge is that the supervised tasks used for model selection can be distinct from
the tasks used for the final evaluation. So, even though the learning algorithms are unsu-
pervised, transfer learning is happening at the model selection level. This setting is related
to the “self-taught learning” setting proposed in (Raina et al., 2007a). Another interesting
finding is that, perhaps the development set is not useful at all. The winners of phase 1 did
not use it. They devised a method to select a cascade of preprocessing steps to be used to
produce a new kernel. The same cascade was then applied to produce the kernel of the final
evaluation set(Aiolli, 2012). The importance of the degree of resemblance of the validation
task and final task remains to be determined.

In phase 1, there was a danger of overfitting by trying too many methods and relying
too heavily on the performance on the validation set. One team for instance overfitted
in phase 1, ranking 1st on the validation set, but only 4th on the final evaluation set.
Possibly, criteria involving both the reconstruction error and the classification accuracy on
the validation tasks may be more effective for model selection. This should be the object
of further research. In phase 2, the participants had available “transfer labels” for a subset
of the development data (for classification tasks distinct from the classification tasks of the
validation set and the final evaluation set). Therefore, they had the opportunity to use such
labels to devise transfer learning strategies. The most effective strategy seems to have been
to use the transfer labels for model selection again. None of the participants used those
labels for learning.

Overall, an array of algorithms were used (Aiolli, 2012; Le Borgne, 2011; Liu et al., 2012;
Mesnil et al, 2012; Saeed, 2011; Xu et al, 2011), including linear methods like Principal Com-
ponent Analysis (PCA), and non-linear methods like clustering (K-means and hierarchical
clustering being the most popular), Kernel-PCA (KPCA), non-linear auto-encoders and re-
stricted Bolzmann machines (RBMs). A general methodology seems to have emerged. Most
top ranking participants used simple normalizations (like variable standardization and/or
data sphering using PCA) as a first step, followed by one or several layers of non-linear pro-

2. In this paper, we call “domain” the input space (e.g., a feature vector space) and we call “task” the
output space (represented by labels for classification problems). We use the adjective “source” for an
auxiliary problem, for which we have an abundance of data (e.g., pictures of strangers in the Internet),
and “target” for the problem of interest (e.g., pictures of family members).
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cessing (stacks of auto-encoders, RBMs, KPCA, and/or clustering). Finally, “transduction”
played a key role in winning first place: either the whole preprocessing chain was applied
directly to the final evaluation data (this is the strategy of Fabio Aiolli who won first place
in phase 1, Aiolli, 2012); or alternatively, the final evaluation data, preprocessed with a
preprocessor trained on development+validation data, was post-processed with PCA (so-
called “transductive PCA” used by the LISA team, who won the second phase, Mesnil et al,
2012).

4. Overview of Proceedings

The following provides an overview of the workshop proceedings including the tutorials,
invited presentations, challenge winner articles and other refereed articles submitted to the
workshop.

4.1. Tutorials

The workshop provided two foundational tutorials included in this proceeding. The morning
tutorial covered Deep Learning of Representations for Unsupervised and Transfer Learning
with Yoshua Bengio from the Université de Montréal (Bengio, 2012). Deep learning algo-
rithms seek to exploit the unknown structure in the input distribution in order to discover
good representations, often at multiple levels, with higher-level learned features defined
in terms of lower-level features. The paper focusses on why unsupervised pre-training of
representations using autoencoders and Restricted Boltzmann Machines can be useful, and
how it can be exploited in the transfer learning scenario, where we care about predictions
on examples that are not from the same distribution as the training distribution.

The afternoon tutorial entitled Towards Heterogeneous Transfer Learning was presented
by Qiang Yang, Hong Kong University of Science, co-author of an authoritative review of
transfer learning (Pan and Yang, 2010). Transfer learning has focused on knowledge trans-
fer between domains with the same or similar input spaces. The heterogeneous transfer
approach considers the ability to use knowledge from very different task domains and input
spaces. The authors demonstrated heterogeneous transfer learning between text classifi-
cation and image classification domains even when there are no explicit feature mappings
provided. They explained that the key is to identify and maximize the commonalities among
the internal structures (features) of the different domains.

4.2. Challenge Winner Articles

Three teams were presented awards at the workshop for their winning performances on the
UTL Challenge and their authorship. This section will summarize the papers describing
these winning entries.

The first place award for phase 1 of the UTL challenge (unsupervised learning) as well
as the Pascal2 best challenge paper award for phase 1 went to Fabio Aiolli and his paper
Transfer Learning by Kernel Meta-Learning (Aiolli, 2012). Recently, there have been a
number of researchers who have investigated the problem of finding a good kernel matrix
for a task. This is known as kernel learning. Kernel learning can be transformed into
a semi-supervised learning problem by using a large set of unlabeled data and a smaller
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set of labeled data. The paper presents a novel approach to transfer learning based on
kernel learning with both labeled and unlabeled data. Starting from a basic kernel, the
method attempts to learn chains of kernel transforms that produce good kernel matrices
for a set of source tasks. The same sequence of transformations are then applied to learn
the kernel matrix for a target task. The application of this method to the five datasets of
the Unsupervised and Transfer Learning (UTL) challenge produced the best results for the
first phase of the competition.

The LISA team of the Université de Montréal, Canada, ranked first in the second phase
of the UTL challenge (transfer learning), and their paper entitled Unsupervised and Trans-
fer Learning Challenge: A Deep Learning Approach (Mesnil et al, 2012) won the Pascal2
best challenge paper award for phase 2. The LISA team demonstrated the usefulness of
Deep Learning architectures to extract internal representations from a large set of unlabeled
training examples. This is accomplished by introducing gradually network layers trained in
an unsupervised way using the feature representation of lower layers. The final representa-
tion is then used to train a simple linear classifier with a small number of labeled training
examples.

The team “1055a” of Chuanren Liu, Jianjun Xie, Hui Xiong, and Yong Ge of CoreLogic
and Rutgers University won the second place award for phase 1 of the UTL challenge (unsu-
pervised learning) and came in at third place in phase 2 (transfer learning) (Liu et al., 2012).
Their paper entitled Stochastic Unsupervised Learning on Unlabeled Data was also selected
for inclusion in these proceedings. The paper introduces a stochastic unsupervised learn-
ing method that performs as a preprocessing K-means clustering on principal components
extracted from the raw unlabeled data. This removes the effect of noise and less-relevant
features improving the methods robustness. The approach utilizes a stochastic process to
combine multiple clustering assignments on each data point to alleviate over-fitting.

We also include in the supplemental material poster presentations and technical reports
of work, which was not yet ready for publication, but shows interesting new directions of
research:

The team of Zhixiang Xu (Airbus), Washington University in St. Louis, who took
third place in phase 1 of the UTL challenge presented a poster entitled “Rapid Feature
Learning with Stacked Linear Denoisers” (Xu et al, 2011). They investigated unsupervised
pre-training of deep architectures as feature generators for shallow classifiers. They imple-
mented a computationally efficient algorithm that mimics stacked denoising auto-encoders
(SdAs). Their feature transformation improves the results of SVM classification, sometimes
outperforming SdAs and deep neural networks.

Mehreen Saeed (Aliphlaila team), fourth place phase 2 UTL challenge), FAST, Pakistan,
communicated a technical report entitled “Use of Representations in High Dimensional
Spaces for Unsupervised and Transfer Learning Challenge” (Saeed, 2011). The author
shows how manifold learning and simple similarity kernels can be used to get good results.

Yann-Aël Le Borgne (Tryan team, fourth place in second ranking of phase 2 UTL chal-
lenge), VUB, Belgium, showed a poster entitled “Supervised Dimensionality Reduction in
the Unsupervised and Transfer Learning 2011 Competition” (Le Borgne, 2011). The author
presented preliminary results on a technique making use of all three subsets provided for
each dataset (development, validation, and final evaluation datasets) to assign labels to
samples. The author then uses partial least square (PLS) to extract features of interest.
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4.3. Fundamentals and Algorithms

The UTL workshop papers gathered in these proceedings follow two main axes. One axis
ranges from theory to application of transfer learning and the other from supervised
learning, to unsupervised learning and hybrid approaches. The following summarizes
each of articles along those two dimensions.

In Autoencoders, Unsupervised Learning, and Deep Architectures, Pierre Baldi of UC
Irvine, investigates the theoretical underbelly of autoencoders (Baldi, 2012). He presents
a mathematical framework for the study of both linear and non-linear autoencoders - par-
ticularly the non-linear case of a Boolean autoencoder. He shows that learning with a
Boolean autoencoder is equivalent to a clustering problem that can be solved in polynomial
time when the number of clusters is small and becomes NP complete when the number of
clusters is large. The framework sheds light on the connections between different kinds of
autoencoders, their learning complexity and their composition in deep architectures. The
paper brings together much of the theory on autoencoders, clustering, Hebbian learning,
and information theory.

Joachim Buhmann et al. of ETH, Zurich, present a paper entitled, “Information The-
oretic Model Selection for Pattern Analysis” (Buhmann et al, 2012). The authors propose
a method of model and model-order selection for unsupervised data clustering based on
information theory. Their approach ranks competing pattern cost functions according to
their ability to extract context sensitive information from noisy data with respect to the hy-
pothesis class. Sets of approximative solutions serve as a basis for an information theoretic
communication protocol. Inferred models maximize the so-called “approximation capacity”
that measures the mutual information between training data patterns and test data pat-
terns, each of which have been made optimally “coarse” through the controlled addition of
random noise. The approach is demonstrated using a Gaussian mixture model.

4.4. Supervised, Unsupervised and Transductive Approaches

4.4.1. Supervised

The workshop provided new insights into supervised learning approaches to transfer. Rus-
lan Salakhutdinov et al. of MIT, USA, presented their paper on One-Shot Learning with a
Hierarchical Nonparametric Bayesian Model (Salakhutdinov et al., 2012). One-shot learn-
ing is the ability to develop a general classification model from a single training example.
The authors develop a hierarchical Bayesian model that can transfer acquired knowledge
from previously learned categories to a novel category, in the form of a prior over category
means and variances. The model discovers how to group categories into meaningful super-
categories and infer to which super-category a novel example belongs, and thereby estimate
not only the new category’s mean but also an appropriate similarity metric. The method
is tested using the MNIST and MSR Cambridge image datasets and shown to perform sig-
nificantly better than simpler hierarchical Bayesian approaches, discovering new categories
in a completely unsupervised fashion.

In Inductive Transfer for Bayesian Network Structure Learning, Alexandru Niculescu-
Mizil (NEC Laboratories America) and Rich Caruana (Microsoft Research) consider the
problem of jointly learning the structures of Bayesian network models from multiple related

8



UTL Workshop

datasets (Niculescu-Mizil and Caruana, 2012). They present an algorithm that simulta-
neously learns a multi-task Bayesian network structure by transferring useful information
between the different datasets. The algorithm extends the heuristic search techniques used
in traditional structure learning to the multi-task case by defining a scoring function for
sets of structures (one structure for each dataset) and an efficient procedure for searching
for a set of structures that has a high score across all tasks. The approach assumes that
the true dependency structures of related problems are similar: the presence or absence of
arcs in some of the structures provides evidence for the presence or absence of those same
arcs in the other structures.

Kohei Hayashi and Takashi Takenouchi of the Nara Institute of Science and Technology,
Japan, in their paper Self-measuring Similarity for Multi-task Gaussian Process extend work
by Bonilla et al. (2008) on a multi-task Gaussian process framework (Hayashi et al, 2012).
Their approach incorporates similarities between tasks based on the observed responses,
which allows for the representation of much more complex data structures. The proposed
approach is able to construct covariance matrices via kernel functions even when additional
information such as example target values are available. The authors propose an efficient
conjugate-gradient-based algorithm that implements the approach. The method is shown
to perform the best to date on the Movielens 100k dataset.

4.4.2. Unsupervised

The workshop also provided a number of new approaches to transfer using unsupervised
learning or combinations of supervised and unsupervised transfer learning. In Clustering:
Science or Art?, Ulrike von Luxburg et al. examine whether the quality of different clus-
tering algorithms can be compared by a general, scientifically sound procedure, which is
independent of particular clustering algorithms (von Luxburg et al., 2012). They conclude
that clustering should not be treated as an application-independent mathematical problem,
but should always be studied in the context of its end-use. Different reasons for clustering
bring with it different metrics for success. They argue that research spent on developing a
“taxonomy of clustering problems” will be more fruitful than efforts spent on developing a
domain independent clustering algorithm.

Preferably, high dimensional data, such as pixels of an image, are better described
in terms of a small number of meta-features. In their paper Unsupervised dimensionality
reduction via gradient-based matrix factorization with two learning rates and their automatic
updates , Vladimir Nikulin and Tian-Hsiang Huang, of University of Queensland, Australia
prescribe three related methods that combine to reduce noise while still capturing the
essential features of the original data (Nikulin and Huang, 2012). The resulting features
can then be used to do supervised classification. The proposed methods are demonstrated
on the classification of gene expression data from cancer research where the number of
labeled samples is relatively small compared to the number of genes in each sample.

4.4.3. Transductive

Ayan Acharya et al. report in their paper Transfer Learning with Cluster Ensembles a
method of transferring learned knowledge from a set of source tasks when the target task
has no labeled examples (Acharya et al, 2012). They present an optimization framework
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that applies the outputs of a cluster ensemble on a target task to moderate posterior prob-
ability estimates provided by classifiers previously induced on a related domain of tasks, so
that the posterior probabilities are better adapted to the new context. This framework is
general in that it admits a wide range of loss functions and classification/clustering methods.
Empirical results on both text and hyperspectral data indicate that the proposed method
can yield substantially superior classification results as compared to competing transductive
learning techniques (Transductive SVM, Locally Weighted Ensemble).

4.5. Case studies

The final five papers from the workshop can be considered applications or case studies of
unsupervised and transfer learning. The first paper, entitled Transfer Learning in Compu-
tational Biology applies multiple task learning to several problems in computational biology
where the generation of training labels is often very costly (Widmer and Rätsch, 2012). The
authors, Christian Widmer and Gunnar Raetsch, of MPI in Germany, received the Pascal2
best paper award at the workshop for this work. The paper presents two problems from
sequence biology and uses regularization (SVM) based transfer learning methods, with a
special focus on the case of a hierarchical relationship between tasks. The authors propose
strategies to learn or refine a measure of task relatedness so as to optimize the transfer from
source to target task.

In Transfer Learning in Sequential Decision Problems: A Hierarchical Bayesian Ap-
proach, Aaron Wilson et al, of Oregon State University, show that transfer is doubly ben-
eficial in reinforcement learning where the agent not only needs to generalize from sparse
experience, but also needs to discover good opportunities to learn in the first place (Wilson
et al., 2012). They show that the hierarchical Bayesian framework can be readily adapted
to sequential decision problems and provides a natural formalization of transfer learning.

Transfer Learning for Auto-gating of Flow Cytometry Data. by Gyemin Lee et al. of the
University of Michigan, Ann Arbor, apply transfer learning to flow cytometry, a technique
for rapidly quantifying physical and chemical properties of large numbers of cells (Lee et al.,
2012). In clinical applications, flow cytometry data must be manually “gated”(scored) to
identify cell populations of interest. The authors leverage existing datasets, previously
gated by experts, to automatically gate a new flow cytometry dataset while accounting
for biological variation. An empirical study demonstrates the approach by automatically
gating lymphocytes from peripheral blood samples. The authors received the Pascal2 best
student paper award for this work.

Philemon Brakel and Benjamin Schrauwen, of Ghent University, Belgium, use a hierar-
chical Bayesian logistic regression model to perform a binary document classification task
in the paper Transfer Learning for Document Classification: Sampling Informative Priors
Their approach estimates the covariance matrix of a multivariate Gaussian prior over the
model parameters using a set of related tasks. Inference was done using a combination of
Hybrid Monte Carlo and Gibbs sampling. They demonstrate that the obtained priors con-
tain information that is beneficial for developing a model for document classification from
small training sets.

Finally, in Divide and Transfer: an Exploration of Segmented Transfer to Detect Wikipedia
Vandalism, Si-Chi Chin and W. Nick Street, of the University of Iowa, apply knowledge
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transfer methods to the problem of detecting Wikipedia vandalism (Chin and Street, 2012).
Transfer is used to address the problem of small amounts of labeled data by leveraging unla-
beled data and previously acquired knowledge from related source tasks. Avoiding negative
transfer becomes a primary concern given the diverse nature of Wikipedia modifications
that can occur. The proposed two segmented transfer approaches map unlabeled data from
the target task to the most related cluster from the source task, classifying the unlabeled
data using the most relevant learned models.

5. Summary

Challenges foster progress in particular scientific domains, but their specific formulation
may bias research in too narrow ways. For that reason, our workshop invited diverse con-
tributions on the theme of transfer learning, in addition to discussing the results of the
challenge we organized. As a result, it is more difficult to draw general conclusions sum-
marizing the enormous body of work that this represents. In some sense, transfer learning
covers all the aspects of machine learning, with the only particularity that training data
includes “source” domains and/or tasks that do are different from the “target” domains
and/or tasks of interest. Within this general setting, many types of transfer learning for-
mulations have been made. From our point of view, the most notable contribution of these
proceedings is to demonstrate the effectiveness of recently proposed methods in the context
of a wide variety of real world applications, both through the results of the challenge and
other contributed papers. We hope that the mix of articles collected in this proceedings
issue will spark further interest and curiosity in transfer learning. There is much work to
be done in this area in terms of new computational learning theory and the application of
existing algorithms and techniques.
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