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Abstract

It has been hypothesized, and supported with
experimental evidence, that deeper represen-
tations, when well trained, tend to do a bet-
ter job at disentangling the underlying fac-
tors of variation. We study the following re-
lated conjecture: better representations, in
the sense of better disentangling, can be ex-
ploited to produce Markov chains that mix
faster between modes. Consequently, mix-
ing between modes would be more efficient at
higher levels of representation. To better un-
derstand this, we propose a secondary conjec-
ture: the higher-level samples fill more uni-
formly the space they occupy and the high-
density manifolds tend to unfold when rep-
resented at higher levels. The paper dis-
cusses these hypotheses and tests them ex-
perimentally through visualization and mea-
surements of mixing between modes and in-
terpolating between samples.

1. Introduction and Background

Deep learning algorithms attempt to discover multiple
levels of representation of the given data (see (Ben-
gio, 2009) for a review), with higher levels of repre-
sentation defined hierarchically in terms of lower level
ones. The central motivation is that higher-level rep-
resentations can potentially capture relevant higher-
level abstractions. Mathematical results in the case of
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specific function families have shown that choosing a
sufficient depth of representation can yield exponen-
tial benefits, in terms of size of the model, to repre-
sent some functions (Hastad, 1986; Hastad and Gold-
mann, 1991; Bengio et al., 2006; Bengio and LeCun,
2007; Bengio and Delalleau, 2011). The intuition be-
hind these theoretical advantages is that lower-level
features or latent variables can be re-used in many
ways to construct higher-level ones, and the poten-
tial gain becomes exponential with respect to depth of
the circuit that relates lower-level features and higher-
level ones (thanks to the exponential number of paths
in between). The ability of deep learning algorithms to
construct abstract features or latent variables on top
of the observed variables relies on this idea of re-use,
which brings with it not only computational but also
statistical advantages in terms of sharing of statistical
strength, e.g., as already exploited in multi-task learn-
ing (Caruana, 1995; Baxter, 1997; Collobert and We-
ston, 2008) and learning algorithms involving parame-
ter sharing (Lang and Hinton, 1988; LeCun, 1989).

There is another — less commonly discussed — moti-
vation for deep representations, introduced in Bengio
(2009): the idea that they may help to disentangle
the underlying factors of variation. Clearly, if we had
learning algorithms that could do a good job of dis-
covering and separating out the underlying causes and
factors of variation present in the data, it would make
further processing (typically, taking decisions) much
easier. One could even say that the ultimate goal of
AT research is to build machines that can understand
the world around us, i.e., disentangle the factors and
causes it involves, so progress in that direction seems
important. If learned representations do a good job
of disentangling the underlying factors of variation,
earning (on top of these representations, e.g., towards
specific tasks of interest) becomes substantially easier



Better Mixing via Deep Representations

because disentangling counters the effects of the curse
of dimensionality. With good disentangling, there is
no need for further learning, only good inference. Sev-
eral observations suggest that some deep learning algo-
rithms indeed help to disentangle the underlying fac-
tors of variation (Goodfellow et al., 2009; Glorot et al.,
2011). However, it is not clear why, and to what extent
in general (if any), different deep learning algorithms
may sometimes help this disentangling.

Many deep learning algorithms are based on some
form of unsupervised learning, hence capturing salient
structure in the data distribution. Whereas deep
learning algorithms have mostly been used to learn
features and exploit them for classification or regres-
sion tasks, their unsupervised nature also means that
in several cases they can be used to generate samples.
In general the associated sampling algorithms involve
a Markov Chain and MCMC techniques, and these can
notoriously suffer from a fundamental problem of mix-
ing between modes: it is difficult for the Markov chain
to jump from one mode of the distribution to another,
when these are separated by large low-density regions,
a common situation in real-world data, and under
the manifold hypothesis (Cayton, 2005; Narayanan and
Mitter, 2010). This hypothesis states that natural
classes present in the data are associated with low-
dimensional regions in input space (manifolds) near
which the distribution concentrates, and that differ-
ent class manifolds are well-separated by regions of
very low density. Slow mixing between modes means
that consecutive samples tend to be correlated (belong
to the same mode) and that it takes many consecu-
tive sampling steps to go from one mode to another
and even more to cover all of them, i.e., to obtain
a large enough representative set of samples (e.g. to
compute an expected value under the target distribu-
tion). This happens because these jumps through the
empty low-density void between modes are unlikely
and rare events. When a learner has a poor model
of the data, e.g., in the initial stages of learning, the
model tends to correspond to a smoother and higher-
entropy (closer to uniform) distribution, putting mass
in larger volumes of input space, and in particular,
between the modes (or manifolds). This can be visu-
alized in generated samples of images, that look more
blurred and noisy. Keep in mind that MCMCs tend to
make moves to nearby probable configurations. Mixing
between modes is therefore initially easy for such poor
models. However, as the model improves and its cor-
responding distribution sharpens near where the data
concentrate, mixing between modes becomes consider-
ably slower. Making one unlikely move (i.e., to a low-
probability configuration) may be possible, but mak-

ing N such moves becomes exponentially unlikely in
N, as illustrated in Figure 1. Since sampling is an
integral part of many learning algorithms (e.g., to es-
timate the log-likelihood gradient), slower mixing be-
tween modes then means slower or poorer learning,
and one may even suspect that learning stalls at some
point because of the limitations of the sampling algo-
rithm. To improve mixing between modes, a powerful
idea that has been explored recently for deep learning
algorithms (Desjardins et al., 2010; Cho et al., 2010;
Salakhutdinov, 2010b;a) is tempering (Neal, 1994).
The idea is to use smoother densities (associated with
higher temperature in a Boltzmann Machine or Markov
Random Field formulation) to make quick but approx-
imate jumps between modes, but use the sharp “cor-
rect” model to actually generate the samples of in-
terest around these modes, and allow samples to be
exchanged between the different levels of temperature.

Here we want to discuss another possibly related idea,
and claim that mizing between modes is easier when
sampling at the higher levels of representation. The
objective is not to propose a new sampling algorithm
or a new learning algorithm, but rather to investi-
gate this hypothesis through experiments using ex-
isting deep learning algorithms. The objective is to
further our understanding of this hypothesis through
more specific hypotheses aiming to explain why this
would happen, using further experimental validation
to test these more specific hypotheses. The idea that
deeper generative models produce not only better fea-
tures for classification but also better quality samples
(in the sense of better corresponding to the target dis-
tribution being learned) is not novel and several obser-
vations support this hypothesis already, some quanti-
tatively (Salakhutdinov and Hinton, 2009), some more
qualitative (Hinton et al., 2006). The specific contri-
butions of this paper is to focus on why the samples
may be better, and in particular, why the chains may
converge faster, based on the previously introduced
idea that deeper representations can do a better job of
disentangling the underlying factors of representation.

2. Hypotheses
We first clarify the first hypothesis to be tested here.

Hypothesis H1: Depth vs Better Mix-
ing Between Modes. A successfully
trained deeper architecture has the poten-
tial to yield representation spaces in which
Markov chains mix faster between modes.

If experiments validate that hypothesis, the most im-
portant next question is: why? The main explanation
we conjecture is formalized in the following hypothesis.
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N

Figure 1. Top: early during training, MCMC mixes easily
between modes because the estimated distribution has high
entropy and puts enough mass everywhere for small-steps
movements (MCMC) to go from mode to mode. Bottom:
later on, training relying on good mixing can stall because
estimated modes are separated by vast low-density deserts.

Hypothesis H2: Depth vs Disentan-
gling. Part of the explanation of H1 is
that deeper representations can better dis-
entangle the underlying factors of variation.

Why would that help to explain H1? Imagine an ab-
stract (high-level) representation for object image data
in which one of the factors is the “reverse video bit”,
which inverts black and white, e.g., flipping that bit
replaces intensity € [0,1] by 1 — x. With the de-
fault value of 0, the foreground object is dark and the
background is light. Clearly, flipping that bit does not
change most of the other semantic characteristics of
the image, which could be represented in other high-
level features. However, for every image-level mode,
there would be a reverse-video counterpart mode in
which that bit is flipped: these two modes would be
separated by vast “empty” (low density) regions in
input space, making it very unlikely for any Markov
chain in input space (e.g. Gibbs sampling in an RBM)
to jump from one of these two modes to another, be-
cause that would require most of the input pixels or
hidden units of the RBM to simultaneously flip their
value. Instead, if we consider the high-level representa-
tion which has a “reverse video” bit, flipping only that
bit would be a very likely event under most Markov
chain transition probabilities, since that flip would be
a small change preserving high probability. As another
example, imagine that some of the bits of the high-level
representation identify the category of the object in
the image, independently of pose, illumination, back-
ground, etc. Then simply flipping one of these object-
class bits would also drastically change the raw pixel-
space image, while keeping likelihood high. Jumping
from an object-class mode to another would therefore
be easy with a Markov chain in representation-space,
whereas it would be much less likely in raw pixel-space.

Another point worth discussing (and which should be
considered in future work) in H2 is the notion of de-

gree of disentangling. Although it is somewhat clear
what a completely disentangled representation would
look like, deep learning algorithms are unlikely to do
a perfect job of disentangling, and current algorithms
do it in stages, with more abstract features being ex-
tracted at higher levels. Better disentangling would
mean that some of the learned features have a higher
mutual information with some of the known factors.
One would expect at the same time that the features
that are highly predictive of one factor be less so of
other factors, i.e., that they specialize to one or a few
of the factors, becoming invariant to others. Please
note here the difference between the objective of learn-
ing disentangled representations and the objective of
learning invariant features (i.e., invariant to some spe-
cific factors of variation which are considered to be
like nuisance parameters). In the latter case, one has
to know ahead of time what the nuisance factors are
(what is noise and what is signal?). In the former, it
is not needed: we only seek to separate out the factors
from each other. Some features should be sensitive to
one factor and invariant to the others.

Let us now consider additional hypotheses that spe-
cialize H2.

Hypothesis H3: Disentangling Un-
folds and Expands. Part of the explana-
tion of H2 is that more disentangled repre-
sentations tend to (a) unfold the manifolds
near which raw data concentrates, as well
as (b) expand the relative volume occupied
by high-probability points near these man-
ifolds.

H3(a) says is that disentangling has the effect that the
projection of high-density manifolds in the high-level
representation space have a smoother density and are
easier to model than the corresponding high-density
manifolds in raw input space. Let us again use an
object recognition analogy. If we have perfectly dis-
entangled object identity, pose and illumination, the
high-density manifold associated with the distribution
of features in high-level representation-space is flat: we
can interpolate between some training examples (i.e.
likely configurations) and yet stay in a high-probability
region. For example, we can imagine that interpo-
lating between two images of the same object at dif-
ferent poses (lighting, position, etc.) in a high-level
representation-space would yield images of the ob-
ject at intermediate poses (i.e., corresponding to likely
natural images), whereas interpolating in pixel space
would give a superposition of the two original images
(i.e., unlike any natural image). If interpolating be-
tween high-probability examples (i.e. within their con-



Better Mixing via Deep Representations

vex set) gives high-probability examples, then it means
that the distribution is more uniform (fills the space)
within that convex set, which is what H3(b) is saying.
In addition, a good high-level representation does not
need to allocate as much real estate (sets of values)
for unlikely configurations. This is already what most
unsupervised learning algorithms tend to do. For ex-
ample, dimensionality reduction methods such as the
PCA tend to define representations where most con-
figurations are likely (but these only occupy a sub-
space of the possible raw-space configurations). Also,
in clustering algorithms such as k-means, the train-
ing criterion is best minimized when clusters are ap-
proximately equally-weighted, i.e., the average poste-
rior distribution over cluster identity is approximately
uniform. Something similar is observed in the brain
where different areas of somatosensory cortex corre-
spond to different body parts, and the size of these ar-
eas adaptively depends (Flor, 2003) on usage of these
(i.e., more frequent events are represented more finely
and less frequent ones are represented more coarsely).
Again, keep in mind that the actual representations
learned by deep learning algorithms are not perfect,
but what we will be looking for here is whether deeper
representations correspond to more unfolded manifolds
and to more locally uniform distributions, with high-
probability points occupying an overall greater volume
(compared to the available volume).

3. Representation-Learning Algorithms

The learning algorithms used in this paper to explore
the preceding hypotheses are the Deep Belief Network
or DBN (Hinton et al., 2006), trained by stacking Re-
stricted Boltzmann Machines or RBMs, and the Con-
tractive Auto-Encoder or CAE (Rifai et al., 2011a), for
which a sampling algorithm was recently proposed (Ri-
fai et al., 2012). In the experiments, the distribution
under consideration is the asymptotic distribution as-
sociated with the stochastic process used to generate
samples. In the case of DBNs it clearly corresponds to
the analytically defined distribution associated with
the formula for the DBN probability. The Markov
transition operator for DBNs is the one associated
with Gibbs sampling (in the top RBM) (Hinton et al.,
2006). The Markov transition operator for stacked
CAEs has been spelled out in Rifai et al. (2012) and
linked to Langevin MCMC in Alain et al. (2012).

Each layer of the DBN is trained as an RBM, and a
1-layer DBN is just an RBM. An RBM defines a joint
distribution between a hidden layer h and a visible
layer v. Gibbs sampling at the top level of the DBN is
used to obtain samples from the model: the sampled
top-level representations are stochastically projected

down to lower levels through the conditional distribu-
tions P(v|h) defined in each RBM. To avoid unneces-
sary additional noise, and like previous authors have
done, at the last stage of this process (i.e. to obtain
the raw-input level samples), only the mean-field val-
ues of the visible units are used, i.e., E[v|h]. In the
experiments on face data (where grey levels matter a
lot), a Gaussian RBM is used at the lowest level.

An auto-encoder (LeCun, 1987; Hinton and Zemel,
1994) is parametrized through an encoder function
f mapping input-space vector = to representation-
space vector h, and a decoder function g mapping
representation-space vector h to input-space recon-
struction r. The experiments with the CAE are with
h = f(x) = sigmoid(Wz 4+ b) and r = g(h) =
sigmoid(WTh + ¢). The CAE is a regularized auto-
encoder with tied weights (input to hidden weights
are the transpose of hidden to reconstruction weights).
Let J = 6’(;—(;) the Jacobian matrix of the encoder func-
tion. The CAE is trained to minimize a cross-entropy
reconstruction loss plus a contractive regularization
penalty «||J||% (the sum of the squared elements of
the Jacobian matrix). Like RBMs, CAE layers can
be stacked to form deeper models, and one can ei-
ther view them as deep auto-encoders (by composing
the encoders together and the decoders together) or
like in a DBN, as a top-level generative model (from
which one can sample) coupled with encoding and de-
coding functions into and from the top level (by com-
posing the lower-level encoders and decoders). A sam-
pling algorithm was recently proposed for CAEs (Rifai
et al., 2012), alternating between projecting through
the auto-encoder (i.e. performing a reconstruction)
and adding Gaussian noise JJ ¢ in the directions of
variation captured by the auto-encoder.

4. Experiments

The experiments have been performed on the MNIST
digits dataset (LeCun et al., 1998) and the Toronto
Face Database (Susskind et al., 2010), TFD. The for-
mer has been heavily used to evaluate many deep
learning algorithms, while the latter is interesting be-
cause of the manifold structure it displays, and for
which the main control factors (such as emotion and
person identity) are known.

We have varied the number of hidden units at each
layer independently for shallow and deep networks,
and the models that gave best validation performance
for each depth are shown. The qualitative aspects of
the results were insensitive to layer size. The results
reported are for DBNs with 768-1024-1024 layer sizes
(28%28 input) on MNIST, and 2304-512-1024 on TFD
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(48x48 input). The CAEs have sizes 768-1000-1000
and 2304-1000-1000 on MNIST and TFD respectively.

4.1. Sampling at Different Depths
4.1.1. BETTER SAMPLES AT HIGHER LEVELS

To test H1, we first plot sequences of samples at var-
ious depths. One can verify in Fig. 2 that samples
obtained at deeper layers are visually more likely and
mix faster between modes.

In addition, we measure the quality of the obtained
samples, using a procedure for the comparison of sam-
ple generators described in Breuleux et al. (2011).
Note that the mixing properties measured here are
a consequence of the underlying models as well as
of the chosen sampling procedures. For this reason,
we have chosen to monitor the quality of the samples
with respect to the original data generating distribu-
tion that was used to train the model. The procedure
of Breuleux et al. (2011) measures the log-likelihood of
a test set under the density computed from a Parzen
window density estimator built on generated samples
(10,000 samples here). Log-likelihoods for different
models are presented in Table 1 (rightmost columns).
Those results also suggest that the quality of the sam-
ples is higher if the Markov chain process used for sam-
pling takes place in the upper layers.

This observation agrees with H3(b) that moving in
higher-level representation spaces where the manifold
has been expanded provides higher quality samples
than moving in the raw input space where it may be
hard to stay in high density regions.

4.1.2. VISUALIZING REPRESENTATION-SPACE BY
INTERPOLATING BETWEEN NEIGHBORS

According to H3(a), deeper layers tend to locally un-
fold the manifold near high-densities regions of the
input space, while according to H3(b) there should
be more relative volume taken by plausible configu-
rations in representation-space. Both of these would
imply that convex combinations of neighboring exam-
ples in representation-space correspond to more likely
input configurations. Indeed, interpolating between
points on a flat manifold should stay on the manifold.
Furthermore, when interpolating between examples of
different classes (i.e., different modes), H3(b) would
suggest that most of the points in between (on the
linear interpolation line) should correspond to plau-
sible samples, which would not be the case in input
space. In Fig. 3, we interpolate linearly between neigh-
bors in representation space and visualize in the in-
put space the interpolated points obtained at various
depths. One can see that interpolating at deeper levels

gives visually more plausible samples.

4.2. Measuring Mixing Between Modes by
Counting Number of Classes Visited

We evaluate here the ability of mixing among various
classes. We consider sequences of length 10, 20 or 100
and compute histograms of number of different classes
visited in a sequence, for the two different depths and
learners, on TFD. Since classes typically are in dif-
ferent modes (manifolds), counting how many differ-
ent classes are visited in an MCMC run tells us how
quickly the chain mixes between modes. We have cho-
sen this particular method to monitor mixing modes
because it focuses more directly on visits to modes,
instead of the traditional autocorrelation of the sam-
ples (which measures how fast the samples change).
Fig. 4(c,f) show that the deeper architectures visit
more classes and the CAE mixes faster than the DBN.

4.3. Occupying More Volume Around Data
Points

In these experiments (Fig. 4 (a,b,d,e)) we estimate
the quality of samples whose representation is in the
neighborhood of training examples, at different levels
of representation. In the first setting (Fig. 4 (a,b)),
the samples are interpolated at the midpoint between
an example and its k-th nearest neighbor, with k& on
the x-axis. In the second case (Fig. 4 (d,e)), isotropic
noise is added around an example, with noise stan-
dard deviation on the x-axis. In both cases, 500 sam-
ples are generated for each data point plotted on the
figures, with the y-axis being the log-likelihood intro-
duced earlier, i.e., estimating the quality of the sam-
ples. We find that on higher-level representations of
both the CAE and DBN, a much larger proportion of
the local volume is occupied by likely configurations,
i.e., closer to the input-space manifold near which
the actual data-generating distribution concentrates.
Whereas the first experiment shows that this is true
in the convex set between neighbors at different dis-
tances (i.e., in the directions of the manifold), the sec-
ond shows that this is also true in random directions
locally (but of course likelihoods are also worse there).
The first result therefore agrees with H3(a) (unfold-
ing) and H3(b) (volume expansion), while the second
result mostly confirms H3(b).

4.4. Discriminative Ability vs Volume
Expansion

Hypothesis H3 could arguably correspond to worse
discriminative power?: if on the higher-level represen-
tations the different classes are “closer” to each other

2as pointed out by Aaron Courville, personal communication
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Figure 2. Sequences of 25 samples generated with a CAE on TFD (rows 1 and 2, respectively for 1 or 2 hidden layers)
and with an RBM on MNIST (rows 3 and 4, respectively for 1 or 2 hidden layers). On TFD, the second layer clearly
allows to get quickly from woman samples (left) to man samples (right) passing by various facial expressions whereas the
single hidden layer model shows poor samples. Bottom rows: On MNIST, the single-layer model gets stuck near the same
mode while the second layer allows to mix among classes.

BT 4 5

(a) Interpolatlng between an example and 1t-s 200- th nearest nelghbor see caption below).

EEEEEEEEEEE
9999494444413
9999939434373

(c¢) Sequences of points interpolated at different depths

Figure 3. Linear interpolation between a data sample and the 200-th (a) and 1st (b) nearest neighbor, using representations
at various depths (top row=input space, middle row=1st layer, bottom row=2nd layer). In each 3 x 3 block the left and
right columns are test examples while the middle column is the image obtained by interpolation, based on different levels
of representation. Interpolating at higher levels clearly gives more plausible samples. Especially in the raw input space
(e.g., (a), 2nd block), one can see two mouths overlapping while only one mouth appears for the interpolated point at the
2nd layer. Interpolating with the 1-nearest neighbor does not show any difference between the levels because the nearest
neighbors are close enough for a linear interpolation to be meaningful, while interpolaing with the 200-th nearest neighbors
shows the failure of interpolation in raw input space but successful interpolation in deeper levels. In (c¢), we interpolate
between samples of different classes, at different depths (top=raw input, middle=1st layer, bottom=2nd layer). Note
how in lower levels one has to go through unplausible patterns, whereas in the deeper layers one almost jumps from a
high-density region of one class to another (of the other class).
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Figure 4. (a) (b) Local Convex Hull - Log-density computed w.r.t. linearly interpolated samples between an example and
its k-NNs, for k (x-axis) between 1 and 500. The manifold thus seem generally more unfolded (flatter) in deeper levels,
especially against raw input space, as interpolating between far points yields higher density under deeper representations.
(¢) (d) Local Convex Ball - Log-density of samples generated by adding Gaussian noise to representation at different levels
(o € ]0.01, 5], the x-axis): More volume is occupied by good samples on deeper layers. (e) (f) Mode Mixing Histograms -
distribution (y-axis) of number of classes visited (x-axis) for different models. (e) with 10 samples. (f) with 20 samples
for CAE, 100 samples with DBN. Deeper models mix much better.
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Classification Log-likelihood
MNIST TFD MNIST TFD
SVM MLP+ SVM MLP+
raw 8.34% - 33.48 +2.14 % - - -
CAE-1 | 1.97% | 1.14% 25.44 +2.45% | 24.12 +1.87 % 67.69 +£2.87 591.90 +12.27
CAE-2 | 1.73% | 0.81% 24.76 +2.46% | 23.73 +1.62% 121.17 +1.59 2110.09 +49.15
DBN-1 | 1.62% | 1.21% 26.85 +1.62% 28.14+1.40 —243.91 +54.11 604 +14.67
DBN-2 | 1.33% | 0.99% 26.54 +1.91% 27.79 +2.34 137.89 +2.11 1908.80 +65.94

Table 1. Left: Classification rates of various classifiers (SVM, MLP+) using representations at various depth (with CAE or
DBN) learned on the MNIST and TFD datasets. The DBN 0.99% error on MNIST has been obtained with a 3-layer DBN
and the 0.81% error with the Manifold tangent Classifier (Rifai et al., 2011b) that is based on a CAE-2 and discriminant
fine-tuning. MLP+ uses discriminant fine-tuning. Right: Log-likelihoods from Parzen-Windows density estimators based
on 10,000 samples generated by each model. This quantitatively confirms that the samples generated from deeper levels
are of higher quality, in the sense of better covering the zones where test examples are found.

(making it easier to mix between them), would it not
mean that they are more confusable? We first confirm
with the tested models (as a sanity check) that the
deeper level features are conducive to better classifi-
cation performance, in spite of their better generative
abilities and better mixing between modes.

We train a linear SVM on the concatenation of the
raw input with the upper layers representations (which
worked better than using only the top layer, a setup
already used successfully when there is no supervised
fine-tuning (Lee et al., 2009)). Results presented in
Table 1 show that the representation is more linearly
separable if one increases the depth of the architecture
and the information added by each layer is helpful for
classification. Also, fine-tuning a MLP initialized with
those weights is still the best way to reach state-of-
the-art performances.

To explain the good discriminant abilities of the deeper
layers (either when concatenated with lower layers or
when fine-tuned discriminatively) in spite of the better
mixing observed, we conjecture the help of a better dis-
entangling of the underlying factors of variation, and
in particular of the class factors. This would mean that
the manifolds associated with different classes are more
unfolded (as assumed by H3(a)) and possibly that dif-
ferent hidden units specialize more to specific classes
than they would on lower layers. Hence the unfolding
(H3(a)) and disentangling (H1) hypotheses reconcile
better discriminative ability with expanded volume of
good samples (H3(b)).

5. Conclusion

The following hypotheses were tested: (1) deeper rep-
resentations can yield better samples and better mix-
ing between modes; (2) this is due to better disentan-
gling; (3) this is associated with unfolding of the man-
ifold where data concentrate along with expansion of
the volume good samples take in representation-space.

The experimental results were in agreement with these
hypotheses. They showed better samples and better
mixing on higher levels, better samples obtained when
interpolating between examples at higher levels, and
better samples obtained when adding isotropic noise
at higher levels. We also considered the potential con-
flict between the third hypothesis and better discrimi-
nation (confirmed on the models tested) and explained
it away as a consequence of the second hypothesis.

This could be immediate good news for applications
requiring to generate MCMC samples: by transport-
ing the problem to deeper representations, better
and faster results could be obtained. Future work
should also investigate the link between better mixing
and the process of training deep learners themselves,
when they depend on an MCMC to estimate the
log-likelihood gradient. One interesting direction is to
investigate the link between tempering and the better
mixing chains obtained from deeper layers.
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