
Stochastic Gradient Descent for Non-smooth Optimization:
Convergence Results and Optimal Averaging Schemes

Ohad Shamir ohadsh@microsoft.com

Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA

Tong Zhang tzhang@stat.rutgers.edu

Department of Statistics, Rutgers University, Piscataway NJ 08854, USA

Abstract

Stochastic Gradient Descent (SGD) is one
of the simplest and most popular stochas-
tic optimization methods. While it has al-
ready been theoretically studied for decades,
the classical analysis usually required non-
trivial smoothness assumptions, which do not
apply to many modern applications of SGD
with non-smooth objective functions such as
support vector machines. In this paper, we
investigate the performance of SGD without
such smoothness assumptions, as well as a
running average scheme to convert the SGD
iterates to a solution with optimal optimiza-
tion accuracy. In this framework, we prove
that after T rounds, the suboptimality of the
last SGD iterate scales as O(log(T)/

√
T) for

non-smooth convex objective functions, and
O(log(T)/T) in the non-smooth strongly con-
vex case. To the best of our knowledge, these
are the first bounds of this kind, and almost
match the minimax-optimal rates obtainable
by appropriate averaging schemes. We also
propose a new and simple averaging scheme,
which not only attains optimal rates, but can
also be easily computed on-the-fly (in con-
trast, the suffix averaging scheme proposed
in Rakhlin et al. (2011) is not as simple to
implement). Finally, we provide some exper-
imental illustrations.

1. Introduction

This paper considers one of the simplest and most
popular stochastic optimization algorithms, namely

Proceedings of the 30 th International Conference on Ma-
chine Learning, Atlanta, Georgia, USA, 2013. JMLR:
W&CP volume 28. Copyright 2013 by the author(s).

Stochastic Gradient Descent (SGD). SGD can be used
to optimize any convex function F over a convex do-
mainW, given access only to unbiased estimates of F ’s
gradients (or more generally, subgradients1). This fea-
ture makes it very useful for learning problems, where
our goal is to minimize generalization error based only
on a finite sampled training set. Moreover, SGD is
extremely simple and highly scalable, making it par-
ticularly suitable for large-scale learning problems.

The algorithm itself proceeds in rounds, and can be
described in just a few lines: We initialize w1 ∈ W
(following common practice, we will assume w1 = 0).
At round t = 1, 2, . . ., we obtain a random estimate ĝt
of a subgradient gt ∈ ∂F (wt) so that Eĝt = gt, and
update the iterate wt as follows:

wt+1 = ΠW(wt − ηtĝt),

where ηt is a suitably chosen step-size parameter, and
ΠW denotes projection on W.

In terms of theoretical analysis, SGD has been stud-
ied for decades (for instance, see Kushner & Yin (2003)
and references therein), but perhaps surprisingly, there
are still important gaps left in our understanding of
this method. First of all, most classical results look at
asymptotic convergence rates, which do not apply to a
fixed iteration budget T . In recent years, more atten-
tion has been devoted to non-asymptotic bounds (e.g.,
Bach & Moulines (2011)). However, these classical
convergence bounds often make non-trivial smooth-
ness assumptions on the function F , such as Lipschitz-
continuity of the gradient or higher-order derivatives.
In modern applications, these assumptions often do
not hold. For example, if SGD is used to solve the
support-vector machine optimization problem (with
the standard non-smooth hinge-loss) on a finite train-
ing set, then the underlying objective function F is

1Following a common convention, we still refer to the
algorithm in this case as “gradient descent”.

SGD: Convergence Results and Optimal Averaging Schemes

essentially non-smooth, even at the optimal solution.
In general, for machine learning applications F may
be non-smooth whenever one uses a non-smooth loss
function, and thus a smoothness-based analysis is not
appropriate.

Without assuming smoothness, most of the existing
analysis has been carried out in the context of online
learning - a more difficult setting than our stochas-
tic setting, where the subgradients are assumed to be
provided by an adversary. Using online-to-batch con-
version, it is possible to show that after T iterations,
the average of the iterates, (w1 + . . . + wT)/T , has
O(log(T)/T) optimization error for strongly-convex F
(see precise definition in Sec. 2), and O(1/

√
T) error

for general convex F (Zinkevich, 2003; Hazan et al.,
2007; Hazan & Kale, 2011). However, (Rakhlin et al.,
2011) showed that simple averaging is provably sub-
optimal in a stochastic setting. Instead, they pro-
posed averaging the last αT iterates of SGD (where
α ∈ (0, 1), e.g. 1/2), and showed that this averag-
ing scheme has an optimal O(1/T) convergence rate.
In comparison, in the non-smooth setting, there are
Ω(1/

√
T) and Ω(1/T) lower bounds for convex and

strongly-convex problems, respectively (Agarwal et al.,
2012).

These results leave open several issues. First, they
pertain to averaging significant parts of the iterates,
although in practice averaging just over the last few
iterates, or returning the last iterate wT , often works
quite well (e.g. (Shalev-Shwartz et al., 2011)). Un-
less F is smooth, the previous results cannot say much
about the optimization error of individual iterates. For
example, the results in (Rakhlin et al., 2011) only im-
ply an O(1/

√
T) convergence rate for the last iterate

wT with strongly-convex functions, and we are not
aware of any results for the last iterate wT in the gen-
eral convex case. In fact to the best of our knowledge,
even for the simpler (non-stochastic) gradient descent
method (where ĝt = gt), we do not know any existing
results that can guarantee the performance of each in-
dividual iterate wT . Second, the theoretically optimal
suffix-averaging scheme proposed in (Rakhlin et al.,
2011) has some practical limitations, since it cannot
be computed on-the-fly: unless we can store all iter-
ates w1, . . . ,wT in memory, one needs to know the
stopping time T beforehand, in order to know when
to start computing the suffix average. In practice, T
is often not known in advance. This can be partially
remedied with a so-called doubling trick, but it is still
not a simple or natural procedure compared to just
averaging all iterates, and the latter was shown to be
suboptimal in (Rakhlin et al., 2011).

In this paper, we investigate the convergence rate of
SGD and the averaging schemes required to obtain
them, with the following contributions:

• We prove that the expected optimization error of
every individual iterate wT is O(log(T)/T) for
strongly-convex F , and O(log(T)/

√
T) for gen-

eral convex F without smoothness assumptions
on F . These results show that the suboptimal-
ity of the last iterate is not much worse than the
optimal rates obtainable by averaging schemes,
and partially addresses an open problem posed
in (Shamir, 2012). Moreover, the latter result
is (to the best of our knowledge) the first finite-
sample bound on individual iterates of SGD for
non-smooth convex optimization. The proof re-
lies on a technique to reduce results on averages
of iterates to results on individual iterates, which
was implicitly used in (Zhang, 2004) for a some-
what different setting.

• We improve the existing expected error bound
on the suffix averaging scheme of (Rakhlin
et al., 2011), from O((1 + log(1

1−α))/αT) to

O(log(1
min{α,1−α})/T).

• We propose a new and very simple running av-
erage scheme, called polynomial-decay averaging,
and prove that it enjoys optimal rates of conver-
gence. Unlike suffix-averaging, this new running
average scheme can be easily computed on-the-fly.

• We provide a simple experimental study of the
averaging schemes discussed in the paper.

We emphasize that although there exist other algo-
rithms with O(1/T) convergence rate in the strongly
convex case (e.g. (Hazan & Kale, 2011; Ouyang &
Gray, 2012)), our focus in this paper is on the simple
and widely-used SGD algorithm.

2. Preliminaries

We use bold-face letters to denote vectors. We let F
denote a convex function over a (closed) convex do-
main W, which is a subset of some Hilbert space with
an induced norm ‖ · ‖. We assume that F is mini-
mized at some w∗ ∈ W. Besides general convex F , we
will also consider the important sub-class of strongly-
convex functions. Formally, we say that a function
F is λ-strongly convex, if for all w,w′ ∈ W and any
subgradient g of F at w, it holds that

F (w′) ≥ F (w) + 〈g,w′ −w〉+
λ

2
‖w′ −w‖2,

SGD: Convergence Results and Optimal Averaging Schemes

where λ > 0. For a general convex function, the above
inequality can always be satisfied with λ = 0.

As discussed in the introduction, we consider the first-
order stochastic optimization setting, where instead
of having direct access to F , we only have access to
an oracle, which given some w ∈ W, returns a ran-
dom vector ĝ such that E[ĝ] ∈ ∂F (w). Our goal is
to use a bounded number T of oracle calls, and com-
pute some w̄ ∈ W such that the optimization error,
F (w̄)−F (w∗), is as small as possible. It is well-known
that this framework can be applied to learning prob-
lems (see for instance (Shalev-Shwartz et al., 2009)):
given a hypothesis class W and a set of T i.i.d. ex-
amples, we wish to find a predictor w whose expected
loss F (w) is close to optimal over W. Since the ex-
amples are chosen i.i.d., the subgradient of the loss
function with respect to any individual example can
be shown to be an unbiased estimate of a subgradient
of F . We will mostly consider bounds on the expected
error (over the oracle’s and algorithm’s randomness)
for simplicity, although it is possible to obtain high-
probability bounds in some cases.

In terms of the step-size ηt in the strongly-convex case,
we will generally assume it equals 1/(λt). We note that
this is without much loss of generality, since if the step
size is c/λt for some c ≥ 1, then it is equivalent to tak-
ing step sizes 1/(λ′t) where λ′ := λ/c ≤ λ is a lower-
bound on the strong convexity parameter. Since any
λ-strongly convex function is also λ′-strongly convex,
we can use the analysis here to get upper bounds in
terms of λ′, and if so desired, substitute λ/c instead of
λ′ in the final bound.

When we run SGD, we let ĝt denote the random vec-
tor obtained at round t (when we query at wt), and
let gt = E[ĝt] denote the underlying subgradient of
F . To facilitate our convergence bounds, we assume
that E[‖ĝt‖2] ≤ G2 for some fixed G. Also, when opti-
mizing general convex functions, we will assume that
the diameter of W, namely supw,w′∈W ‖w − w′‖, is
bounded by some constant D.

3. Convergence of Individual SGD
Iterates

We begin by considering the case of strongly convex F ,
and prove the following bound on the expected error of
any individual iterate wT . In this theorem as well as
later ones, we did not attempt to optimize constants.

Theorem 1. Suppose F is λ-strongly convex, and that
E[‖ĝt‖2] ≤ G2 for all t. Consider SGD with step sizes

ηt = 1/λt. Then for any T > 1, it holds that

E[F (wT)− F (w∗)] ≤ 17G2(1 + log(T))

λT
.

Proof. The beginning of the proof is standard. By
convexity ofW, we have the following for any w ∈ W:

E
[
‖wt+1 −w‖2

]
= E[‖ΠW(wt − ηtĝt)−w‖2]

≤ E
[
‖wt − ηtĝt −w‖2

]
≤ E

[
‖wt −w‖2

]
− 2ηtE[〈gt,wt −w〉] + η2tG

2.

Let k be an arbitrary element in {1, . . . , bT/2c}. Ex-
tracting the inner product, summing over all t =
T − k, . . . , T , and rearranging, we get

T∑
t=T−k

E[〈gt,wt −w〉] ≤ 1

2ηT−k
E[‖wT−k −w‖2]

+

T∑
t=T−k+1

E[‖wt −w‖2]

2

(
1

ηt
− 1

ηt−1

)
+
G2

2

T∑
t=T−k

ηt.

(1)

By convexity of F , we can lower bound 〈gt,wt − w〉
by F (wt) − F (w). Plugging this in and substituting
ηt = 1/λt, we get

E

[
T∑

t=T−k

(F (wt)− F (w))

]
≤ λ(T − k)

2
E[‖wT−k −w‖2]

+
λ

2

T∑
t=T−k+1

E[‖wt −w‖2] +
G2

2λ

T∑
t=T−k

1

t
. (2)

Now comes the crucial trick: instead of picking w =
w∗, as done in standard analysis ((Hazan et al., 2007;
Rakhlin et al., 2011)), we instead pick w = wT−k. We

also use the fact that E
[
‖wt −w∗‖2

]
≤ 4G2

λ2t ((Rakhlin
et al., 2011), Lemma 1), which implies that for any
t ≥ T − k,

E[‖wt −wT−k‖2]

≤2E
[
‖wt −w∗‖2 + ‖wT−k −w∗‖2

]
≤ 8G2

λ2

(
1

t
+

1

T − k

)
≤ 16G2

λ2(T − k)
≤ 32G2

λ2T
.

Plugging this back into Eq. (2), we get

E

[
T∑

t=T−k

(F (wt)− F (wT−k))

]
≤ 16G2k

λT
+
G2

2λ

T∑
t=T−k

1

t
.

Let Sk = 1
k+1

∑T
t=T−k E[F (wt)] be the expected aver-

age value of the last k + 1 iterates. The bound above
implies that

−E[F (wT−k)] ≤ −E[Sk]+
G2

2λ

(
32

T
+

T∑
t=T−k

1

(k + 1)t

)
.

SGD: Convergence Results and Optimal Averaging Schemes

By the definition of Sk and the inequality above, we
have

kE[Sk−1] = (k + 1)E[Sk]− E[F (wT−k)]

≤ (k + 1)E[Sk]− E[Sk] +
G2

2λ

(
32

T
+

T∑
t=T−k

1

(k + 1)t

)
,

and dividing by k, implies

E[Sk−1] ≤ E[Sk]+
G2

2λ

(
32

kT
+

T∑
t=T−k

1

k(k + 1)t

)
. (3)

Using this inequality repeatedly and summing from
k = 1 to k = bT/2c, we have

E[F (wT)] = E[S0] ≤ E[SbT/2c] +
16G2

λT

bT/2c∑
k=1

1

k

+
G2

2λ

bT/2c∑
k=1

T∑
t=T−k

1

k(k + 1)t
. (4)

It now just remains to bound these terms. E[ST/2] is
the expected average value of the last bT/2c iterates,
which was already analyzed in ((Rakhlin et al., 2011),
Theorem 5), yielding a bound of

E[SbT/2c] ≤ F (w∗) +
10G2

λT

for T > 1. Moreover, we have
∑bT/2c
k=1 (1/k) ≤ 1 +

log(T/2). Finally, we have

bT/2c∑
k=1

T∑
t=T−k

1

k(k + 1)t
≤
bT/2c∑
k=1

1

k(T − k)

=
1

T

bT/2c∑
k=1

(
1

k
+

1

T − k
) ≤ (1 + log(T))/T.

The result follows by substituting the above bounds
into Eq. (4) and simplifying for readability.

Using a similar technique, we can also get an individual
iterate bound, in the case of a general convex function
F that may be non-smooth. We note that a similar
technique was used in (Zhang, 2004), but for a different
algorithm (one with constant learning rate), and the
result was less explicit.

Theorem 2. Suppose that F is convex, and that for
some constants D,G, it holds that E[‖ĝt‖] ≤ G2 for
all t, and supw,w′∈W ‖w − w′‖ ≤ D. Consider SGD

with step sizes ηt = c/
√
t where c > 0 is a constant.

Then for any T > 1, it holds that

E[F (wT)− F (w∗)] ≤
(
D2

c
+ cG2

)
2 + log(T)√

T
.

Proof. The proof begins the same as in Thm. 1 (this
time letting k be an element in {1, . . . , T − 1}), up to
Eq. (1). Instead of substituting ηt = c/λt, we substi-
tute ηt = c/

√
t, to get the, E[‖wt −w‖2] by D2, pick

w = wT−k and slightly simplify to get

E [〈gt,wt −wT−k〉]

≤ D2

2c

(√
T −
√
T − k

)
+
G2

2

T∑
t=T−k

c√
t
.

By convexity, we can lower bound 〈gt,wt −wT−k〉 by
F (wt) − F (wT−k). Also, it is easy to verify (e.g. by

integration) that
∑T
t=T−k

1√
t
≤ 2(
√
T −
√
T − k − 1),

hence

E

[
T∑

t=T−k

(F (wt)− F (wT−k))

]

≤
(
D2

2c
+ cG2

)(√
T −
√
T − k − 1

)
=

(
D2

2c
+ cG2

)
k + 1√

T +
√
T − k − 1

≤
(
D2

2c
+ cG2

)
k + 1√
T
. (5)

As in the proof of Thm. 1, let Sk =
1
k+1

∑T
t=T−k E[F (wt)] be the expected average

value of the last K + 1 iterates. The bound above
implies that

−E[F (wT−k)] ≤ −E[Sk] +
D2/2c+ cG2

√
T

.

By the definition of Sk and the inequality above, we
have

kE[Sk−1] = (k + 1)E[Sk]− E[F (wT−k)]

≤ (k + 1)E[Sk]− E[Sk] +
D2/2c+ cG2

√
T

,

and dividing by k, implies

E[Sk−1] ≤ E[Sk] +
D2/2c+ cG2

k
√
T

.

Using this inequality repeatedly and by summing over
k = 1, . . . , T − 1, we have

E[F (wT)] = E[S0] ≤ E[ST−1] +
D2/2c+ cG2

√
T

T−1∑
k=1

1

k
.

(6)
It now just remains to bound the terms on the right
hand side. Using Eq. (1) with k = T − 1 and w = w∗,

SGD: Convergence Results and Optimal Averaging Schemes

and upper bounding the norms by D, it is easy to
calculate that

E[ST−1]− F (w∗) =
1

T
E

[
T∑
t=1

E[F (wt)− F (w∗)

]

≤
(
D2

c
+ cG2

)
1√
T
.

Also, we have
∑T−1
k=1 1/k ≤ (1 + log(T)). Plugging

these upper bounds into Eq. (6) and simplifying for
readability, we get the required bound.

4. Averaging Schemes

The bounds shown in the previous section imply that
individual iterates wT have O(log(T)/T) expected er-
ror in the strongly convex case, and O(log(T)/

√
T)

expected error in the convex case. These bounds are
close but not the same as the minimax optimal rates,
which are O(1/T) and O(1/

√
T) respectively. In this

section, we consider averaging schemes, which rather
than return individual iterates, return some weighted
combination of all iterates w1, . . . ,wT , attaining the
minimax optimal rates. We mainly focus here on the
strongly-convex case, since simple averaging of all iter-
ates is already known to be optimal (up to constants)
in the general convex case.

We first examine the case of α-suffix averaging, defined
as the average of the last αT iterates (where α ∈ (0, 1)
is a constant, and αT is assumed to be an integer):

w̄α
T =

1

αT

T∑
t=(1−α)T+1

wt.

In (Rakhlin et al., 2011), it was shown that this av-
eraging scheme results in an optimization error of
O((1 + log(1

1−α))/αT), which is optimal in terms of
T , but increases rapidly as we make α smaller. The
following theorem shows a tighter upper bound of
O(log(1

min{α,1−α})/T), which implies we can be much

more flexible in choosing α. Besides being of indepen-
dent interest, we will re-use this result in our proofs
later on.

Theorem 3. Under the conditions of Thm. 1, and
assuming αT is an integer, it holds that E[F (w̄α

T) −
F (w∗)] is at most

17G2
(

1 + log
(

1
min{α,(1+1/T)−α}

))
λT

.

Proof. Suppose first that αT ≤ bT/2c. The proof is
mostly identical to that of Thm. 1, except that instead

of using Eq. (3) to bound E[S0], we use it to bound

E[SαT−1] = 1
αT

∑T
t=(1−α)T+1 F (wt), which by convex-

ity upper bounds F (w̄α
T). We get:

E[SαT−1] ≤ E[SbT/2c] +
16G2

λT

bT/2c∑
k=αT

1

k

+
G2

2λ

bT/2c∑
k=αT

T∑
t=T−k

1

k(k + 1)t
,

Using the same argument as in the proof of Thm. 1,
and the fact that

∑βT
k=αT

1
k ≤ 1 + log(β/α) for any in-

tegers αT, βT that are no larger than T , we can obtain
the upper bounds

E[SbT/2c ≤F (w∗) + 10G2/λT

bT/2c∑
k=αT

1

k
≤1 + log(1/2α)

and

bT/2c∑
k=αT

T∑
t=T−k

1

k(k + 1)t
≤ 1

T

bT/2c∑
k=αT

(
1

k
+

1

T − k
)

≤ 1

T
((1 + log(1/2α)) + (1 + log(2(1− α))))

≤ 1

T
(2 + log(1/α)) .

Using the above estimates, with some simplifications
for readability, we get that E[F (w̄α

T) − F (w∗)] is at
most

17

(
1 + log

(
1

α

))
G2

λT
. (7)

This analysis assumed αT ≤ bT/2c. If α is larger, we
can use the existing analysis ((Rakhlin et al., 2011),
Theorem 5), and get that E[F (w̄α

T) − F (w∗)] is at
most (

4 + 5 log

(
1

1 + 1/T − α

))
G2

λT
. (8)

Combining Eq. (7) and Eq. (8) with a uniform upper
bound which holds for all α, we get the required bound.

We note that in the general convex case without as-
suming strong convexity, one can use an analogous
proof to show an upper bound of order log(1/α)/

√
T

for α-suffix averaging. In contrast, existing techniques
only imply a bound of order 1/

√
αT .

As discussed in the introduction, a limitation of suf-
fix averaging is that unless we can store all iterates in
memory, it requires us to guess the stopping time T

SGD: Convergence Results and Optimal Averaging Schemes

in advance. For example, if we do 1/2-suffix averag-
ing, we need to “know” when we got to iterate T/2
and should start averaging. In practice, the stopping
time T is often not known in advance and is deter-
mined empirically (e.g. till satisfactory performance
is obtained). One way to handle this is to decide
in advance on a fixed schedule of stopping times T
(e.g. T0, 2T0, 2

2T0, 2
3T0, . . . for some T0) and maintain

suffix-averages only for those times. However, this is
still not very flexible. In contrast, maintaining the av-
erage of all iterates up to time t can be done on-the-fly:
we initialize w̄1 = w1, and for any t > 1, we let

w̄t =

(
1− 1

t

)
w̄t−1 +

1

t
wt. (9)

Unfortunately, returning the average of all iterates as
in Eq. (9) is provably suboptimal and can harm per-
formance (Rakhlin et al., 2011). Alternatively, we can
easily maintain and return the current iterate wt, but
we only have a suboptimal O(log(t)/t) bound for it.

In the following, we analyze a new and very simple
running average scheme, denoted as polynomial-decay
averaging, and show that it combines the best of both
worlds: it can easily be computed on the fly, and it
gives an optimal rate. It is parameterized by a number
η ≥ 0, which should be thought of as a small constant
(e.g. η = 3), and the procedure is defined as follows:
w̄η

1 = w1, and for any t > 1,

w̄η
t =

(
1− η + 1

t+ η

)
w̄η
t−1 +

η + 1

t+ η
wt. (10)

For η = 0, this is exactly standard averaging (see
Eq. (9)), whereas η > 0 reduces the weight of ear-
lier iterates compared to later ones. Moreover, w̄η

t can
be computed on-the-fly, just as easily as computing a
standard average.

We note that after this paper was accepted for publi-
cation, a similar averaging scheme was independently
proposed and studied in (Lacoste-Julien et al., 2012).
Compared to our method, they consider a slightly dif-
ferent step-size and a specific choice of η = 1, using a
more direct proof technique tailored to this case.

An analysis of our averaging scheme is provided in the
theorem below.

Theorem 4. Suppose F is λ-strongly convex, and that
E[‖ĝt‖2] ≤ G2 for all t. Consider SGD initialized with
w1 and step-sizes ηt = 1/λt. Also, let η ≥ 1 be an
integer. Then E [F (wη

T)− F (w∗)] is at most

58
(

1 +
η

T

)(
η(η + 1) +

(η + 0.5)3(1 + log(T))

T

)
G2

λT

The assumption that η is an integer is merely for
simplicity. Also, we made no effort to optimize the
constants, which can be easily improved for specific
choices of η (see the proof as well as the analysis in
(Lacoste-Julien et al., 2012)).

Proof. We can rewrite the recursion as

w̄η
t =

t− 1

t+ η
w̄η
t−1 +

η + 1

t+ η
wt

for t ≥ 1 with w̄η
0 = 0. Unwrapping the recursion, we

have that for any T ≥ 1, w̄η
T =

∑T
t=1 αtwt,, where

αt =
η + 1

t+ η

T∏
j=t+1

j − 1

j + η
,

and at t = T , the convention that
∏T
j=T+1((j−1)/(j+

η)) = 1 is used.

We now denote F ′(w) = F (w)− F (w∗). Since w̄η
T is

a weighted average of w1, . . . ,wT , where the weights
αt sum up to be 1, it follows by the convexity of F and
Jensen’s inequality that F ′ (w̄η

T) ≤
∑T
t=1 αtF

′(wt).

Let S′k =
∑T
t=T−k F

′(wt), and α0 = 0, then we have

F ′ (w̄η
T) ≤

T∑
t=1

(αt − αt−1)S′T−t. (11)

It is not difficult to check that for all t ≥ 1:

αt − αt−1 =
η(η + 1)

(t− 1 + η)(t+ η)

T∏
j=t+1

j − 1

j + η

=
η(η + 1)

T (T + 1)

T+1∏
j=t

j

j − 1 + η

≤

 η(η+1)
T (T+1)

(
t−2+η
T+η

)η−1
if t ≤ T + 2− η

η(η+1)
T (T+1) otherwise

.

(12)

Let us suppose first that η ≥ 2. In that case, we can
upper bound the above by

η(η + 1)(t+ η)

T (T + 1)(T + 2)
.

As to S′T−t in Eq. (11), note that the upper bound

proof of Thm. 3 equally applies to 1
T−t+1S

′
T−t. Using

SGD: Convergence Results and Optimal Averaging Schemes

this bound and substituting in Eq. (11), we obtain

F ′ (w̄η
T)

≤
T∑
t=1

(αt − αt−1)(T − t+ 1)
17G2 log

(
Te

min{t,T−t+1}

)
λT

≤
dT/2e∑
t=1

2η(η + 1)(t+ η)

T (T + 1)(T + 2)
(T + η)

17G2 log (Te/t)

λT

≤34G2η(η + 1)(T + η)

λT 2(T + 1)(T + 2)
(A+B + C), (13)

where

A =

dT/2e∑
t=1

η log(Te/t) ≤ ηT + 1

2
log(Te),

and

B =

dT/2e∑
t=1

t log(Te) ≤ 0.5(dT/2e)(dT/2e+ 1) log(Te),

and

C ≤−
dT/2e∑
t=1

t log(t) ≤ −
∫ dT/2e
t=1

t log(t)dt

=−
[
0.5t2 log t− 0.25t2

] ∣∣dT/2e
1

=− 0.5dT/2e2 log(T/2) + 0.25dT/2e2 − 0.25.

Therefore we have

A+B + C

≤(η + 0.5)
T + 1

2
log(Te)

+ 0.5
(T + 1)2

4
log(2e1.5)− 0.25

≤(η + 0.5)
T + 1

2
log(Te) + 0.5(T + 1)(T + 2).

Plugging this estimate into Eq. (13) and simplifying,
we obtain an upper bound on E [F (wη

T)− F (w∗)] of
the form

17
(

1 +
η

T

)(
η(η + 1) +

(η + 0.5)3(1 + log(T))

T

)
G2

λT
.

(14)
It remains to treat the case η = 1. In that case, the
upper bound on αt − αt−1 in Eq. (12) becomes

αt − αt−1 ≤
2

T (T + 1)
,

and using the same derivation as before, we get that

F ′ (w̄η
T) ≤

dT/2e∑
t=1

68G2 log(Te/t)

λT 2
.

By an integration calculation, it is easy to verify that

dT/2e∑
t=1

log(Te/t) ≤
⌈
T

2

⌉
log(Te)−

∫ dT/2e
t=1

log(t)dt

=

⌈
T

2

⌉
log(Te)− [t log(t)− t]

∣∣dT/2e
1

≤
⌈
T

2

⌉
(2 + log(2))− 1.

Plugging it in, we get an upper bound of

68G2

λT

dT/2e(2 + log(2))− 1

T
,

which for any T ≥ 1 is at most 116G2/λT . The stated
result follows by combining this bound (for η = 1) and
Eq. (14) (for η ≥ 2), increasing the numerical constant
in Eq. (14) to obtain a uniform bound which holds for
all choices of η.

Note that for a constant η, the bound is essentially
optimal. We end by noting that using an identical
proof technique, it holds in the case of general convex
F (with assumptions similar to Thm. 2) that

E [F (wη
T)− F (w∗)] ≤ O

(
η(D2/c+ cG2)√

T

)
,

this implies that polynomial-decay averaging is also
optimal (up to constants) in the general convex case.

5. Experiments

In this section, we study the behavior of the
polynomial-decay averaging scheme on a few strongly-
convex optimization problems. We chose the same
3 binary classification datasets ((ccat,cov1 and
astro-ph) and experimental setup as in (Rakhlin
et al., 2011). For each dataset {xi, yi}mi=1, we ran SGD
on the support vector machine optimization problem

F (w) =
λ

2
‖w‖2 +

1

m

m∑
i=1

max{0, 1− yi〈xi,w〉},

with the domain W = Rd, where the stochastic gra-
dient given wt was computed by taking a single ran-
domly drawn training example (xi, yi) and comput-
ing the gradient with respect to that example, i.e.
ĝt = λwt − 1yi〈xi,wt〉≤1yixi. All algorithms were
initialized at w1 = 0. Following previous work, we
chose λ = 10−4 for ccat, λ = 10−6 for cov1, and
λ = 5 × 10−5 for astro-ph. The η parameter of
polynomial-decay averaging was set to 3. For com-
parison, besides polynomial-decay averaging, we also

SGD: Convergence Results and Optimal Averaging Schemes

ran suffix averaging with α = 1/2, and simple aver-
aging of all iterates. The results are reported in the
figure below. Each graph is a log-log plot representing
the training error on one dataset over 10 repetitions,
as a function of the number of iterations. We also ex-
perimented on the test set provided with each dataset,
but omit the results as they are very similar.

The graphs below clearly indicate that polynomial-
decay averaging work quite well. Achieving the best
or almost-best performance in all cases. Suffix averag-
ing performs performs similarly, although as discussed
earlier, it is not as amenable to on-the-fly computa-
tion. Compared to these schemes, a simple average of
all iterates is significantly suboptimal, matching the
results of (Rakhlin et al., 2011).

6. Discussion

In this paper, we investigated the convergence behav-
ior of SGD, and the averaging schemes required to ob-
tain optimal performance. In particular, we consid-
ered polynomial-decay averaging, which is as simple
to compute as standard averaging of all iterates, but
attains better performance theoretically and in prac-
tice. We also extended the existing analysis of SGD by
providing new finite-sample bounds on individual SGD
iterates, which hold without any smoothness assump-
tions, for both convex and strongly-convex problems.
Finally, we provided new bounds for suffix averaging.
While we focused on standard gradient descent, our
techniques can be extended to the more general mir-
ror descent framework and non-Euclidean norms.

An important open question is whether the
O(log(T)/T) rate we obtained on the individual
iterate wT , for strongly-convex problems, is tight.
This question is important, because running SGD for
T iterations, and returning the last iterate wT , is a
very common heuristic. If the O(log(T)/T) bound
is tight, it means practitioners should not return
the last iterate, since better O(1/T) rates can be
obtained by suffix averaging or polynomial-decay
averaging. Alternatively, a O(1/T) bound on the last
iterate can indicate that returning the last iterate is
indeed justified. For a further discussion of this, see
(Shamir, 2012). Another question is whether high-
probability versions of our individual iterate bounds
(Thm. 1 and Thm. 2) can be obtained, especially
in the strongly-convex case. Again, this question
has practical implications, since if a high-probability
bound does not hold, it might imply that the last
iterate can suffer from high variability, and should be
used with caution. Finally, the tightness of Thm. 2
is still unclear. In fact, even for the simpler case of

0 2 4 6 8 10 12
−2

0

2

4

6

8

10

log(T)

lo
g(

F
(⋅)

)

ASTRO

0 2 4 6 8 10 12
−2

0

2

4

6

8

log(T)

lo
g(

F
(⋅)

)

CCAT

0 5 10 15

0

5

10

log(T)

lo
g(

F
(⋅)

)

COV1

Poly. Decay
Suffix
Simple

(non-stocahstic) gradient descent, we do not know
whether the behavior of the last iterate proved in
Thm. 2 is tight. In general, for an algorithm as
simple and popular as SGD, we should have a better
understanding of how it behaves and how it should be
used in an optimal way.

Acknowledgements: We thank Simon Lacoste-
Julien for helpful comments.

SGD: Convergence Results and Optimal Averaging Schemes

References

Agarwal, A., Bartlett, P., Ravikumar, P., and Wain-
wright, M. Information-theoretic lower bounds on
the oracle complexity of stochastic convex optimiza-
tion. IEEE Transactions on Information Theory, 58
(5):3235–3249, 2012.

Bach, F. and Moulines, E. Non-asymptotic analysis
of stochastic approximation algorithms for machine
learning. In NIPS, 2011.

Hazan, E. and Kale, S. Beyond the regret minimiza-
tion barrier: An optimal algorithm for stochastic
strongly-convex optimization. In COLT, 2011.

Hazan, E., Agarwal, A., and Kale, S. Logarithmic re-
gret algorithms for online convex optimization. Ma-
chine Learning, 69(2-3):169–192, 2007.

Kushner, H. and Yin, G. Stochastic Approxima-
tion and Recursive Algorithms and Applications.
Springer, 2nd edition, 2003.

Lacoste-Julien, S., Schmidt, M., and Bach, F. A sim-
pler approach to obtaining an o(1/t) convergence
rate for projected stochastic subgradient descent.
CoRR, abs/1212.2002, 2012.

Ouyang, H. and Gray, A. Stochastic smoothing for
nonsmooth minimizations: Accelerating sgd by ex-
ploiting structure. In ICML, 2012.

Rakhlin, A., Shamir, O., and Sridharan, K. Mak-
ing gradient descent optimal for strongly convex
stochastic optimization. CoRR, abs/1109.5647,
2011.

Shalev-Shwartz, S., Shamir, O., Srebro, N., and Srid-
haran, K. Stochastic convex optimization. In COLT,
2009.

Shalev-Shwartz, S., Singer, Y., Srebro, N., and Cotter,
A. Pegasos: primal estimated sub-gradient solver
for svm. Mathematical Programming, 127(1):3–30,
2011.

Shamir, O. Is averaging needed for strongly convex
stochastic gradient descent? Open problem pre-
sented at COLT, 2012.

Zhang, T. Solving large scale linear prediction prob-
lems using stochastic gradient descent algorithms.
In ICML, 2004.

Zinkevich, M. Online convex programming and gener-
alized infinitesimal gradient ascent. In ICML, 2003.

