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A  Proof of Theorem 1

Assume that at the beginning of game t, the system’s belief in the user’s preference is P;. Then, the
certainty-equivalet user preference during game ¢ is

7H(0) = Enp, [1(i)] Vi€ T

Recall we define 7. = min;e7 7*(4), Lemma A-1 formalizes the result that if 7} is “close” to 7*, then for
any decision tree T', Ejrr [N(T),1)] is “close” to Ejq+ [N(T,1)]:

Lemma A-1: For any decision tree T', we have that
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where the first inequality follows from the triangular inequality and the second inequality follows from the
Holder’s inequality. Q.E.D.



Note that the bound in Lemma A-1 is tight in the following example. Assume Z = {1,2} and

N(T,1) = 0

N(T,2) = 1
1) = 1-—¢
™(2) = €
(1) = 1—2¢
T (2) = 2e.

Then Ejwrs [N(T,1)] = €, Ejurr [N (T, )] = 2¢, and therefore
|Einrs [N(T,1)] = Eirr [N (T, 1)]| = €.
On the other hand, we have ||7* — 7} ||, = . Furthermore, for € < 3, we have that

T =7 (2) =e.

Thus we have . .
I = 7iloo s, v, )] = % .

*

Tmin

Hence, the bound in Lemma A-1 is tight in this example.

Throughout this section, we assume the certainty-equivalent (CE) optimization problem is solved exactly,
and use T} to denote the solution of the CE optimization problem in game ¢, V¢ = 0,1, --. Lemma A-2
states that if |7} — 7*|| is “small”, the one-game regret (conditioning on 7}) is also “small”:

Lemma A-2: If |[7* — 7/ |loc < 7., then we have

min’

2||m* — 7o

Eiwrr* [N(T*’ z)] Z Eiwrr* [N(Tt*’ Z)] - Eiwﬂ* [N(T*v Z)] Z 0. (2)
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Proof:
By definition of T}, we have that
Einrs [N(T*,4)] > Eijorr [N(T},1)] .

On the other hand, from the inequality , we have that
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Similarly, we have that
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Combining the above three inequalities, we have that
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i || = wf ) .
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Finally, notice that by definition of 7% (i.e. T* € argming E; - [N(T,7)]), we have that
E; e [N(T},4)] > Ejorne [N(T*,4)].
Thus, we have proved Lemma A-2. Q.E.D.

Now we consider the case when the prior belief Py of the system is modeled as a Dirichlet distribution
with parameter a € R/ (henceforth denoted as Dir(«)). Specifically, its probability density function (PDF)

over the probability simplex AM~1 is given by

1

fro () = Bla) Hﬂ(i)a(i)_laVW e AMT,

i€Z
where 7(7) is the probability mass at item 7, and «(i) is the associated parameter. B(«) is a normalizing
constant given by
[Liez I'(a(?)
T (Yier (i)’

where I'(+) is the classical gamma function. The main advantage of Dirichlet prior is that it results in a
simple posterior distribution, since it is the conjugate prior of the multinomial distribution. Specifically,

B(a) =

YVt =0,1,---, we define the indicator vector Z; € RM as follows:
L1 ifi=1,
Z4(i) = { 0 otherwise

Then, based on the Bayes rule, the posterior belief at the beginning of game t is

t—1
P; = Dir <04+ZZT> :
=0
From the properties of Dirichlet distribution, we have that
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Notice that ). .7 S Ze () = ver L. (i) = St 1 =t. Furthermore, we define ag = Yoierali).
Thus, we have
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g+t ag+1t ag ag +t t
Throughout this paper, we use the convention that “8 = 0", so for t = 0, we have 7{j(i) = %é) The above
equation has a very nice interpretation: notice that %;) is the estimate of 7%(7) based on the prior belief,



while w is the estimate of 7*(i) based on observations, the above equation states that 7} (i) is a
convex combination (weighted average) of these two estimates. Furthermore, the weights depend on ¢, the
index of the current interactive game (or equivalently, the number of past observations).

From Hoeffding’s inequality, Ve > 0, we have that

t

< e) > 1 — 2exp(—2¢t).
That is, for any i € Z, at the beginning of game ¢, with probability at least 1 — 2 exp(—2€2t), we have that

‘zf_otzm‘) )

<e.

Let E.(i) denote the event that ‘M *(z)‘ > ¢. Then we have proved that P(E;(i)) < 2 exp(—2€2t)

for any ¢ € Z. From the union bound of the probability, we have that

P (Uiez (i) < Y P (Ey(i)) < 2M exp(—2€°t).

1€L

Thus, with probability at least 1 — 2M exp(—2¢%t), we have that

t—1 .
D 7o 2 (i) — ()
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Finally, notice that Vi € Z, we have that
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Notice that max;cz

%{? — w*(z)‘ is the maximum estimation error based on the prior belief, which is in-

dependent of the observations. On the other hand, max;ez ‘ Lot sr=te Zei) _ ()| is the maximum estimation

error based on observations, which is a random variable.
Lemma A-3 upper bounds the regret in game t¢:

Lemma A-3: Vit >0 and V0 <n < %, if

*
< N min>




then we have that

Bry (i V(Y 0]~ Bonre IN(E, 0]} < 0Bsere [N 0] + 20011 exp {730 | 2 — 09| - 2 e
i 0
Proof: '
Since ;% maxjez }%S) — ¥ (z)) < nmks,, thus, one sufficient condition to ensure that
P *
I?EaIX |7T (Z) T (7’)| = NTmin
is
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%;) —7* (z)‘, from the above discussion, we know that inequality

— (61 [e%
Define € = nr . (1 + 70) — S max;er

holds with probability at least 1 — 2M exp(—2¢%t). Furthermore, from Lemma A-2, max;c7 |7*(i) — 7} (i)| <
nm, ., implies that

B (VT 0] 2 B [N(TY )] = B [V (T, ). @)

Thus, we have proved that with probability at least 1 —2M exp(—2¢t), inequality holds. In other words,
if we define E as the event that inequality (4) holds, then we have that P(E) > 1 — 2M exp(—2¢%t)

On the other hand, notice that a naive bound on the regret is E;r« [N(T},7)] — Ejur= [N(T%,7)] < |Q|.
With E defined as the event that inequality holds and FE defined as the complement of E, we have that:

Er; {Biore [N 3] ~ Binne N0} < B(E)Ez; (i (NI} 8] ~ Eone N(T,1)] |}
(1~ B Ery {Einre [N(T70)] ~ Bivre [N(T",9)] |}
< P N0+ - B(B)] Q]

On the other hand, notice that E;w.« [N(T™*,7)] < |Q] by definition, and n < % implies that ﬁ—”ﬂ < 1, thus
we have %Eiww* [N(T*,)] <|Q|. Together with P(E) > 1 — 2M exp(—2€2t), we have that

Eps {Eiwrs [N(T},8)] = Ejore [IN(T*,49)]} < [1 —2M exp(—2€%t)] 12777]Ei~,r* [N(T*, )] + 2M exp(—2€%t)| Q]

2n

T Binne [N(T*, )] + 2M| Q| exp(—2€3t).
=1

<

Notice that 0 < n < % implies that 0 < ﬁ < %, thus 0 < 12_—”77 < 3n. Hence we have that
Ery {Eimr [N(T},4)] — B [IN(T*,0)]} < 30Ejore [N(T*,1)] 4+ 2M| Q| exp(—2€°t).

From the definition of €, we have
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4 2
a(i) _ n*(i)‘) > 0 and [, ]% ag >

ag min
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where the last inequality follows from the fact that %2 (7777;1111 — max;e7
0. So we have

—26?t < AnTl o0 max i) _ (i) — 2[nri )Pt
i€ | O
Thus, we have proved Lemma A-3. Q.E.D.
We define 7g as
. In(t) a* \ 2 4 a(i) . 1
— >4 < min = SV« < 3
TE = min {t >4 R ( 5 > and 5 0 Tax " 7 (4)| < [tIn(¢)]? ¢, (5)

where In(-) is the logarithm function with base e. Notice that for ¢ > 3, @ is monotonically decreasing.
Notice that 7 depends on (1) 7%, and (2) the “quality” of the prior. Lemma A-4 derives a more useful

one-game regret bound based on Lemma A-3 and the definition of 75:

Lemma A-4: Vt > 1g, we have

Ezs {Eiore [N(TF, )] — Eqom IN(T*,0)]} < —2 [“"”}EN (T, + 2409

where Ty is defined in Eqn(@.

Proof: )
For Vt > 715, we choose n = ﬂ% [@} *. We first show that this particular 7 satisfies the conditions of
Lemma A-3. Since @ is monotonically decreasing for t > 3 and t > 75 > 4, we have that
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On the other hand, since ¢In(¢) is monotonically increasing, thus, ¢t > 7 implies that
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Thus, the conditions of Lemma A-3 are satisfied and we have that
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Thus we have
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On the other hand, we have that 3n = TF*G' [@} 2, thus we have
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Q.E.D.
In this remainder of this section, we prove Theorem 1:
Proof of Theorem 1:
Notice that a naive bound on Ezy {Ejwr [N (T}, )] — Ejur [N (T, )]} is
Bz {Binre [N(T7,0)] = Einge [N(T7,8)]} < [Q].
Thus, for 0 < 7 < 7, we have that
ZET {Einr= [IN(T7, )] = Binas [N(T7,0)]} < [Q|(T +1).
On the other hand, from Lemma A-4, for 7 > 7, we have that
TE—1
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t=7Tg
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where the first inequality follows from the naive bound and the second inequality follows from Lemma A-4.

Since 7 > 1, we have that
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On the other hand, notice that @ is monotonically decreasing on interval [T — 1, 00) (Since 7 — 1 > 3),
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1
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Thus, for 7 > 75, we have that

t=Tg min
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Q.ED.
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B Proof of Theorem 2

Throughout this section, we assume that the certainty-equivalent (CE) optimization problem is solved by the
greedy algorithm, and use T} to denote the solution based on the greedy algorithm of the CE optimization
problem in game ¢, Vt = 0,1, ---. Note that in the proof, we still use T} to denote the exact solution
of the CE optimization problem in game ¢. Lemma A-5 is the counterpart of Lemma A-2 in this case:

Lemma A-5: If ||7* — 7} oo < 7pyy,, then we have

S * 7rr>§1ir1+ Hﬂ-* _W*HOO 2 €
B V(T2 0)] £ B V()] | 2 T G B
t ||co

Tmin — Hﬂ* - Tr?HOO min

Proof:
Before proceeding, notice that from Theorem 10 of [I], we have that

Einr; [N(TF,9)] < Einry [N(T7,0)] (ln <mml7r<z)> ’ 1) ’

where T} is the exact solution of the CE optimization problem in game ¢, and T} is the approximation
solution based on the greedy algorithm. From Lemma A-1, we know that

B [N(TE, )] > min

—||l7* ==

¢ H‘”EM* [N(TE,)],

Tr:;lin

and . . .

Ei . [N(T* Z)] < Tin + Hﬂ- - Ty H
1T t —=

* OOEiNT"* [N(Tt*a Z)} .

T,

Thus we have that

* * *
min Hﬂ- Ty H
*

min

T

O R [N(TE i
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¢ Tt iy ) (o) )

min

We define ¢ = Tmntlm =i |
71,*

min

< thus we have that

=l =7l o

Eyore [N(TE,0)] < cEione [N(T7,4)] (m (1)> 4 1) .

min; 77 (¢

Combining with Lemma A-2, we have that

Einre IN(TF,1)] < B [N(T*, )] (m (1)> + 1> . (6)

min; 7; (¢
Finally, assume that min; 7} (i) = 77 (¢*), we have that

min 7y (i) = mp (i°) = 7 (") + [mp (7) = 7 (@) 2 T — 77— 7w,

1 1
111 T EE—— S hl :
min; 7; (7) T — 7 — 7 o

1 1
hl(.*.>+1§hl(* . P )Jrlln(* e* * )
ming 7y (Z) Tinin — ||71' - T ||oo Tinin — ||7T — T ||oo
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So we have

Hence




Plug the above inequality into Eqn@, we have proved Lemma A-5. Q.E.D.
Lemma A-6 upper bounds the scaled regret in game ¢:

Lemma A-6: Vi >0 and VO <n < 1, if

1471 1 4 '
il In + T (< <1 and Y max 0) — (1) < NTpins
1—n 1—n (1 —mn)? T oo+t i€z | ag
then we have that
Eqs {EM* [N(TE, )] —1n< ‘ )EM* [N(T*,i)]}
1+n 2 1 4n e
1 ] Eion [N(T*,i
- {[1—77] n<1—n>+(1—n)2n(7f;in)} N
+ 2M|Q|exp <4n7rfnino¢0 max oli) _ (i) — 2 [ t) .
i€l | Op
Proof: ‘
Since ;% maxjez ’%3) - W*(Z)) < nmy ., thus, one sufficient condition to ensure that

max |7 (i) — 77 (3)] < i,

is

YT Z-()

t

X @ —7*(1)|.

t i€ | ap

max —m(i)| < (7)

We define € = . (1 + %) — L max;er %;) — (2)) From the discussion before Lemma A-3, we know

that inequality holds with probability at least 1 — 2M exp(—2¢%t). Furthermore, from Lemma A-5,
|7 — 7f|| < mm¥,, implies that

min

Eire [N(TE,1)] < Ejors [N(T*,4)] Ei’ﬂ 2111 <7Tmn(i—77)> .

Thus we have that
quNgfm_m(jf>mw4N@ﬂm

min

nrm(ﬁmg—m)‘m<é;)}ﬁw4N@ﬂm

() e () e

Thus, we have proved that with probability at least 1 —2M exp(—2¢2t), inequality holds. In other words,
if we define E as the event that inequality holds, then we have that P(E) > 1 — 2M exp(—2¢%t).

IN
—
[
I |+

3

On the other hand, notice that a naive bound on the scaled regret is

E;ne [N(TE,i)] — ln( ‘

Tmin

) Eiornx [N(T*,1)] < |Q].

10



With E defined as the event that inequality holds and E defined as the complement of E, we have that:

Ers {JEM* [N(T,i)] — In (e

min

) Ejore [N(T*, z')]}

< P(E)Egs {EM* [N(T%,4)] — In ( ;in> E;re [N(T*, )] E}
+ [1—P(E) Eqps {EM* [N(TE,7)] — In ( ;in) E;one [N(T*, )] |E}

1—i—172 1 4n e

< P(E){Ln} 1n(177>+ e In (W%)}Eiw* [N(T*,i)]+[1 —P(E)]|Q|.

2
On the other hand, notice that E;- [N (T%,4)] < |Q| by definition, and [i—ﬂ In <f177> +(1f7?])2 In <7r%> <

(22 () e () e s

Together with P(E) > 1 — 2M exp(—2€2t), we have that

1, thus we have

Ers {EM* [N(TE,4)] 1n< ‘ )]EM* [N(T*,i)}}

min

(0 () o o

min

From the definition of ¢, we have

. 2
et = [mi;mﬁ + % (nm’;in ~ max %) — 7 (i) ﬂ
= [prt )Pt + 20t a0 (et —maX@—w*(i) +a—% T max%—ﬂ*(i) i
= " min NTmin@0 | M min i€t | ag n NTmin i€t | ag
> [777T;nn] 2,'77Trnma0 r?eaIX %;) - (7’) ’
2 .
where the last inequality follows from the fact that %2 (nwl’;in — maX;eT %;) — 7 (3) D > 0and [t |* op >

0. So we have o
AU 4)

2
—26%t < A’ ag max o — 2Nt

Thus, we have proved Lemma A-6. Q.E.D.

Before proceeding, we derive a sufficient condition for

2
ﬂ In L + 41 In ¢ <1
1—1n 1-n) @Q1-n)?%" \7i,

2
that is easy to verify. Notice that f(n) = HJFZ} In < ) + (1 ) In (—) is an increasing and continuous

function of n on interval [0,1), and f(0) = 0, lim,4; f() = oo, thus, there exists an n* € (0,1) such that

1+n
1-n

f(n*) = 1. Similarly, we can show that g(n) = [
function of n, and ¢(0.1378) = 1.

} ln( 177) + (14?7)2 is an increasing and continuous

11



We now show that if n < 0'1378), then f(n) < 1. Notice that since In (%) > 1, then we have

In =
7\'* .
min

01378 _ < (.1378. Thus we have, for n < —91378_

In{ —* In{ =~
0.1378
Fo) < f | ——20 | < 9(0.1378) = 1. (9)
In (£

2
Thus, one sufficient condition for [}f—g] In (L) + (finQ In (ﬂ%) < 1lis that n < 0‘1378).

In{ =

We define 7¢ as

2

1 4
T¢ =mindt>4: n(t) < 006897 i and —agmax
t In ( e ) 3 €L

Lemma A-7 derives a more useful one-game regret bound based on Lemma A-5 and definition of 74:

A i

Qo

< [tn(t)]? . (10)

Lemma A-7: Vt > 7, we have that

e

Ere {]EM* [N(TE,i)] — In ( ;un) Eiwr- [N(T*, i)}}

< {8+121n( ‘ ﬂ Wl [ln(t)rﬁw* [N(T*,z')]+2M|Q‘.

* 2
min min t t

Proof:

1
For t > 7g, we choose n = *2 [@} . We first show that this particular 7n satisfies the conditions of
ln(t)

is monotonically decreasing for ¢ > 3 and t > 7 > 4, we have that

<)

1
From the discussion above, we have {H—"} In (1 17) + (1 77 < ) <1 for n = =2 [@} :
t > T

Lemma A-6. Since

- 2 {ln(t)] < 2 {ln(fg)] < 0.1378
T t ™

*
min min

E*

1 n Tmin

On the other hand, since ¢1n(t) is monotonically increasing, thus < implies that

N|=

< [t1n(t)]

Similarly as the proof for Lemma A-4, we have that

Wl

1
ag a(i) ag a(i) . 3[tIn(t)]? 2 [In(t)]? 3nk%:,  3mhin
— < — _— < = == <
ao—|—trzneaI a0 @ t lier a0 @) < 4t T Lt 8 g MM

Thus, the conditions of Lemma A-6 are satisfied. Furthermore, similarly as the proof for Lemma A-4, we
have that

1
exp {4177rmma0 max —2[nm mm] t} <exp{6In(t) —8In(t)} = exp{—2In(t)} = o)

€L

12



for t > 7¢.
2
We now bound the term “f—ﬂ In (%) + ((EE 7]) In (W ) Notice that for ¢ > 7, we have that

< 0.1378.

*
min

2 {ln(t)r< 0.1378
1

Com()
Thus we have [FZ] < 1.7415 < 2, and =z ) < 1.3452 < 1.5. On the other hand, notice that In (%) <2

for 0 <n <1 5, thus, for n < 0.1378, we have that

1+n]? 1 4n e e e 2 [In(
— 1 1 4 6nl = (4+61
|:1 - 77:| " (1 - ’7> * (1 - n)2 ! ’n—:;lin <o ’n—:;lin o 7T;knin 7Tr*nin t

Combining the above inequalities and the result of Lemma A-6, we have that

T

Ers {EM* [N(TE,4)] — In ( ‘ ) E;. .- [N(T*,z’)]}
e 2 [In(t) H . . 2M| Q|
= |:4 * 61n < I*l’lil’l):| W:;min |: t :| EiNﬂ-* [N(T 72)] * t2 ’

for t > 7. Q.E.D.
Finally, we prove Theorem 2.
Proof of Theorem 2:

The proof is similar to Theorem 1. Specifically, for 0 < 7 < 7g, we have that

B N e G| EE T

min

On the other hand, from Lemma A-7, for 7 > 75, we have that

ZETg{ some [IN(TE,9)] — In <7Te )]EM* [N(T*,i)]}

_ ZET{ o INZE D) = 0 (25 ) B (V2,0
b 3 By B R o () B V()]
t=1q min
< 1Qra+ 3 Bry { B V0] - (=) Bonre (V2]
P— min
< Qe + ZT: [8+121n< e )] ﬂ: [lnit)rEM* [N(T*,i)] + MQQW :
t=rg min min

where the first inequality follows from the naive bound and the second inequality follows from Lemma A-7.
Since ¢ > 1, we have that

T

1
> 2z <
t=71¢

o0

<Yt X i

Ta—1
t=71a t:TG G
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On the other hand, notice that lngt) is monotonically decreasing on interval [7¢ — 1, 00) (Since 7¢ — 1 > 3),

[N

1 1
and the derivative of the function [t ln(t)]% is & [ﬁ} ‘4 3 [@] , we have that

S < L ] < (] ] -2

t=1a

W=
Nl

—2[(r¢ — 1) In(r¢ — 1)]

Thus, for 7 > 7¢, we have that

s

gETtg {EM* [N(T8,i)] — ln( ‘ )EM* [N(T*,i)]}

1
T e 1 [In(t)]2 . g, 2M|Q)
S |Q|TG i t;':c |:8 - 12l (W:nin>:| 7-‘—;“(ﬂin |: 3 :| EiNTr* [N(T ’Z)] - t2

2M| 9|
Ta — 1

W=

* *
min T min

< Q¢ + [16 +241n ( c ﬂ Eie [IN(T7, 3) {[7’ In(7)]? — [(7¢ — 1) In(1q — 1)]%} +

1

) ([T 1n(T)]§) :

Notice that In (Wf ) > 1, so we have

min

g Ers {EM* [N(T%,i)] - In (W;) E;n- [N(T*, i)]}

e > Eion [N(T*,1)]

2M| Q|

- {Fw@)* ~ (6 = Dintre —]F }+ =2

min

*
min

< |Q|TG+4OIH(
= o([Tln(T)}%).
Q.ED.

References

[1] Daniel Golovin and Andreas Krause. Adaptive submodularity: Theory and applications in active learning
and stochastic optimization. Journal of Artificial Intelligence Research, 42:427-486, 2011.

14



	Proof of Theorem 1
	Proof of Theorem 2

