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Abstract

For a prediction problem of a given target feature in a large causal network under ex-
ternal interventions, we propose in this paper two partial orientation and local structural
learning (POLSL) approaches, Local-Graph and PCD-by-PCD (where PCD denotes Par-
ents, Children and some Descendants). The POLSL approaches are used to discover the
local structure of the target and to orient edges connected to the target without discov-
ering a global causal network. Thus they can greatly reduce computational complexity of
structural learning and improve power of statistical tests. This approach is stimulated by
the challenge problems proposed in IEEE World Congress on Computational Intelligence
(WCCI2008) competition workshop. For the cases with and without external interventions,
we select different feature sets to build prediction models. We apply the L1 penalized lo-
gistic regression model to the prediction. For the case with noise and calibrant features in
microarray data, we propose a two-stage filter to correct global and local patterns of noise.

Keywords: Causal network, Local structural learning, Partial orientation.

1. Introduction

Correlations between variables are useful for prediction in the case that individuals to be
predicted come from the same population as the training data. If we want to predict them
after the system is manipulated by external interventions, prediction models based only on
correlations may lead to awful results. For example, there is a strong correlation between
a rooster’s crying and sun rising. But killing the rooster cannot stop sun rising. No matter
how advanced techniques and models are used based only on correlations, there may always
exist some cases of external interventions which make the prediction inaccurate without
causal discovery. Causal discovery is one of most important goals in various sciences, such
as natural and social sciences (Pearl, 2000; Spirtes et al., 2000). In causal discovery, a key
issue is to discover causes of a target feature of interest, whose main causes are generally
not too many. Generally, it is difficult to discover causes and effects only from observational
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data, and even harder to distinguish causes from effects. Discovering causal structures and
further distinguishing causes from effects of a target are useful not only for prediction in
the cases with external interventions, but also valuable for studying causal mechanisms,
making decision and evaluating treatment effects.

Most of the traditional prediction approaches are based on correlations without causal
discovery. For example, it is well known that for a Bayesian network a Markov blanket
(MB) of a target variable is often used for prediction of the target because the target is
independent of other variables conditionally on the Markov blanket. A Bayesian network is
called a causal network if directed edges have causal interpretation. The causation challenge
organized by Guyon et al. (Guyon et al., 2008) for IEEE WCCI2008 is to predict the effect
of external interventions. When the neighbor nodes of the target in the causal network are
manipulated by external interventions, we have to distinguish parent nodes (cause features)
from children nodes (effect features), and then we use parent nodes (and unmanipulated
children nodes if we know) to predict the target. Although there are many structural
learning approaches for discovering a global network, it is well known that learning a global
network is an NP-Hard problem. If we are only interested in a prediction of a target, it is
inefficient and unnecessary to learn a global network.

For a prediction problem with external interventions, we propose in this paper two
partial orientation and local structural learning (POLSL) approaches, Local-Graph and
PCD-by-PCD (PCD means Parents, Children and some Descendants). In the POLSL
approaches, we discover locally the edges connected to the target and only try to orient
these edges so that we can distinguish the parents from the children of the target. We
can theoretically show that the approaches can correctly obtain the edges connected to the
target and their orientations. The POLSL approaches can greatly reduce computational
complexity of structural learning, and their statistical test is more powerful than a global
learning approach. After we select a subset of all variables according to the local structure,
we use the L1 penalized logistic regression model to fit the prediction model and use the
estimated conditional probability of the target variable for each individual in the test set
for its classification. The L1 penalized approach is a shrinkage method which can reduce
mean squared error (MSE) of prediction.

In Section 2, we describe the preprocessing and we propose a two-stage filter. In Section
3, we propose two POLSL algorithms and theoretically show their correctness. In Section
4, we use the L1 penalized logistic regression model to fit the prediction model. In Section
5, we show results of simulation and the causal challenge. Advantages of our approaches
are discussed in Section 6. Details of the preprocessing are described in Appendix A, and
the proofs of theorems are presented in Appendix B.

2. Preprocessing

In this section, we propose a two-stage process for filtering noise in microarray data, and
we use a feature screen method to remove unnecessary features for the prediction.

2.1 A two-stage filter

For the case of observed data with noise and calibrant features (e.g., MARTI), we first
centralize observations and then filter noise using a two-stage process. At the first stage,
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we correct the global noise pattern. Then we treat every micro-array data separately to get
a smoother output in the second stage. More details on this two-stage filter can be found
in Appendix A.

After we build the model for prediction with the corrected training data, given a new
micro-array with noise for predicting its target feature, we first correct it with the global
regression models obtained at the first stage, then filter the noise of every feature with
the local models obtained at the second stage, and finally predict its target based on the
corrected features {r̂(i)

0 , i = 1, . . . , 999} and a prediction model discussed in Section 4.

2.2 Feature screen and discretization

For a data set with very high dimensional space (e.g., 4932 features for SIDO), we first
screen features using a sure independence screening (SIS) procedure (Fan and Lv, 2008)
to reduce the dimensionality to a tractable size (e.g., 1000 features for SIDO). The SIS
method is a screening method based on correlation learning which has the property that all
the important variables survive after variable screening with probability tending to one.

This screen step is not necessary for other data sets, and even for a higher dimensional
data set if CPU time for the following computations is not a problem.

For continuous variables, we suppose that they have a normal distribution, or we first
discretize them using the supervised discretization process in the causal explorer (Aliferis
et al., 2003), and suppose that the discretized variables have a multinomial distribution.

3. Partial orientation and local structural learning

After finding a Markov blanket of a target, we can obtain edges connected to a target
of interest, but it is not sufficient to orient the edges connected to the target using only
the variables in the Markov blanket. In this section we propose two approaches for local
structural learning and partial orientation of the edges connected to the target. Let PC(X)
denote a set which contains all parents and children of node X, and let PCD(X) denote
a set which contains PC(X) and may contain some descendants of X. There are a lot of
algorithms which can be used to find PCD(X), such as Min Max Parents and Children
(MMPC) algorithm (Tsamardinos et al., 2006).

3.1 Two Algorithms: Local-Graph and PCD-by-PCD

The first approach called Local-Graph tries to find a variable set such that all v-structures
connected to a target T of interest can be discovered correctly. It first finds PCD(T ) and
then finds PCD(X) for all X ∈ PCD(T ). Let V = {T}∪PCD(T )∪ [∪X∈PCD(T )PCD(X)].
Finally it learns a directed acyclic graph (DAG) over the node set V calling an algorithm.
The recursive algorithm (Xie and Geng, 2008) was used in our algorithm Local-Graph,
which recursively decomposes structural learning of a large network into local learning of
several small networks.

We can show below that algorithm Local-Graph can discover all v-structures connected
to the target T even if the local graph returned from Local-Graph may not be a correct
subgraph of the underlying DAG.
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Algorithm: Local-Graph (Data D; Target T )
(a) V = {T} ∪ PCD(T ) ∪ [∪X∈PCD(T )PCD(X)].
(b) Construct a DAG over V with the recursive algorithm.
(c) Return the partially oriented local structure around T.

Theorem 1 Suppose that a causal network is faithful to a probability distribution and that
independence test is correctly performed by using data. Algorithm Local-Graph can correctly
discover all edges and v-structures connected to a target T of interest.

In the second approach called PCD-by-PCD, we extend Algorithm Local-Graph and
find PCDs sequentially. In the algorithm PCD-by-PCD, we first find PCD(T ) of the target
T and PCD(X) for feature X ∈ PCD(T ), and then we sequentially find PCD(X) for a
feature X which is contained in the previous PCD’s. During the sequential process, we
find local v-structures and try to orient the edges connected to the target T as much as
possible. When all of the edges connected to the target T are oriented, we stop the process
and obtain all direct causes and effects of the target T . There may be some undirected
edges which cannot be oriented even after we have found the PCD for every feature in the
full set U of all features.

These undirected edges may have different directions in DAGs of the Markov equivalent
class. Theoretically we can show that the PCD-by-PCD algorithm is correct, that is, it
can correctly find, at each step, edges and local v-structures of the global DAG. Let A‖B
denote an operation adding the list B to the tail of the list A. For example, [1, 3, 5]‖[2, 4] =
[1, 3, 5, 2, 4] which is an ordinal sequence.

Algorithm: PCD-by-PCD (Data D; Target T )
1. Initialization:
Set canV = PCD(T ). (canV is an ordinal waiting list whose PCD will be found)
Set V = {T}. (V is a set of variables whose PCD has been obtained)
2. Repeat
(a) Take X from the head of the list canV .
(b) Get PCDX = PCD(X).
(c) V = V ∪ {X}.
(d) For each Z ∈ (V ∩ PCDX), create an undirected edge (X,Z) if Z ∈ PCDX

and X ∈ PCDZ .
(e) Within V , discover possible v-structures only for the triple of X and other
two variables in V if an intermediate node is not in the separator set of two
nonadjacent nodes.
(f) If we find new v-structures, orient other edges between nodes in V if each opposite
of them creates either a directed cycle or a new v-structure (Meek, 1995).
(g) canV = canV ‖(PCDX \ V ). (Add new variables to the tail of the waiting list)
Until (1) all edges connecting T are oriented, or (2) canV = ∅, or (3) V = U .
3. Return The partially oriented local structure around T.
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Theorem 2 Suppose that a causal network is faithful to a probability distribution and that
independence test is correctly performed by using data. Then algorithm PCD-by-PCD cor-
rectly obtains edges connected to the target T , and further it returns the same orientations
of these edges as a partially directed graph for the Markov equivalence class of the underlying
global causal network.

Algorithm PCD-by-PCD sequentially finds PCD(X) of node X that is nearest to the
target T among all nodes whose PCDs have not been found at the present step, and it finds
PCD(X) at most once for each node X. Thus its computational complexity depends on
the algorithm for finding PCD(X). If the number of nodes in the full set U is too large
to find all PCDs, then we can stop the algorithm by limiting the maximum size of the set
V . The likelihood ratio test statistic G2 is used in our algorithms for testing conditional
independencies.

3.2 Comparison between algorithms

There are several other approaches which can be used for local structural learning. One is
the MB-based approach in which we first find the MB of the target and then learn the local
structure over the MB and the target. Another is the Markov Blanket Fan Search (MBFS)
algorithm proposed by Ramsey (2006). Below we use examples to make comparisons of the
Local-Graph, PCD-by-PCD, MB-based and MBFS algorithms.

Example 1. We use the underlying causal network in Figure 1 (a) to compare the
MB-based and Local-Graph algorithms. The local structures obtained from the MB-based
and Local-Graph algorithms are shown in Figure 1 (b) and (c) respectively. The dashed
line between nodes 1 and 7 in Figure 1 (b) denotes the edge which may be false. It can be
seen that the MB-based algorithm cannot orient the v-structure 7 → T ← 1.
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Figure 1: Comparison between the MB-based and Local-Graph algorithms.

Example 2. The underlying causal network in Figure 2 (a) is used to compare the Local-
Graph and MBFS algorithms. The local structures in Figure 2 (b) and (c) are obtained
from the Local-Graph and MBFS algorithms respectively. The dashed lines in Figure 2 (b)
and (c) denote the edges which may be false. For example, the dashed lines (2, 4) and (3, 4)
in Figure 2 (b) are determined a true edge and a false edge at the later step respectively,
see Figure 2 (c). Although the v-structure 7 → T ← 1 is obtained from the Local-Graph
algorithm, it cannot orient the undirected edge T − 2. The MBFS algorithm can correctly
orient the edge as T ← 2.

Example 3. For the underlying causal network in Figure 3 (a), the MBFS and PCD-by-
PCD algorithms output the local structures in Figure 3 (b) and (c) respectively. The MBFS
algorithm cannot orient the undirected edge T − 2, while the PCD-by-PCD algorithm can
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Figure 2: Comparison between the Local-Graph and MBFS algorithms.

do that correctly. The dashed lines in Figure 3 have a similar meaning to those in Example
2.
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Figure 3: Comparison between the MBFS and PCD-by-PCD algorithms.

From the above examples, we can see that these algorithms discover local structures
over different neighbor areas. The MB-based algorithm tries the smallest neighbor area,
the Local-graph one the second smallest, the MBFS one the third, and the PCD-by-PCD
one extends the neighbor area continuously until all edges connected to the target are
oriented or the neighbor area has been extended to all variables. Thus the MB-based,
Local-Graph, MBFS and PCD-by-PCD algorithms become in turn to be more complete in
terms of orientations.

3.3 Computational complexity of the algorithms

From the previous subsection, it can be seen that all these algorithms need to find PCDs.
Thus the number #PCD of times of finding PCDs can be used as the computational
complexity of an algorithm. Let K denote the maximum size of PCDs for all nodes. For
the MB-based algorithm, we need to find #PCD = O(K) PCDs to obtain the MB of the
target and then we find a local structure over the MB. For the Local-Graph algorithm,
we also need to find #PCD = O(K) PCDs to obtain the set V and then we find a local
structure over V . For the MBFS algorithm, we find #PCD = O(K2) PCDs. For the
PCD-by-PCD algorithm, the number #PCD depends on the underly network, which may
be smaller than that of the MB-based algorithm, such as the underlying network in Figure
1 (a), or which may larger than that of the MBFS algorithm, such as the network in Figure
3 (a). When there is an undirected path connected to the target T with a length L in
the process, the number #PCD is O(KL). To stop the PCD-by-PCD algorithm early for
the presence of a long undirected path, we can add a stop condition (4): the size of V is
larger than a given constant C. Notice that the MB-based and Local-Graph algorithms
need additional computation for finding a local structure over the MB and the set V .
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Computational complexity of structural learning is exponential with respect to the size of
a node set, although the sizes of the MB and V are generally small.

4. Prediction

We first select features based on the causal discovery results discussed in the previous section
and return a single set of selected features without rank. For the cases with and without
external interventions, we select different feature sets to build prediction models. For the
data set without manipulation (numbered 0), all the features in the Markov blanket (MB)
of a target T are used to predict the target. For the data set with a known manipulated
feature set (numbered 1), we drop the manipulated variables in the children set and drop
the spouses of T whose children common with T have been all dropped, and we use all
parent variables and unmanipulated children and the parents of unmanipulated children in
the MB of T . For the data set with an unknown manipulated variable set (numbered 2),
only the parent features of the target are used. When the feature sets that are used for
prediction are sensitive to significance levels and other parameters, we may use a union of
these sets and then predict the target with a shrinkage method to remove the redundant
features. This approach of feature selection is defensibly heuristic since it may drop useful
variables in some cases.

Next we apply the L1 penalized logistic regression model with the single set of selected
features to the target prediction. We use the estimated probability of the target feature for
each individual in the test set for its classification. Let X denote a feature vector, and let
Y denote a binary target feature of interest with mean µ = E(Y ). Consider a generalized
linear model (GLM) with the logit link function

log
µ

1− µ
= β>x.

The objective function is defined as − log (likelihood function) with a penalization on the
L1-norm of coefficients, ‖β‖1,

f(β, λ) = −l(β) + λ‖β‖1, (1)

where λ is a constant. Then a L1-regularization path algorithm (Park and Hastie, 2007) is
used to minimize the objective function f(·) with respect to β and to find the full solution
path for (1). On the solution path we select a λ value with 5-fold cross validation (CV) in
the training data set which minimizes the prediction error.

5. Numerical Studies

In this section, we first evaluate POLSL algorithms via simulations and then we interpret
our results of the causal challenge.

5.1 Evaluation via Simulation

We consider the toy-example: LUCAS (LUng CAncer Simple set) network as shown in
Figure 1(a) in Guyon et al. (2008). We repeatedly do 100 simulations and give average
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values for each case of different sample size n and significance level α. For each simula-
tion, we draw a training data from the distribution with parameters given on the web-
site: http://www.causality.inf.ethz.ch/data/LUCAS.html. The manipulated features for
LUCSA1 and LUCAS2 are shown respectively in Figure 1 (b) and (c) in Guyon et al.
(2008), and the manipulated features for test data are drawn randomly which are indepen-
dent of their parents.

In Table 1, we show the simulation results of discovering the parent set (PA), the MB
set and the children (CH) set of the target ‘Lung Cancer’ with Min Max Hill Climbing
(MMHC), MB-based, Local-Graph and PCD-by-PCD algorithms. Feature scores (Fscores)
increase with sample size n increasing and are not significantly different. The MMHC
algorithm takes CPU time the most, the MB-based algorithm the second, Local-Graph the
third and PCD-by-PCD algorithm the least.

In Table 2, we show test scores (Tscores) for different logistic regressions. The middle
columns are for linear models, the last two columns are for logistic models with the second
order interaction terms. Tscores increase with sample size n increasing and are not signifi-
cantly different for test data sets labeled 0 and 1. But for test data labeled 2, Tscores based
on causal knowledge (here we use the true causal structure) are higher than those without
causal knowledge. The methods without/with shrinkage are not significantly different for
linear models, but Tscores are quite different for models with interactions. It may because
a linear model has a few of parameters, but a model with interactions has a larger number
of parameters.

5.2 Results of Causal Challenge

The problems and results of feature selection and prediction for four data sets in the causal
challenge are introduced by Guyon et al. (2008). We apply both of our two algorithms
Local Graph and PCD-by-PCD on each of the four task data sets. The parameters used are
the default value of the MMPC algorithm in Causal Explorer toolkit (Aliferis et al., 2003).
Our results are shown in Figure 4. We just select a single unsorted feature subset (ulist)
without ranking features (slist), and we submitted a single set of predictions based on the
ulist for each test data set. We focused on causal discovery and we tried to minimize the
number of features (ulist) selected for prediction. Using the POLSL approaches, we discover
a small number of important features which can dominate main causal relationships with
a target of interest. As shown in Figure 4, we selected 15 features from 999 features for
REGED, 11 from 999 for MARTI, 16 from 4932 for SIDO and 24 from 132 for CINA. There
are only two direct causes of the target in the underlying causal graphs of REGED and
MARTI, and both of them are contained in our feature sets, see the histograms of REGED
and MARTI in Figure 4. Also for CINA and SIDO, a large proportion of our features are
direct causes; especially for SIDO, 13 direct causes are contained in our set of 15 features.
The Tscore and the rank (rk) of our results in Figure 4 may be improved by chance by
using a slist of ranked features because the best Tscore over all feature set sizes is retained
under the rules of the challenge. This can be seen in Figure 2 (a) in Guyon et al. (2008)
that relative Tscore of our results are not the best comparing with the Tscore which is the
best over nested feature subsets. However, under the rule of pairwise comparison using the
same number of features, our Fscore and Tscore are at the Pareto front, as shown in Figure
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n α Set / Time MMHC MB-based Local-Graph PCD-by-PCD
PA .657± .169 .723± .145 .728± .137 .702± .160

.05 MB .764± .103 .764± .077 .781± .087 .742± .089
CH .688± .125 .681± .092 .688± .121 .671± .114

CPU time 67.4 41.4 27.0 7.54
100 PA .668± .162 .712± .153 .729± .140 .740± .167

.10 MB .774± .099 .781± .077 .775± .094 .773± .088
CH .686± .120 .675± .107 .662± .134 .676± .124

CPU time 71.5 51.6 35.0 8.10
PA .823± .105 .847± .098 .825± .095 .854± .122

.05 MB .870± .074 .872± .062 .873± .082 .827± .064
CH .621± .094 .605± .066 .657± .122 .637± .070

CPU time 75.2 59.5 38.6 8.52
200 PA .831± .099 .844± .095 .806± .093 .871± .111

.10 MB .876± .071 .873± .064 .869± .091 .821± .066
CH .626± .101 .606± .075 .678± .133 .657± .095

CPU time 79.1 66.5 47.7 8.39
PA .863± .033 .870± .029 .832± .047 .921± .032

.05 MB .927± .063 .930± .050 .939± .070 .841± .058
CH .676± .124 .665± .118 .743± .111 .707± .117

CPU time 84.2 74.2 49.6 7.50
500 PA .862± .031 .867± .030 .808± .072 .917± .031

.10 MB .932± .065 .935± .053 .914± .093 .839± .063
CH .685± .127 .677± .122 .738± .105 .727± .125

CPU time 88.7 79.4 61.7 8.13

Table 1: Feature selection comparison with Fscore (Mean ± std); the unit of CPU time is
second. This is a simulation study on the LUCAS data set.

2 (b) in Guyon et al. (2008). All of our computations are performed on a computer with
CPU 3.0GHz and 2.49 GB RAM. The CPU times for the four data sets are shown in Table
3. Note that the preprocess time for REGED and CINA is long enough, which is mainly
due to the discretization method (Aliferis et al., 2003). And the additional requirement
of preprocessing time for MARTI is due to the two-stage filter. SIDO needs a relatively
shorter preprocess time because the SIS process is simply a correlation computing process.

6. Discussion

For discovering causal and effect features of a target, the POLSL approaches proposed in
this paper only try to find the local structure near a target but not to find the whole network,
thus they can greatly reduce computational complexity of structural learning. The POLSL
approaches are efficient for large causal networks if we are interested only in prediction of
a target. We can theoretically show that the approaches can correctly obtain the edges
connected to the target and their orientations. Although the Markov blanket of a target
is useful for predicting the target without manipulation, it cannot be used for prediction
with manipulation, and the MB-based algorithm is incomplete in terms of orientations of
the edges connected to the target.
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Tscore without / with causal knowledge Regression with interactions
n Dataset NC-Full NC-Shrink Cause-Full Cause-Shrink NC-Full Cause-Shrink

0 .873± .028 .876± .035 .895± .025 .886± .031 .799± .039 .861± .036
100 1 .856± .044 .868± .045 .903± .023 .896± .028 .765± .054 .829± .064

2 .747± .072 .725± .078 .857± .012 .838± .075 .659± .057 .695± .076
0 .893± .032 .894± .033 .895± .025 .887± .030 .794± .041 .874± .051

200 1 .888± .034 .893± .033 .903± .023 .892± .029 .763± .061 .853± .065
2 .774± .064 .760± .072 .857± .012 .840± .063 .656± .058 .741± .063
0 .911± .013 .912± .013 .895± .025 .884± .035 .863± .019 .889± .032

500 1 .910± .012 .912± .013 .903± .023 .894± .026 .820± .046 .874± .055
2 .795± .032 .788± .044 .857± .012 .843± .059 .703± .060 .753± .066

Table 2: Prediction comparison with Tscore (Mean ± std). NC: no causal knowledge ;
Cause: using causal knowledge ; Full: a full logistic regression model; Shrink:
Using shrinkage; Interaction: model with interactions. This is a simulation study
on the LUCAS data set.

Figure 4: Profile of features selected. Legend: dcause=direct cause, deffect=direct effects,
ocauses=other causes (indirect), oeffects=other effects (indirect), spouses=parent
of a direct effect, orelatives=other relatives, unrelated=completely irrelevant.
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Data set Preprocessing Structure Learning Prediction
REGED 12 hours 15 minutes 5 minutes
SIDO 2 minutes 3 hours 10 minutes
CINA 14 hours 16 hours 10 minutes
MARTI 24 hours 15 minutes 5 minutes

Table 3: CPU times for our results.
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Appendix A.

In this appendix we describe the filtering process in details.
First stage of the filtering process
We use a regression model for each of gene expression features, in which calibrant features
are treated as explanatory variables and a gene expression as a response variable. For the
jth observation (microarray), let x

(i)
j denote a centralized observed value of the ith feature,

s
(i)
j the latent true value of the ith feature and ε

(i)
j the noise. Suppose

x
(i)
j = s

(i)
j + ε

(i)
j , (2)

for i = 1, . . . , F (F = 999 for MARTI) and j = 1, . . . , n (n = 500 for MARTI), where s
(i)
j

is independent of ε
(i)
j . To remove noise, some calibrant features spread regularly across the

microarray and they have mean zero. Let ykj denote the kth calibrate feature of the jth
observation for k = 1, . . . , c (c = 25 for MARTI) and Yj = (y1j , . . . , ycj). We assume that
the noise at spot i has the following model related to noise at c calibrant spots

ε
(i)
j = f (i)(β(i), Yj) + e

(i)
j , (3)

where f (i)(·) is a known function (we used a linear one), β(i) is an unknown parameter
vector and e

(i)
j is a residue with mean zero which is independent of Yj . From (2) and (3)

we have
x

(i)
j = f (i)(β(i), Yj) + (e(i)

j + s
(i)
j ).

We treat e
(i)
j + s

(i)
j as an error with mean 0 which is independent of Y . Using the least

squares method, we can get estimates β̂(i), ε̂
(i)
j = f (i)(β̂(i), Yj), and ŝ

(i)
j = x

(i)
j − ε̂

(i)
j .

Second stage of the filtering process
We treat each microarray separately and thus we omit subscript j. We locally filter the
residual noise of each corrected feature ŝ(i) using features near the spot i. Suppose that the
model for the ith corrected feature is

ŝ(i) = r(i) + η(i), (4)
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where r(i) and η(i) denote the true latent value and the residual noise respectively, and r(i)

is independent of η(i). Let Z(j) = (z(j)
1 , z

(j)
2 ) denote the geometric coordinate of spot j

relative to the origin spot i, which is a pair of integers. Define the neighbor area of spot i as
Ω(i) = {j : j 6= i, |Z(j) − Z(i)| ≤ L} where | · | denotes a distance and L is the upper bound
(a user chosen constant) of the distance between spot i and any spot j in the neighbor area.
Assume that η(j) has a polynomial surface in the neighbor area

η(j) = g(i)(α(i), Z(j)) + ξ(j) (5)

for j ∈ Ω(i) ∪ {i}, where g(i) is a known function (we used a quadratic one), α(i) is an
unknown parameter vector, and ξ(j) is an error term with mean zero. From (4) and (5) we
have

ŝ(j) = g(i)(α(i), Z(j)) + (r(j) + ξ(j))

for j ∈ Ω(i). Treating (r(j) + ξ(j)) as an error term with mean zero, we first find the model
and remove ‘outliers’ to keep informative signals of features. Then using estimates α̂(i), we
obtain η̂(i) by (4), and finally we get r̂(i) by (3), which is the estimate of the ith feature to
be used for prediction modeling.

Appendix B.

In this appendix we prove theorems presented in Section 3.
Proof of Theorem 1. Define W = {T} ∪ PCD(T ). In algorithm Local-Graph, PCD(X)
is obtained for each X ∈ W , and V contains all of them. For two nodes u and v, either
u is not a descendant of v or v is not a descendant of u. A node is d-separated from its
non-descendant by its parent set. Then two nodes u and v in W are not adjacent if and only
if they are d-separated by a subset Suv of V . Thus algorithm Local-Graph can correctly
find all edges between nodes in W . If there is a pattern u− T − v and T is not contained
in the separator Suv, then we can discover a v-stricture u → T ← v. Thus we have proven
Theorem 1.
Proof of Theorem 2. In the PCD-by-PCD algorithm, we find PCD(T ) and set canV =
PCD(T ) where canV denotes a list of nodes whose PCDs will be found at the latter steps.

At step 2 we repeatedly find PCD(X) for X in canV at step 2 (b). Let V denote the set
of variables whose PCD has been found. Suppose that the algorithm for finding PCD(X)
is correct, such as the algorithm MMPC (Tsamardinos et al., 2006).

At step 2 (d), we can correctly obtain an undirected edge X − Z if we have that both
Z ∈ PCD(X) and X ∈ PCD(Z). For both Z and X in V , we have obtained PCD(Z)
and PCD(X). At step 2 (d), we only need to treat Z ∈ (V ∩ PCDX) since Z 6∈ PCD(X)
implies no edge X − Z, and every other pair of Z and Z ′ contained in V has been treated
at the previous step 2 (d) when Z ′ or Z entered in V .

At step 2 (e), we try to discover v-structures which contain X as a node since all the
undirected edges obtained newly at step 2 (d) contain X and other v-structures without X
have been discovered at the previous step 2 (e).

At step 2 (f), we try to orient undirected edges via v-structures obtained newly at step
2 (e).

At step 2 (g), we add nodes of PCD(X) to the end of canV .
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Finally, we discuss the stop rule. The condition (1) means that all edges connecting T
have been oriented and thus the algorithm can stop. The condition (2) means that there
is no more node whose PCD needs to be found, which implies other nodes disconnecting
T . The condition (3) means that we have found PCDs for all nodes and thus we cannot
orient some edges connecting T . If the algorithm stops by the condition (3), we have found
the global skeleton graph of the underlying causal network and all v-structures, and thus
we obtained the Markov equivalence class. If the algorithm stops by the condition (2), then
the underlying causal network is not connected, and we have found the skeleton graph and
all v-structures in the connected component.
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